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Abstract
The aim of this paper is to study the visibility complexity of different regions in a 2D scene. Based on mutual
information, which we used in our previous work to define scene complexity, we propose two measures that quantify
the complexity of a region from two different points of view. The knowledge of the complexity of a region can be
useful to determine how difficult it is to recompute the visibility links for an animation depending on the regions
visited or to obtain the complexity of the movement of a robot. We also envisage its applicability to obtain an
optimal load balancing in a parallel computation by dividing the geometry in equal complexity regions.
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1. Introduction

Several complexity measures have been introduced from dif-
ferent areas to quantify the degree of structure or correlation
of a system 1; 9; 7. In a 3D scene, the complexity measure
that we have proposed in our previous work 4; 5 is scene mu-
tual information, which can be considered as the difficulty of
computing accurately the visibility and radiosity in a scene.
Scene mutual information, which is an information theory
measure, quantifies the average information transport in a
scene and the correlation among all their points or patches.

In our previous work we obtained a global complexity
measure of a scene. In contrast, in this paper we apply this
approach to study the visibility complexity of a region in flat-
land. The definitions introduced can easily be generalized to
3D scenes. In 6 we defined the complexity of animation and
justified a higher complexity because of traversing a more
complex “region”. Here we will give two related measures
to quantify the complexity of a region. Some potential ap-
plications of these measures are determining how difficult
it is to recompute the visibility for an animation or obtain-
ing the complexity of the movement of a robot. We think
it could also be applied to obtain an optimal load balancing
in a parallel computation by dividing the geometry in equal
complexity regions.

The organisation of this paper is as follows: In section 2
we present the concept of scene visibility complexity applied
to flatland. In section 3 we define two measures that quan-

tify the complexity of a region in a scene. In section 4 we
calculate the complexity of a region in several scenes and
discuss the results obtained. Finally, in section 5, we present
our conclusions and future work.

2. Framework

The most basic information theory definitions 3; 2 applied to
3D scene visibility were presented in 4. In this section, en-
tropy rate and mutual information are adapted to flatland by
only changing the area of each patch with the length of each
patch (see 11 for details). Flatland visibility and form factors
are studied in 8; 10. Thus, the scene visibility entropy rate, or
simply scene visibility entropy, is defined by

Hs =�

np

∑
i=1

Li

LT

np

∑
j=1

Fi j logFi j (1)

where np is the number of patches (2D segments), Fi j is the
form factor between the patches i and j, Li is the length of
patch i and LT is the total length of the scene (the sum of
segment lengths). The entropy rate measures the average un-
certainty that remains about the patch j visited next when an
imaginary particle undergoing an infinite random walk, with
the form factors as transition probabilities, is known to be on
a given patch i.

The discrete scene visibility mutual information is defined
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by
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L j
(2)

and can be interpreted as the average amount of information
that the destination patch conveys about the source patch,
and vice versa. Consequently, Is is a measure of the average
information transfer in a scene.

The continuous mutual information is given by

Ic
s =

Z
x2L

Z
y2L

1
LT

F(x;y) log(LT F(x;y))dxdy (3)

where L is the set of segments that form the environment, x
and y are points on segments of the environment and F(x;y)
is the differential form factor between x and y. This inte-
gral can be solved by Monte Carlo integration. Similarly to
4, the computation can be done efficiently by casting global
lines uniformly distributed upon segments 12. Thus, contin-
uous mutual information can be approximated by

Ic
s '

1
N

N
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log(LT F(xk;yk))

=
1
N

N

∑
k=1

log(
LT cosθxcosθy

2d(x;y)
) (4)

where θx and θy are the angles which the normals at x and y
form with the segment joining x and y, d(x;y) is the distance
between x and y, and N is the total number of

pairs of points considered, which is the total number of
intersections

divided by two.

