
EUROGRAPHICS 2005 / J. Dingliana and F. Ganovelli Short Presentations

© The Eurographics Association 2005.

Rendering Realistic Trees and Forests in Real Time

Alberto Candussi, Nicola Candussi, Tobias Höllerer

University of Padua, Italy

University of California, Santa Barbara

Abstract

Real-Time rendering of realistic trees on common graphics hardware represents a big challenge due to their inherent

geometric complexity. In most cases, trees are composed of hundreds of thousands of leaves and branches with complex

lighting interrelations. We present novel techniques to render and animate photorealistic trees in real-time. The described

techniques are easily implemented with commonly available graphics cards, making them suitable to applications such as

visual simulations and video games. Polygon counts are significantly reduced by the use of simplified textured geometry for

minor branches and billboarded leaf textures. Fast and realistic lighting and shadowing of the leaves and surroundings

enhances realism. We animate the tree branches and leaf textures using simple vertex shaders, creating a realistic effect of the

tree swaying in the wind. Discrete levels of detail allow rendering of a large number of trees, making it possible to represent

realistic forest scenes made of 1000-1500 trees.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

We present techniques for realistically rendering trees in

real-time using common graphics hardware with

programmable shader support. The main applications of our

technique are visual simulations and videogames. It is

necessary to find a surface representation of the tree that

has manageable geometric complexity while at the same

time maintaining high rendering realism, even at close-up

views. Nearly all consumer graphics cards that are the

target of our applications rely on triangles as the main

rendering primitive. Even if only two triangles per leaf were

used, the polygon count would be prohibitive for our

purposes. On the other extreme, trees have also often been

approximated by a small number of billboards [Jak00,

Per95]. This sacrifices realism when viewing trees from

close view points. We present a technique to group leaves

and branches in clusters that look realistic and maintain low

geometric complexity.

The realism of rendered plants and trees is highly

influenced by how complex lighting interrelations between

branches and leaves are modeled. We adopt a combination

of custom per-vertex and per-pixel lighting, together with

customized shadow mapping. Figure 1 shows an example

of the realism achieved with our method.

Thanks to the use of level-of-detail techniques, our

solution is very scalable, and allows the rendering of

complex scenes consisting of thousands of trees in real-

time. In order to avoid the “popping effect” typical of

discrete level of detail (LOD) methods, we adopt a custom

transition based on alpha testing.

We also introduce an animation method for all the

elements of the tree (trunk, branches and leaves) that

completely fits inside a vertex shader.

Figure 1: Procedurally generated tree rendered in real

time with shadows and our custom lighting approach.

http://www.eg.org
http://diglib.eg.org

A. Candussi, N. Candussi, T. Höllerer, Rendering Realistic Trees and Forests in Real Time

© The Eurographics Association 2005.

1.1. Related Work

Modern videogames continuously raise the level of realism

for trees and plants appearing in their scenes. Most of them

use a non-billboarded approach for leaves rendering and,

where level-of-detail (LOD) control is used, frequently a

single billboard representing the whole plant [Per95] is used

for far views. This makes the rendering appear quite flat;

with our technique the leaves of a tree with a low LOD are

represented by more billboards, but we are still maintaining

interactive frame rates even drawing a very large number of

trees (cf. Figure 5 and Table 2).

Deussen et al. [DCMD02] use point and line rendering

for plants far away from the viewer, while maintaining a

full triangle representation for near ones. The resulting

scene complexity allows interactivity only if a small

number of trees are rendered.

Jakulin [Jak00] approximates the entire tree by using a

variable number of textured slices. While this gives a good

visual appearance for distant objects, it is not quite

convincing for close-up images, for which a geometrically

detailed surface representation is more appropriate.

Decauding et al. [DN04] use a similar approach based on

3d textures to render an entire landscape full of trees.

Again, their technique is more focused on real-time

rendering of a high number of distant trees (e.g., for flight

simulations), not on close-up forest walk-throughs.

Real time shadows add great realism to the scene. Due to

the high complexity of the tree geometry, we chose shadow

mapping as our base algorithm. In particular, we employ

perspective shadow mapping [SD02] to make better use of

the shadow map resolution.

2. Modeling and Real-Time Rendering

In this section, we describe the major ideas behind

representing our realistic trees so that large sets of them can

be rendered in real-time. We describe the components of a

tree and the methods to reduce geometric complexity.

2.1. Tree Model

Three different kinds of geometric primitives compose a

tree: deformed cylindrical meshes, grid meshes and

billboards.

