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Abstract
We solve the problem of quantitative measuring of image quality, beyond the widely used MSE (mean square error)
or even visual comparison. We combine eight feature-based and perceptually-oriented image quality metrics. The
need for this comes from virtual archaeology, where various image acquisitions, antialiasing, multiresolution,
image reconstruction or texturing methods produce very similar images. The proposed evaluation framework is
suitable for any image quality decision-making, being not restricted to virtual archaeology.
In particular, we compare a representative database of visually indistiguishable image pairs from different cam-
eras, anisotropic texture filters and various antialiasing methods. For image registration we propose a modified
video processing step. The results support the selection beyond commonly used visual comparison.

1. Introduction

Two commonly used measures of visual quality are MSE or
even subjective visual comparison. They cannot give an in-
sight for a qualitative judgement or perceptual significance,
especially if the images are very similar. Mathematically, it
is possible to estimate the error of a given acquisition, tex-
turing or antialiasing method, but resulting images are per-
ceived by humans. That is why many papers conclude by
visual comparison, only. Fortunately, there is a reasonable
compromise between the two evaluation extremes - to fo-
cus on the image quality measures. If we have two images,
which of them is a better "correct image" or "high quality
image"?

(a) (b)

Figure 1: (a) Checkerboard texture (Ripmap). (b) The same
texture using Mipmap.

The paper describes sources of image pairs in Section 2.
Section 3 introduces the testing database. Section 4 surveys
selected feature-based image quality metrics. Section 5 de-
scribes selected perceptual image quality measures. Section
6 is an overview of the implementations and results. Finally,
section 7 concludes the paper.

2. Sources of Image Pairs

Anisotropic texture filtering produces images of higher qua-
lity for most uses of texturing. P. Heckbert discovered a gen-
eral theory in the late 80s9. Ideally, the pixel projection in
texture space can be used to form a line of anisotrophy and
the methods vary in sampling strategies along this line. If
the line is axially aligned, mipmapping or ripmapping works
well. The recently introduced fast Fipmap texture minifica-
tion 3 offers the solution for any slope of the line of anisotro-
phy. To the best of our knowledge, there is no widely adopted
testing methodology both in the choice of the set of test
images and in the methods to evaluate the competence of
mipmap, ripmap or another filter. Most papers rely on a
subjective visual comparison based on checkerboard images
only. The same is observable for antialiasing (see the images
below). We see the need to clarify the decision in several ar-
eas related to virtual archaeology. Answering this question
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seems worthy of obtaining an informed feed-back in any
type of image acquisition and synthesis, including photo-
realistic rendering, non-photorealistic rendering (NPR) and
image-based rendering (IBR). In addition to that, image re-
construction and multiresolution techniques are areas where
more precision is needed. All of the areas contribute to a
virtual archaeology workflow5.

3. Database of Visually Identical Image Pairs

We collected a set of image pairs from three areas: differ-
ent sensing methods12, anisotropic texturing3, and antialias-
ing 16. The images of figure2 respectively3 were geometri-
cally aligned using an algorithm based on motion estimation
10. In the future, we plan to extend the database and any con-
tribution is welcome.

(a) (b) (c) (d)

Figure 2: Detail of an advertising sign captured with differ-
ent devices, (a) Philips CCD with12µm pixel size13 (CCD)
(b)-(d) analog films scanned with5µm (b) Agfa Scala 2001

(sca) (c) Agfa APX 1001 (apx) (d) Ilford FP4 Plus 12511

(fp4).

(a) (b) (c) (d)

Figure 3: Siemens star taken with different sensors for line
detection.

(a) (b) (c)

Figure 4: c© Rosalee Wolfe. Used with permission. (a)
No antialiasing. (b) Prefiltering. (c) Supersampling. Images
from ACM SIGGRAPHpage.

4. Feature-based Image Quality Measures

We compare the quality of images taken by different sensors
and investigate three kinds of analog films and one digital
camera set. Figure2 shows one of the test targets. At first
sight it is obvious that the image taken by CCD sensor is
clearer and contains less noise.

