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Abstract

Mass spring systems (MSS) are frequently used to simulate deformable objects because of their conceptual sim-

plicity and computational speed. Unfortunately, the model parameters (spring coefficients, masses) are not related

to material constitutive laws in an obvious way. In our earlier work we proposed a method, which can be used

to relate the parameters of the MSS to constitutive models, often used in continuum mechanics. In this report we

have used this strategy to develop new formulae for the dynamic MSS parameters, i.e. the masses and the damping

coefficients. This is the first report which identifies the damper coefficients analytically. In this work we restrict

our attention to triangular meshes. Experimental evidence is given in support of our results.

1. Introduction

Mass spring systems (MSS) [TPBF87] are frequently used
to simulate deformable objects because of their conceptual
simplicity and computational speed. Typical example appli-
cations are cloth animation and simulation of facial expres-
sions [BW98,KHS01]. Unfortunately, the model parameters
(spring coefficients, masses) are not related to elastic mate-
rial constitutive laws in an obvious way. In our recent ar-
ticle we proposed a method, which relates the parameters
of the MSS to constitutive models, often used in continuum
mechanics [LSH07]. Most measured material properties are
documented in terms of the parameters found in these con-
stitutive laws. Our approach allows this existing knowledge
to be applied in mass spring simulations. The derivation of
stiffness coefficients for several 2D and 3D mesh topologies
was shown and validated. In the current work we have ap-
plied the same approach to determine the masses and damp-
ing constants of a Kelvin-Voigt type damped mass spring
model, taking an isotropic linear elastic material with first
order Rayleigh damping as a reference [LG95]. The strategy
we follow is to compare the force balance equation of the
MSS with the equivalent equation obtained with a finite el-
ement method. A coefficient comparison then results in for-
mulae for the MSS parameters.

Our previous paper was motivated by and extended the
work of Van Gelder [Gel98]. These approaches were, how-
ever, limited to the static case and provided estimates for

the spring stiffness coefficients. There have been few re-
ports describing how the dynamic parameters should be es-
timated/chosen. We are aware of only one paper by Paloc
et al. [PBKD02], where an estimate of the magnitude of the
spring damping coefficient, depending on the damping ra-
tio, is provided. Some further work has also been performed
on iteratively setting node masses based on Voronoi dia-
grams [DKT95] and parameter identification for dynamic
simulation [JGL97]. For a more detailed overview of the lit-
erature, we refer the reader to [LSH07].

2. Methods

2.1. Finite Element Equations

In the FEM the continuous model is discretized by dividing
the object into small interconnected regions, called finite el-
ements. The constitutive laws are approximated by interpo-
lation functions associated with each element. A commonly
used 2D element is the constant strain triangle, also called
3-node triangle with linear displacement interpolation func-
tions. The dynamic equations of motion are

MFEM d̈+DFEM ḋ+KFEM d = f, (1)

where f is a vector containing the forces at the three nodes, d

are the node displacements due to the forces f, KFEM is the
stiffness, MFEM the mass and DFEM the damping matrix.
Throughout this paper we follow the convention that force
and displacement vectors are ordered by node. The 6 × 6
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symmetric element stiffness matrix can be computed analyt-
ically. An expression for the plane stress stiffness matrix in
terms of the node coordinates and material parameters can
be found in [LSH07] and will not be repeated here. A FEM
derivation of the mass matrix results in a non-diagonal struc-
ture. However, very often a diagonal approximation, called a

lumped mass matrix, is chosen [ZT00] : MFEM =
(

A h
3

)

ρ I6

, where I6 is a 6× 6 identity matrix, A is the area of the tri-
angle, h is its thickness and ρ is the mass density. Basically,
the mass of the element is equally distributed to each node.
This form has major computational advantages, without in-
troducing severe errors. Since damping is only partly under-
stood, there are only few models based on first principles. A
commonly chosen damping matrix relies on the generalized
Rayleigh model

DFEM = MFEM

N

∑
i=0

αi(M
−1
FEMKFEM)i

, (2)

where αi are the model parameters [LG95]. We use the first
order form DFEM = α0MFEM +α1KFEM .