Deformed cylindrical meshes are used to draw roots,

trunk, and major branches. They can have sub-branches, in

order to create the typical tree structure.

Grid meshes (in the simplest case, polygon strips), are

attached to branches to represent, for example, groups of

minor branches or palm fronds. They have a user defined

profile and they are rendered using alpha test transparency.

Figure 2 compares the wireframe geometry of branches

with the same geometry textured.

Leaves are grouped into clusters and each cluster is

rendered as a separate billboard. During tree generation,

special care is put in the distribution of the billboards. The

billboards must be as few as possible while maintaining an

overall feeling of volume. Figure 3 shows leaves’

wireframe geometry as compared with the complete tree.

Our generation algorithm allows the creation of a wide

range of trees based on different parameters such as branch

radius, length, swaying flexibility, and leaf distribution.

2.2. Acceleration Techniques

This section discusses the techniques used to increase

rendering performance, such as billboarding, discrete LOD

transitions, render-state-sorting, and instancing.

Since most of the geometric complexity can be attributed

to leaves, grouping them together into single billboards

greatly reduces the polygon count while maintaining the

volumetric appearance (cf. Figure 3).

Figure 3: Leaves are rendered as billboarded textured

polygons showing a bunch of leaves each (cf. Figure 5).

Figure 2: Minor branches are approximated by simple

non-planar (curved) textured polygon strips.

Figure 4: Tree close up showing leaf detail.

A. Candussi, N. Candussi, T. Höllerer, Rendering Realistic Trees and Forests in Real Time

© The Eurographics Association 2005.

We use grid meshes to approximate groups of smaller

branches. A discrete set of LODs is used for roots, trunk,

major and minor branches, and leaves. For cylindrical

meshes like trunks and branches the complexity is reduced

by decreasing the radial and longitudinal subdivision. Some

elements that are less visible (for example, because hidden

by leaves) are completely removed in lower LODs.

The detail of the grid meshes used for minor branches is

reduced by reducing the grid subdivision.

In the case of billboards, lower detail levels have fewer

and bigger billboards. This way, even if the geometric

complexity is reduced, the difference between LODs

becomes less apparent. To avoid the popping effect while

going from one LOD to the other, we implemented a

smooth fade-in/fade-out transition for billboards. The fade

effect is done with alpha test; when fading out, the number

of rendered pixels is smoothly reduced, when fading in, it is

smoothly increased. This is done by assigning random

alpha values for the billboard texture pixels and then

varying the alpha comparison value for the alpha test.

When the number of objects to be rendered becomes

large, instancing and state ordering is essential. In the forest

of Figure 6, there are only 3 kind of trees, instantiated

around the landscape and sorted by render state. To

decrease the number of texture swaps, a texture dictionary

technique is used for grid meshes and billboards.

3. Realism

A realistic virtual tree must be fully customizable through

an editor and it must have convincing lighting and

animation systems (cf. Figure 4). In this section we describe

our lighting and animation approach.

3.1. Realistic Lighting and Shadows

Roots, trunk, and major branches are rendered with bump

mapping and shadow mapping. Grid meshes have shadow

mapping and per vertex lighting.

Leaf lighting is obtained as the product of four factors:

per vertex lighting, density, shadow map, and occlusion.

Per vertex lighting is computed assuming that the vertex

normals of the leaves are oriented along the radius of the

leaves' bounding sphere, pointing outside. This way, leaves

on the side of the tree that is closer to the light are brighter

than leaves on the opposite side. In order to avoid

completely unlit leaves on the side opposite the light and to

have a smoother transition between bright and dark leaves,

we halve the vertex normals for the diffuse lighting and

correct for the loss in brightness with a global ambient

term. Figure 7a illustrates the vertex lighting factor effect.

The density factor (cf. Figure 7b), takes into account the

number of leaves surrounding the current leaf and is pre-

computed.

The shadow map factor is the result of the shadow map

test on the current leaf. Shadows are smoothed using

percentage closer filtering (supported in hardware by most

modern graphics cards).

The occlusion factor determines the intensity of the

projected shadow based on the depth value of the occluder

saved on the shadow map; the farther the occluder, the

darker the shadow. Figure 7c shows the final result without

occlusion factor and Figure 7d with it. Figure 1 shows the

result of taking all the factors into account. For the

generation of the shadow map, billboards are rendered

facing the light and using a lower LOD. Even though not

physically correct, the resulting shadows appear realistic,

because the sheer number of real leaves in a tree and the

variance in leaf orientation makes it impossible for a human

to anticipate the correct shadow projection.

