
Volumetric Textures

Esteban W. Gonzalez Clua1

Marcelo Dreux2

1PUC-Rio - Department of Computer Science
Rua Marquês de São Vicente, 255, 22443-900, Rio de Janeiro, RJ, Brazil

 esteban @inf.puc-rio.br

2PUC-RIO – Mechanical Engineering Department
Rua Marquês de São Vicente, 255, 22443-900, Rio de Janeiro, RJ, Brazil

dreux @mec.puc-rio.br

__

Abstract

There are some types of nature elements that are adequately represented in Computer Graphics
only through volumes. In order to visualize scenes with volumes, together with geometrical objects,
it is necessary to make use of a hybrid rendering algorithm. However, the presence of volumetric
elements heavily increases the visualization processing time, independently of the technique being
used. This article presents a method that is being developed in order to reduce the volumetric
rendering to a projection of a special texture on a geometric surface that surrounds the volume.
This technique seems to be particularly efficient to volumes that represent nature elements, such as
gases, clouds and smoke. It is possible, however, to extend the method to other types of volumetric
objects.

Keywords: Volume Rendering, Nature Elements, Textures.

__

 1. Introduction

Traditional Volume Rendering techniques perform a
density/transparency evaluation, along each visited
voxel, relative to each pixel that contains part of the
volumetric object. Consider, for instance, a volumetric
object in a scene with 1000x1000x1000 voxels. In this
case, for each pixel of the image that contains part of the
projected object, on average 1000 voxels will be visited.
This number varies according to the angle and position
of the ray that comes from the observer and reaches the
volume. If Ray-tracing is being used, such as it is
described by Sobierajski et al 9, the situation is even
worse since, due to the recursions, the volume is
traversed more than once.

A number of volume visualization optimizations
have been proposed 3, 7, 8. These methods, however, try
to minimize the number of visited voxels along the ray

path, inside the volume, by avoiding unnecessary voxels
or by grouping voxels with low density contribution.
Even with those optimizations, it is necessary, in many
situations, to traverse a long voxel list.

Gardner4 makes use of procedural textures in order
to distribute density onto an object surface, when
dealing with nature elements. However, in that method,
the texture is only applied on the surface, and thus
information from the interior of the volume is not
stored. They are not real volumes such as the ones
modeled by Ebert 1, 2.

Volumetric Textures, as they are called in this
research, try to model a volume through a set of special
textures applied to simple geometrical surfaces. Those
textures are built pre-processing the volume, to avoid
traversing its interior during the visualization. That
approach enormously accelerates the rendering process.

E. Clua and M. Dreux / Volumetric Textures

It becomes a simple texture mapping with a value that
corresponds to the density accumulation along the path
traversed by the ray inside the volume.

2. Texture Evaluation

The volumetric texture pre-processing consists basically
of storing the density accumulation of a ray that reaches
the volume at a certain point, considering a variety of
possible angles. Therefore, volumetric textures are
matrices, where each element maps a part of the
geometric surface that surrounds the volume. In this
work, these elements are called input polygons. Each
input polygon has an associated table that stores the
results obtained by a ray intersecting the volume at that
point with different input angles.

So, the resolution of the volumetric texture object
depends on the input polygon quantity and on the
resolution of the table of input angles (see figure 1).

Figure 1 – The volume is represented by a geometric
object (a box in this figure),which is divided in input
polygons. Each of those polygons have a table with
different input angles. It stores the density accumulation
along the ray path relative to each input angle.

Consider the volume represented by a box defined
by the vertices v1, v2,..., v8 and by the faces F1, F2, ...,
F6. In this case there will be 6 matrices, one for each
face.

Each volumetric texture (VXi) will also need to store
the following vectors, in order to speed up the
visualization process:

|||| jk

jk
i vv

vv
Up

−
−

=

And

iii NpUS
ρρρ

×= (1)

Where i is the face to be mapped by the volumetric

texture VXi, ipU
ρ

 is face i up vector, iN
ρ

 is face i

normal and iS
ρ

 is a vector perpendicular to both ipU
ρ

and iN
ρ

.

As the face is square the three vectors form a local
coordinate system to face i (see figure 2). These base
vectors must be normalized in order to simplify future
evaluations and the origin of this local coordinate
system will be located at the center of the top left input
polygon of the face i. It is also necessary to set up a base
change matrix Ti, that transforms a point from this local
coordinate system to the global coordinate system.

Each polygon is, initially, a square of size m. The
location of the center of each input polygon is
determined by (j.m, k.m, 0) and J.m and K.m are the
horizontal and vertical face i sizes, respectively.