2.2. Linearized Mass Spring Model Equations

We choose a triangle MSS consisting of the nodes pi, p j

and pk connected by three springs as the corresponding
model. The edges of the triangle are assumed to correspond
to springs. The mass is distributed at the nodes. In this sec-
tion we linearize the model and derive its stiffness, damping
and mass matrices. The dynamic equation of motion for a
connected mass spring system at a node i is

mid̈i + f
int
i (di, ḋi) = f

ext
i , (3)

where mi is the mass at node i and fint
i are the internal forces.

In order to compare the MSS with the linear visco-elastic
material model, we re-write the force equation in matrix no-
tation. For an assembly of springs, it can easily be seen that
the mass matrix is diagonal, i.e. in the case of a triangle MSS

MMSS =





mi I2 0 0
0 m j I2 0
0 0 mk I2





. (4)

The internal force at node i is the sum of an elastic force fs

and a viscous force fd

f
s
i = ∑ki j

[

(

pi −p j

)

(

1−
l0
i j

∥

∥pi −p j

∥

∥

)]

f
d
i = γd

i ṗi +∑γi j

〈

(ṗi − ṗ j),
(pi −p j)
∥

∥pi −p j

∥

∥

〉

(pi −p j)
∥

∥pi −p j

∥

∥

where N(i) is the set of springs connected to node i and
pi = (xi,yi)

T is the position of node i. The variables ki j and
l0
i j correspond to the spring coefficient and rest-length re-

spectively. The parameters γd
i and γi j are point and spring

damping coefficients respectively. In [LSH07] the lineariza-
tion of the undamped spring force (elastic part) was shown

to be
(

fs
i

fs
j

)

∼= KSi, j

(

di

d j

)

(5)

KSi, j
= ki j

[

Ai j −Ai j

−Ai j Ai j

]

(6)

where

Ai j =
1

l0
i j

2

(

pi −p j

)(

pi −p j

)T
. (7)

The damping force term (viscous part) is linear in the node
velocities and, therefore, can easily be re-written in matrix
form.
(

fd
i

fd
j

)

=
(

D
p +D

s)
(

ṗi

ṗ j

)

= (8)

([

γd
i I2 0
0 γd

j I2

]

+ γi j

[

Ai j −Ai j

−Ai j Ai j

]

)

(

ṗi

ṗ j

)

.

Note that the matrix in the first term (point damping) is di-
agonal, while the matrix in the second term (spring damp-
ing) turns out to be proportional to the spring stiffness matrix
KSi, j

(Equation 6). We obtain the stiffness matrix of a trian-
gle MSS by summing the stiffness matrices of each spring
(since forces add). Introducing the variable Âi j = ki jAi j for
notational simplicity, the stiffness matrix is

KMSS = ∑
l,m

KSl,m
(9)

=





Âi j + Âik −Âi j −Âik

−Âi j Âi j + Â jk −Â jk

−Âik −Â jk Âik + Â jk





.

where the summation is done in global coordinates. Since
each sub-matrix Ai j is symmetric, the stiffness matrix of the
triangle model is also symmetric. The assembly of the damp-
ing matrix is analogous and will be skipped. Finally, using
the derived terms, we can write (the linearized) equations of
motion in matrix notation

MMSS d̈+DMSS ḋ+KMSS d = f. (10)

2.3. Coefficient Comparison

The dynamic equations of motion derived using a FEM and
the linearized MSS contain the same variables, i.e. the node
displacements, velocities and accelerations. The same dy-
namical behavior for FEM and MSS simulations should re-
sult, if the coefficients are equal in both equations. In ad-
dition to equating the stiffness matrices as in [LSH07], we
now also compare the mass and the damping matrices. It
is already known that the stiffness matrices are equal under
certain conditions. From this relation it was derived that the
spring stiffness coefficient is

ki j = ∑
e

E h

√
3

4
. (11)
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Comparison of the mass matrices gives us the mass parame-
ter for the MSS

mi = ∑
e

Ae h

3
ρ, (12)

where the sum is taken over the adjacent triangles, h is the
thickness of the thin layer and ρ is the mass density. Finally,
the comparison between the Rayleigh damping matrix used
in the FEM and the MSS damping matrix obtained from
point damping combined with spring damping results in fol-
lowing damping coefficients

γd
i = α0 ∑e

Ae h
3 ρ γi j = α1 ∑e E h

√

3
4 .