4.1. Noise

Noise is an important criterion for characterizing the im-
age quality and is measured by calculating the entropy in
homogenous patches. To get more reliable results, these
patches are described by the so-called co-occurrence ma-
trix introduced by Haralick6. Common features computed
of the co-occurrence matrix are7: entropy, energy, maximum
probability, contrast, inverse different moment, correlation
and homogeneity. Since energy is a homogeneity measure
(the larger the value, the more homogeneous the image), and
contrast measures the local image variation, these values are
considered to be optimal to measure noise.

4.2. Line detection

In this test, a line detector is applied on a Siemens star (see
Figure3) which contains 72 lines. As quality measures, the
number of edge elements also called edgels found per line
and the average normal distances of all edgels with respect
to one line were taken. The results are shown in Table1.
The main conclusion of this test is, that the same results are
collected from film-based and CCD-based images, but the
results of CCD images are more stable, because more edgels
are found for each line.

4.3. Test Patterns

We have captured a wall with several test patterns. Figure
5 shows images of a regular grid and the horizontal profiles.
Here, the difference between film-based and CCD-based im-
ages is tremendous. Because of the large amount of noise in
the film-based images, the grid can hardly be detected.
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Figure 5: Regular black grid on white background. left: cap-
tured image, right: horizontal profile. From top to down: apx
15µm, fp415µm, sca15µm and CCD.
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min max mean std

CCD 48 75 62.46 5.943

sca 45 64 52.26 4.976

apx 42 66 52.81 5.545

fp4 36 62 51.99 5.718

min max mean std

CCD 0.00037 0.0834 0.0300 0.0293

sca 0.00105 0.1163 0.0381 0.0352

apx 0.00134 0.0806 0.0317 0.0284

fp4 0.00415 0.1187 0.0385 0.0352

(a) (b)

Table 1: Statistics of (a) number of edgels with respect to one line and (b) average normal distances of edgels according to one
line. Minimum, maximum, mean and standard deviation is shown. CCD gives the best results.

4.4. Stereo matching

A points of interest matcher, using Harris corner detector8,
normalized cross correlation and a least squares method for
refining the results to subpixel accuracy, is tested on stereo
images pairs. We choose a street-scene for this test, one of
the stereo images is shown in Figure6. Two images taken by
the same films/CCD from nearly the same spot (30cm base-
line) were matched. 4000 points of interest were searched
on a regular grid and the percentage of successfully matched
points of interest are 81%, 75%, 70% and 53% for CCD, sca,
apx and fp4.
Another quality measure are the normal distances from
matched points to their corresponding epipolar lines,
whereas the fundamental matrix is calculated via RANSAC
algorithm and refinement of results was done using the eight
point algorithm18.

Figure 6: Street scene taken with CCD sensor.

5. Perceptual Image Quality Measures

Human perception is influenced by many factors. Most
image quality models incorporate only a few of them
such as contrast sensitivity or the luminance adaptation.
The contrast sensitivity function (and its inverse contrast
threshold function) represents the minimum noticeable

amount of a change in contrast of the frequency compo-
nent. The contrast sensitivity depends on the background
luminance. The contrast is defined as a ratio between the
luminance of stimulus and background luminance. Hence,
luminance changes are less noticeable in areas with high
luminance. There is also another decrease below 10 cd/m2.
The visibility of a signal can be reduced by the presence
of another signal. This phenomenon is called a contrast- or
pattern masking. The masking effect is strongest in near
spatial, frequency and orientation areas and depends on the
type of masking and the masked signal.

• Summation of Errors Raw errors might represent a
large amount of data. To allow for a good and fast quality
overview, the errors have to be summed into a quality map
or just one quality number. Summation is done using the
well-known Minkowski metrics which include RMSE (rela-
tive MSE) measure, a probability summation or a maximum
operator.

A summation over frequencies is a preferred first step.
In summing over space, the maximum operator is used. For
measuring average rather than maximum distortions, the best
predictions are given in2, and4.

We have chosen three metrics for image quality com-
parison: MSE, VQM (Visual Quality Metrics) by Xiao17

and the metrics used in the DCTune algorithm by Wat-
son 15, 14. All three produce a single number quality
measure per image. MSE mean square error can be com-
puted in the spatial domain from the errors in single pixels.
There are several metrics defined as a function of MSE,
such as RMSE (relative MSE) or SNR (signal to noise ratio).