Figure 2 – Each face i has a local coordinate system,

formed by the vectors),,(iii NpUS
ρρρ

. Each face must

have its own base transformation matrix Ti, which
converts a local coordinate to the global coordinate
system.

The pre-processing, then, consists in evaluating the
density to a set of different input angles to each face
polygon. That set of angles is a sampling of all possible

input angles. Each polygon table of angles is a matrix
addressed by the pair of angles α e β formed between

the input vector and the vectors iS
ρ

 e ipU
ρ

, respectively

(figure 3). The input vector can be expressed, in the
local coordinate system of face i, by:

R
ρ
′ = (j.m, k.m, 0) – (j.m + tg-1α, k.m + tg-1β, 1) (2)

However, as this vector will traverse the whole
volume, which is described in the global coordinate
system, it is necessary to apply the transformation
matrix Ti to obtain the correct input vector (eq. 3).

R
ρ

 = Ti .(j.m, k.m, 0) –

Ti .(j.m + tg-1α, k.m + tg-1β, 1) (3)

The following algorithm builds the volumetric
texture for the face Fi, using regular increments to
obtain the conjunct of input angles. The accumulated
density for each ray passing by the volume is stored in
VXi, j, k (VXi is the volumetric texture of Fi and j, k are the
input polygon coordinates of the point of the volume
being evaluated).

For each input polygon of face Fi do

∆α = 180 / vertical angular resolution

∆β = 180 / horizontal angular resolution

For α = (-90 + ∆α) to (90 - ∆α) do

For β = -90 to (90 - ∆β) do

R
ρ

 = Ti.(j.m, k.m, 0) – Ti.(j.m.tg-1α, k.m.tg-1β, 1)

Evaluate the points tin and tout,. They are the

intersection points between vector R
ρ

 and the
box.

VX i, j, k [α, β] = ∫
out

in

t

t

dttf)(ρ

β = β + ∆β

α = α + ∆α

Where i is one of the 6 faces, (j, k) is the coordinate of
the current polygon, given in the local system of face i

and fp is the function that describes the density inside
the volume as a function of space.

When α or β are –90o or 90o, it is not necessary to
evaluate or to store the accumulated density value since,
for a vector parallel to the face, the accumulated density
value is 0. The rays in that situation are tangent to the
face and, therefore, do not penetrate the volume.

Note that the fp integral can be evaluated based on
the density function description. Therefore, the volume
to be visualized does not need to exist at any time. This
fact can bring, in some cases, an enormous
optimization. However, if only the volume is known,
and not its density function, then the integral evaluation
is analogous to the incremental density accumulation of
the volume rendering algorithm 6.

Figure 3 – In order to obtain the angles where the
accumulated density is evaluated it is necessary to apply
regular increments to α and β.

3. Visualization

The volume visualization consists in evaluating, for
each input polygon, which are the α and β angles

formed between the observer vector O
ρ

 (vector from the
observer to the input polygon being visualized) and the
local coordinate system of the face the polygon belongs
to. So, α is the angle formed between the projection of

O
ρ

 onto the plane formed by the vectors iN
ρ

and iS
ρ

(αP
ρ

) and β is the angle formed between the projection

of O
ρ

 onto the plane formed by the vectors iN
ρ

and ipU
ρ

(βP
ρ

) (figure 4).

E. Clua and M. Dreux / Volumetric Textures

αP
ρ

and βP
ρ

can be evaluated by the following

formulas:

iiii NNOTSSOTP
ρρρρϖρρ

))(())((11 ⋅+⋅= −−
α (4)

and

iiii pUpUOTSSOTP
ρρρρϖρρ

))(())((11 ⋅+⋅= −−
β

(5)

Figure 4 – Evaluation of angles α and β which are
formed between vector O

ρ
 and the local coordinate

system of the face the current polygon belongs to.

It is necessary to apply the inverse of the

transformation matrix T, over vector O
ρ

, since it is
described in terms of the global coordinate system and
the other vectors are in terms of the face coordinate
system. It is convenient to evaluate T-1 during the pre-
processing phase and to store it with the volumetric
texture.

Once the α and β angles have been evaluated, it
should be only necessary to search the volumetric
texture VX i, j, k [α, β] in order to obtain the accumulated
density value of polygon j, k from volume face i.
However, α and β are real values while the table of
angles has a discrete angle sampling. It is necessary to
perform a linear interpolation of the density values to
avoid an undesirable flickering effect during the
visualization.