(13)

3. Results

In order to verify the theoretical results we have used the
formulae to simulate several deformation examples, for dif-
ferent damping coefficients. The time integration for the
MSS was performed with a Verlet scheme [THMG04]. The
computed deformations were compared to a FEM simula-
tion performed with a commercial solver. First a mesh was
constructed using only equilateral triangles, since the spring
stiffness coefficient presented in [LSH07] is derived under
this assumption. Then, however, we also simulated defor-
mations using non-equilateral triangles, in order to test if the
results are valid in a more general sense. The test cases sim-
ulate the deformation of a rectangular membrane, which at
time zero suddenly is exposed to a body force. The object is
attached at the bottom (y = 0) and if not specified differently
the body force is directed in negative y-direction.

Only a small mass damping was chosen for the first ex-
periment (just large enough to assure stability). Within the
simulated time, the amplitude does not decay noticeably.
The comparative results are shown in Figure 1. Although
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Figure 1: Object oscillating after applying a body force in

negative y-direction, causing a compression of up to 15%.

the amplitudes of the MSS and the FEM are approximately
equal over time, there is a noticeable phase shift between
the two models. The relative difference between the oscil-
latory periods TMSS and TFEM is approximately 5% for this

example (TMSS ≃ 1.055TFEM). The reason for this is men-
tioned in [LSH07]. The MSS has a non-linear stiffness curve
- it is softer under directed compression, and stiffer when
stretched. A softer material will oscillate at a smaller fre-
quency f , since f ∝

√

E
ρ . Therefore, we can expect the pe-

riod of the MSS to be smaller than the FE model, when
elongated. This is indeed the case as shown in Figure 2
a)(TMSS ≃ 0.975TFEM). The frequency shift is due to the
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Figure 2: Object oscillating after applying a body force in

positive y-direction, effectively stretching the object up to

15%.

fact the mean deformation is not in the position, where the
operating point linearization was done (i.e. in the rest po-
sition). We have verified this in Figure 2 b) by applying a
force for only a short period of time (pulse), such that the
mean deformation in the subsequent oscillation is close to
zero. As a next step, the influence of damping on the results
have been investigated. In Figure 3 we simulated the effect
of mass damping (α0 = 1.0, α1 = 0). Note how the ampli-
tude decays at the same rate in both the MSS and the finite
element simulation. For the experiment shown in Figure 4
spring damping was applied using α1 = 0.01 and α0 = 0.
The decay of the amplitude was again very similar in both
the MSS and the finite element simulation. Finally, the qual-
ity of the approximation has also been tested on models con-
sisting of non-equilateral triangles, i.e. meshed with an arbi-
trary meshing tool. The results of the simulations with either
point damping or spring damping are shown in Figures 5 a)
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Figure 3: A force is applied in negative y-direction for

0.2sec. Mass damping is tested using the parameters α0 =
1.0 and α1 = 0.

0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

y
−

d
is

p
la

c
e

m
e

n
t

 

 

FEM

MSS

Figure 4: A force is applied in negative y-direction for

0.2sec. Structural (spring) damping is tested using the pa-

rameters α0 = 0 and α1 = 0.01.

and b) respectively. Again a force impulse was applied for a
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Figure 5: In Figure a) point damping (α0 = 1.0) was tested.

In b) spring damping is shown for α1 = 0.01.

short time, in order to generate an oscillation. Equally con-
vincing results were obtained for different mesh resolutions.

4. Conclusions and Future Work

We have presented formulae for the dynamic parameters of
a MSS, which relate to the physical constitutive laws from

continuum mechanics. This is the first report which identi-
fies the damper coefficients analytically. Experimental evi-
dence is given in support of our results. One finding in the
experiments is that the non-linearity of the MSS causes a
oscillation frequency shift, which depends on the kind of de-
formation (stretch, compression). In this sense the derived
formulae provide a best mean estimate. In the near future we
would like to use this or a similar strategy to create nonlinear
mass spring systems, which are related to known hyperelas-
tic material constitutive laws.
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