• VQM VQM metrics uses masking properties of the
contrast sensitivity function and the luminance adaptation
to model human vision. It operates in the DCT (discrete
cosine transform) coefficients domain. Luminance masking
is incorporated by computation of the local contrast for each
DCT block. The inverse of the MPEG quantization matrix
was chosen as an approximation. Using this multiplication,
the errors are converted and summed using weighted
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blending of maximum- and mean errors.

• DCTune The DCTune is another algorithm, which works
in the DCT coefficients domain. DCTune itself is not a per-
ception quality metrics, but it uses quality metrics internally.
DCTune uses spatial frequency threshold approximations
introduced byAhumada and Peterson2.

• Universal Image Quality Index, UIQI Unlike the pre-
vious three metrics, UIQI index is mathematically defined
and does not explicitly utilize human visual system prop-
erties like luminance adaptation or contrast masking. Thus
(similarly to MSE) it is independent of the observer and the
viewing conditions. The UIQI index works in spatial do-
main, computing correlation, luminance similarity and con-
trast similarity between the original image and the distorted
image. The quality coefficient for the distorted image with
respect to the original image is a value ranging from 1 (iden-
tical images) to -1 (maximal distortion).

6. Implementation and Results

The new implementation work consists of two independent
parts: rendering application and image comparison applica-
tion. Besides that there are the existing tools for texture re-
construction from multiple views in urban areas.

The rendering application enables us to render polygons
showing well known test textures e.g. the checkerboard tex-
ture using different texture filtering methods from exactly
the same viewpoint. This involves both, hardware- and soft-
ware rendering. Hardware rendering is used whenever this
is possible, namely for Mipmapping and the anisotropic
Ripmap approach provided through OpenGL extensions.
Other filtering techniques such as EWA (Elliptic Weighted
Average), Summed Area Tables or Fipmap technique could
only be implemented using a software renderer. Recently,
there are some efforts to use hardware support, but we can-
not test the final images.

The image comparison tools we implemented can be used
to compare renditions produced be the rendering applica-
tion, using different image quality measures ranging from
the simple RMSE (root mean square error) to more sophis-
ticated methods like VQM or DCTune. We will be able to
compare renditions from a real-world checkerboard surfaces
acquired using a calibrated digital camera to renditions of a
geometrically equivalent artificial scene in the near future.
The feature-based image quality metrics were implemented
in Matlab.

The implementation of the rendering tool mentioned
above is still in progress, so we can only show some pre-
liminary results for hardware-rendered polygons now. Fig-
ure1 shows test images for quality measurements using our
images quality measurement framework.

Table2 lists the results for the images of Figure1 using
RMSE, VQM, DCTune and Universal Image Quality Index
in YCrCb 4:2:2 space methods. Ripmap image is a reference
one, therefore the the values are zero and one.

We have experimented with another set of images, as well.
We took them from theTeaching Texture Mapping Visually
course by R. Wolfe. The original image is improved us-
ing mipmapping, supersampling, and by a combination of
mipmapping and supersampling. The measurements support
the intuitive ordering of images according to the increased
perceptual quality as shown in Figure4.

Discussing the results we have observed primarily, that
the eight measures give a spectrum of incommensurable co-
efficients. Moreover, the perceptually oriented metrics con-
firm a clear superiority of CCD acquired images. No cor-
relation of perceptual values can be observed with respect
to entropy and energy measures. They operate in an inde-
pendent dimension. We are far from composing the whole
spectrum into one number by summing the weighted values.
This could reduce the complexity of evaluation. However, it
remains to study the competences of mapping of image pairs
into the eight-dimensional space of parameters.

7. Conclusion and Future Work

Studying recent anisotropic texture filters and image recon-
structions, we noticed that the highest precision improve-
ments might be imperceptible. The detailed study of the im-
age quality metrics (both feature based error metrics12 and
perceptual ones) led us to create an image database using
very similar and/or well known images. Our image qual-
ity evaluation, combining different approaches, shows both
the significant correspondence of results and strong indepen-
dence of certain quality measures.

Our methodology and testing set of images can be used for
measurements of any image pair, even of unknown origin.
Our future work is to evaluate real data for selecting the most
suitable methods in virtual archaeology workflow, especially
for texturing and image reconstruction. However, the new
framework contributes in a wide spectrum of applications.
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