In 4; 5 continuous scene visibility mutual information has
been proposed as an absolute measure of the complexity of
scene visibility and discrete mutual information as a com-
plexity measure of discretised scene visibility. We have also
shown that when a patch is refined into m subpatches dis-
crete mutual information increases or remains the same, and
continuous mutual information of a scene is the least upper
bound to discrete mutual information: Is � Ic

s . We also es-
tablished two proposals which show a close relationship be-
tween complexity and discretization: (i) the greater the com-
plexity the more difficult it is to get a discretization which
expresses with precision the visibility or radiosity of a scene
and (ii) among different discretizations of a scene the best is
the one with the highest discrete mutual information. Thus,
while continuous mutual information expresses how difficult
it is to discretise a scene to compute accurately the visibility,
discrete mutual information gives us a measure of how well
we have done it.

3. Visibility complexity of a region

Contrasting with the global complexity measure Ics intro-
duced in our previous work, in this section we define two

measures that consider the complexity of a part of a scene.
On the one hand, we study the complexity of a set of seg-
ments contained in a region and, on the other, the complexity
of a region contained between segments.

3.1. Complexity of a set of segments

As we have seen in the previous section, the continuous mu-
tual information Ic

s can be computed approximately by cast-
ing global lines uniformly distributed. Each term

log(
LT cosθxcosθy

2d(x;y)
) (5)

can be interpreted as the information exchange between the
points x and y. Thus, Ic

s is obtained by the average of the
information transfer of all the pairs of points connected by
global lines and it represents the average information trans-
port in a scene.

From this point of view, we can define the continuous mu-
tual information matrix as formed by the terms

(Ic
s )sis j '

1
N

Nsis j

∑
k=1

log(
LT cosθxcosθy

2d(x;y)
) (6)

where N is the total number of pairs of points considered, si
and s j represent two sets of segments of a scene and Nsis j

is the number of lines which intersect at the same time the
sets of segments si and s j. A term (Ic

s )sisi expresses the inter-
action between themselves of a set of segments and a term
(Ic

s )sis j , with i 6= j, expresses the interaction between two
different sets of segments. Note that this definition includes
the particular case of single segment sets.

We also define the contribution of a set of segments si to
the global complexity Ic

s as

(Ic
s )si '

1
N

Nsi

∑
k=1

log(
LT cosθxcosθy

2d(x;y)
) (7)

where Nsi is the number of lines which intersect the set of
segments si. Thus, (Ic

s )si is the sum of the elements of row i
of the matrix. We consider (Ic

s )si as the complexity of the set
of segments si and can be interpreted as the total information
transferred by this set.

As we have mentioned, we think that this measure has a
potential application in obtaining an optimal load balancing
in a parallel computation.

3.2. Complexity of a region

In this approach, we consider the complexity of a region by
computing the complexity of (ideally) all the points in this
region (see below). In the experimental results presented in
the next section, we take a squared grid, as small as we want,
and we simply compute the complexity in the central point
of each square (see figure 1). Thus, we obtain a complexity
map of a region.
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Figure 1: A squared grid is used in order to compute the
complexity in the central point of each square.

Given a point x in a region, we can compute the com-
plexity in this point by casting random lines from it in all
directions. If we consider an infinitely small circle centered
in x, we define that each line contributes to the complexity
with a value

log(
LT cosθxcosθy

2d(x;y)
) = log(

LT cosθy

2d(x;y)
) (8)

where cosθx = 1, because the line from the circle center is
always normal to it (see figure 2).

Θ
Θx

y

Figure 2: Lines from a point. θx is always zero.

With the average of the complexity values of all the lines
cast, we get the complexity in point x

Cp '
1
N

N

∑
k=1

log(
LT cosθy

2d(x;y)
) (9)

where N is the number of lines cast. It is important to re-
mark that a singularity is produced when we take a point
on a segment: we have only to consider points between seg-
ments. Another point of view could be taken from global
lines traversing the grid squares.

As we will see in the next section, it can be interpreted
that in a more complex region it will be more costly to insert
an object than in a less complex one. And also, the more
complex the region the more complex the animation in this
region.

4. Results and discussion

Some preliminary results are presented in order to illustrate
the behaviour of the measures introduced.