That interpolation slightly increases the
computational processing time, however it generates
images with greater quality, when compared to images
with no interpolation. Volumes with few geometric
details, such as gases, clouds and leaves, do not suffer a
significant loss with the interpolation. When dealing
with models with fine details, such as in medical
images, the interpolation only works if the table of
angles has a high resolution.

4. Optimization

The size of the volumetric textures is proportional to the
table of angles resolution and to the size of the input
polygons. For instance, if the table considers variation
of 30o to both α and β, there will be 25 density values to
each input polygon. Considering a 1000 x 1000 x 1000
volume resolution, then the size of each matrix will be
25.106, in case each input polygon is the size of a voxel.
As it is necessary to use 6 matrices to represent a
complete volume, then the total size will be 150.106,
while the volume, not considering possible
compressions, has 109 voxels. In that case, the
volumetric textures not only heavily accelerate the
visualization process, but also require less storage
space, when compared to volume rendering.

If a quadtree 5 is applied to the table of angles
representation it is possible to obtain a more accurate
and precise result. The matrix is, then, sub-divided each
time the density variation from one angle to its neighbor
is high. This method could also be used to perform table
compression. The matrix could be built by joining parts
of the table with similar values.

Another possible optimization is to make use of
graphical acceleration (OpenGL, for example). For this
case it is possible to plot an entire input polygon by
applying the appropriate transparency, which was
obtained by its volumetric texture.

5. Conclusion and Further Research

The proposed technique seems to be extremely efficient
to visualize volumetric objects with a diffuse density
distribution, as in the case of nature elements.
Moreover, the technique allows the presence of volumes
in scenes with surface rendering (ray-tracing, scan-line,
etc.), since it is not necessary to perform the traditional
volume rendering. The volume processing is treated as a
kind of texture mapping and the real volume does not
have to be present in the scene.

This work applies the textures in volumes being
represented by 3D boxes. A possible extension could be
the creation of other types of bounding volumes, such as
spheres, cylinders or implicit surfaces, since for other

volumetric objects those bounding volumes would be
more appropriate.

Other compression data structures could also be
studied, since in certain situations the use of quadtrees
could prove to be not so efficient.

This work only stores, for each input angle, the
accumulated density for a ray in certain directions.
However, to generate a more realistic image, it could be
necessary to store extra data, such as the gradient or
normal of the object inside the volume for each one of
this input angles.

The volumetric textures still have limitations and it
needs a thorough investigation to pursue possible
solutions. The main drawback concerns the volumes
with high details that could not be well represented, as
mentioned before. Other limitation is that the observer
cannot penetrate the volume, because the textures store
accumulated density from the input point until the end
of the volume. Furthermore, if there is an alteration of a
voxel density the volumetric textures will have to be
reconstructed, which is an expensive task.

Acknowledgement

The first author is grateful to CAPES, a brazilian
government research council, and to TeCGraf,
Technological Group in Computer Graphics of PUC-
Rio, which sponsored this research.

References

1. David Ebert. Procedural Volumetric Modeling and
Texturing, SIGGRAPH 97, course 14, notes, chapter
6, August 1997.

2. David Ebert. Procedural Volumetric Cloud
Modeling and Animation. SIGGRAPH 99, course
notes. August 1999.

3. John Danskin and Pat Hanrahan. Fast Algorithms for
Volume Ray-tracing. Proceedings of the 1992
Workshop on Volume Visualization, The Association
for Computing Machinery, Boston, MA, pp. 91-98.
Special issue of Computer Graphics, ACM
SIGGRAPH, New York.

4. Geoffrey Y. Gardner. Simulation of natural scenes
using textured quadric surfaces. In Hank
Christiansen, editor, Computer Graphics
(SIGGRAPH’84 Proceedings), volume 18, pp 11-20,
July 1984.

5. C. L. Jacklins and S. L. Tanimoto. Octrees and their
use in representing three-dimensional objects.
Computer Graphics and Image Processing, 14, pp.
249-270, 1980.

6. Marc Levoy. Display of Surfaces from Volume
Data. IEEE Computer Graphics and Aplications 8
(5) pp. 29-37. May 1988.

7. Marc Levoy. Volume Rendering by Adaptive
Refinement. The Visual Computer 6 (1), pp. 2-7.
1990.

8. Renben Shu and Alain Liu. A Fast Ray Casting
Algorithm Using Adaptive Isotrilinear Subdivision.
Proceedings Visualization, IEEE Computer Society
Press, pp. 232-238, 1991.

9. L. M. Sobierajski and A. E. Kaufman. Volumetric
Ray Tracing. Proceedings of the Symposium on
Volume Visualization, pp.11-18, 1994.

E. Clua and M. Dreux / Volumetric Textures