3.2. Realistic Animation

All the tree's animation properties (such as branch

flexibility) are pre-computed. At run-time the tip of every

branch is displaced and the rest of the branch movement is

done by interpolating this transformation based on each

vertex’s distance from the tip. The displacement is

computed as the sum of two vectors, one along the wind

direction and the other one orthogonal to it.

The second vector is used to add some noise to the

movement. At each frame, periodically changing factors are

added to these vectors, in order to modify their magnitude

and direction; for performance reasons, spring model

[OTF*04] is not used. Leaves are animated depending on

wind strength and direction; billboards perform an

oscillation around the viewing axis, based on sine waves.

Displacements and rotations are passed to the vertex shader,

which performs all the vertex transformation needed.

Figure 5: Textures for leaf and minor branch geometry.

Figure 6: Forest consisting of 1000 trees, rendered in real

time with realistic lighting and shadows.

A. Candussi, N. Candussi, T. Höllerer, Rendering Realistic Trees and Forests in Real Time

© The Eurographics Association 2005.

4. Results

The tree of Figure 1, in its most detailed LOD, consists of

about 2000 triangles for deformed cylindrical meshes, about

400 triangles for grid meshes, and about 4000 triangles for

billboards. It is rendered on a GeForce 6800 GT at an

average frame rate of 75 fps.

The forest shown in Figure 6, composed of 1000 trees (on

average, 300 are in frustum), is rendered in realtime; Table

1 shows the polygon count for each LOD of one of the trees

in the forest. Table 2 shows the average rendering

performance of the forest at 1024x768 screen resolution,

varying the number of trees.

5. Conclusion and Future Work

It has been shown that with this approach it is possible to

render a large number of highly realistic trees in real-time.

Billboards drawn with our lighting system represent an

optimized and realistic solution to simulate leaves’

complexity. Our representation is highly scalable to balance

scene complexity and rendering quality.

The time necessary to model a new tree species varies

between less than half an hour and multiple hours. We

implemented a tree editor, which allows for interactive

control of the many parameters governing the appearance of

a tree. Automating an increasing number of the design

decisions and group them into templates for the tree editor

is one of our goals for future work.

We also have plans to implement lighting in more

complex environments with environment mapping and

multiple light sources and we are working on optimizations

that will allow us to render even larger landscapes with on

the order of 10,000 trees.

6. References

[DCMD02] Oliver Deussen, Carsten Colditz, Marc

Stamminger and George Drettakis, 2002:

Interactive Visualization of Complex Plant

Ecosystems. In Pro. VIS ’02 (Proceedings

of the conference on Visualization '02),

Boston, Massachusetts, 219-226.

[DN04] Philippe Decaudin, Fabrice Neyret, 2004:

Rendering Forest Scenes in Real-Time. In

Rendering Techniques '04 (Eurographics

Symposium on Rendering), Norrköping,

Sweden, 93-102.

[Jak00] Aleks Jakulin, 2000: Interactive Vegetation

Rendering with Slicing and Blending.

Eurographics 2000 short paper, Interlaken,

Switzerland.

[OTF*04] Shin Ota, Machiko Tamura, Tadahiro

Fujimoto, Kazunobu Muraoka and

Norishige Chiba, 2004: A Hybrid Method

for Real-Time Animation of Trees Swaying

in Wind Fields. The Visual Computer,

Vol.20, No.10, 613-623.

[Per95] Iris performer programmer’s guide, 1995

[SD02] Marc Stamminger and George Drettakis,

2002: Perspective Shadow Maps. In Pro.

SIGGRAPH ’02 (Proceedings of the 29’th

annual conference on Computer graphics

and interactive techniques), San Antonio,

Texas, 557-562

 LOD1 LOD2 LOD3 LOD4

Cylindrical

Meshes
640 165 36 3

Grid Meshes 120 36 4 0

Billboards 3406 510 76 10

GeForceFX 5950

Ultra
GeForce 6800 GT

500 Trees 20 fps 43 fps

1000 Trees 12 fps 26 fps

1500 Trees 8 fps 18 fps

Figure 7: Leaf lighting factors; a) per vertex lighting, b) density factor, c) shadow map factor, d) shadow map factor

combined with occlusion factor.

Table 1: Polygon count of trees in forest of Figure 6.

Table 2: Rendering speeds for forest of Figure 6.