With respect to the complexity of a set of segments, we
show in table 1 the values obtained for a scene with a rect-
angle and a square in its interior (figure 3). We can see that
the set of segments in region 3 has a higher complexity with
an important contribution of the interaction between the seg-
ments of this region and themselves. In contrast, in region 1,
the complexity is the lowest and the total contribution of the
interaction with the other sets of segments is more important
than the interaction between themselves.

1

23

4

Figure 3: A scene with a rectangle and a square in its inte-
rior. Four regions have been labeled.

In order to analyze the complexity of a region, we com-
pute this in six different scenes (figure 4). For each scene
we show the colour map which illustrates the complexity of
each region. The highest complexity corresponds to the red
colour (or the darkest part in a black and white image) and
the lowest complexity to the blue colour (or the lightest part
in a black and white image). In these figures we specify the
range of complexity obtained in each scene. As we can see,
high complexity is found near the objects, walls, in the cor-
ners, and especially in the narrow spaces.

Another experiment is designed to test the increase in vis-
ibility complexity Ic

s when we insert an object in a region. In
figure 5, a hexagon is situated in five different places cor-
responding to five different complexities of a region (see
figure 4(c)). In table 2, we observe the perfect concordance
between the two measures: the higher the complexity of a
region the higher the increase in visibility complexity.

To compare the complexity of a region with the cost of
the animation, in figure 6(b) we present a scene with two al-
ternative animations. From the colour map of scene 6(a), we
hope that the animation represented by a continuous line is
more complex because it traverses a more complex region.
If we measure the complexity of these two animations us-
ing the animation complexity measure Ca defined in 6, we
observe the concordance between this measure and the com-
plexity of a region: Ca values are 0:2413 for the continuous
line and 0:1263 for the dashed line. In conclusion, traversing

c
 The Eurographics Association 2000.



Jaume Rigau et al. / Visibility Complexity of a Region in Flatland

region 1 2 3 4 (Ic
s )si %

1 0.110040 0.057693 0.013321 0.089411 0.270465 10.74

2 0.057693 0.370869 0.036895 0.051278 0.516735 20.53

3 0.013321 0.036895 0.751718 0.161631 0.963565 38.28

4 0.089411 0.051279 0.161631 0.464096 0.766417 30.45

2.517182 100.00

Table 1: Contribution of each region in figure 3 to the global complexity Ic
s .

complex regions will yield a higher value in the animation
complexity measure.

(a) [1.693, 5.100] (b) [3.836, 7.312]

(c) [2.723, 5.981] (d) [2.673, 6.064]

(e) [3.625, 7.330] (f) [3.543, 7.531]

Figure 4: Complexity colour map and range of the complex-
ity of a region for six scenes. Different grids have been used
with 103 lines cast from each grid cell center.

5

4
3

2

1

Figure 5: A hexagon is situated in figure 4(c) in five different
places.

case Ic
s ∆ %

2.517182 0 0

1 2.860125 0.342943 13.62

2 2.795483 0.278301 11.06

3 2.733251 0.216069 8.58

4 2.662806 0.145624 5.79

5 2.762630 0.245448 9.75

Table 2: Ic
s values corresponding to figure 5 where an

hexagon is situated in five different positions. The increase
in scene visibility complexity is showed in each case (1-5)
with respect to the reference scene 4(c), given in first row.

5. Conclusions and future work

Based on mutual information we have defined the complex-
ity of a region of a scene from two different but complemen-
tary points of view. We have presented preliminary results
that show the possibilities of this approach and the relation-
ship between the complexity of a region and the animation
complexity in this region.

Future work will be addressed to incorporate radiosity
into our complexity measure of a region, in the way indicated
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(a) [2.697, 6.880] (b)

Figure 6: (a) Complexity colour map and range of the com-
plexity of a region. (b) Two alternative animations in figure
(a) are represented by a continuous line and a dashed line.

in 4, and to test the validity of our approach for optimal load
balancing of raytracing a scene in a parallel computation.
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