
© The Eurographics Association 2014.

glGA: an OpenGL Geometric Application framework for a

modern, shader-based computer graphics curriculum

G. Papagiannakis1,2, P. Papanikoalou1,2, E. Greassidou1 and P. Trahanias1,2

1University of Crete, Computer Science Department, Voutes Univertsity Campus, 70013, Heraklion, Greece
2Foundation for Research and Technology Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece

Abstract
This paper presents the open-source glGA (Opengl Geometric Application) framework, a lightweight, shader-
based, comprehensive and easy to understand computer graphics (CG) teaching C++ system that is used for educa-
tional purposes, with emphasis on modern graphics and GPU application programming. This framework with the
accompanying examples and assignments has been employed in the last three Semesters in two different courses at
the Computer Science Department of the University of Crete, Greece. It encompasses four basic Examples and six
Sample Assignments for computer graphics educational purposes that support all major desktop and mobile plat-
forms, such as Windows, Linux, MacOSX and iOS using the same code base. We argue about the extensibility of
this system, referring to an outstanding postgraduate project built on top of glGA for the creation of an Augmented
Reality Environment, in which life-size, virtual characters exist in a marker-less real scene. Subsequently, we pre-
sent the learning results of the adoption of this CG framework by both undergraduate and postgraduate university
courses as far as the success rate and student grasp of major, modern, shader-based CG topics is concerned. Final-
ly, we summarize the novel educative features that are implemented in glGA, in comparison with other systems, as a
medium for improving the teaching of modern CG and GPU application programming.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

1. Introduction

Computer Graphics (CG) is a topic that not only requires
from students a background in science, engineering and
basic mathematics, such as linear algebra, but it also de-
mands sufficient C/C++ application programming skills.
The major changes in graphics h/w over the past few years
have led to significant changes in the new ways CG s/w is
been written as well as taught in university courses. CG has
been part of the 4-year academic curriculum of the com-
puter science department at the University of Crete during
the last 20 years. It has also been a major topic of research,
which had also led to the organization of CGI in 2004 and
Eurographics in 2008 by the University of Crete. Over
these years we had experimented with various methods of
teaching computer graphics [AS12]: from the algorithmic
approach, to the survey approach and recently the pro-
gramming approach. We have adopted and extended the
modern, shader-based OpenGL (GL) approach from
[AS11] and opted for a completely revised undergraduate
and graduate course curriculum in CG, focusing on the
recent, exciting GPU-based languages and APIs.

The OpenGL Geometric Application (glGA) is a C++
CG framework that we have developed based on [AS12],
[D13], [M13] and [TMO13], in order to help the students
face most of the novice CG difficulties, while understand-
ing at the same time the concepts required for a newcomer
to accomplish engaging CG course assignments (e.g. from
Blinn-Phong lighting to shadow and normal mapping and
from basic skinned character animation to augmented reali-
ty simulation). This framework has been used in both of-
fered courses at undergraduate as well as postgraduate
level. The first undergraduate course is CS358, which co-
vers basic notions in computer graphics [AS12] [TPP*07]
via a 13-week and three, two-hour lectures per week. Not
only the students learn about geometrical transformations
but they also work via glGA on modern, engaging assign-
ments implementing them in modern OpenGL and the GL
shading language (GLSL) [RLG*10]. With the help of
simple GUI widgets that they develop, they can compre-
hend all shader parameters from Blinn-Phong lighting, to
material colors and camera positions, directions and
skinned character animation parameters. Three assignments
in two week intervals were assigned and an optional final
bonus one. The second course that we worked with glGA is

EUROGRAPHICS 2014/ J.- J. Bourdin, J. Jorge, and E. Anderson Education Paper

DOI: 10.2312/eged.20141026

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eged.20141026

© The Eurographics Association 2014.

the postgraduate CS553, which extends previously intro-
duced CG topics in modeling, rendering and animation. In
CS553, also a 13-week and three, two-hour lectures per
week schedule was followed. Here as well, each one of the
attendees had to complete a set of assignments, as well as a
final project that is based on latest publications in the
above areas. Both of these courses demanded significant
engagement and practical work by the students in order to
be completed successfully. It was stressed to both students
that the emphasis was on portfolio building or strengthen-
ing their understanding on CG for their potential industrial
IT or academic careers. The educational approach followed
was of project-based learning and learning by design as
already highlighted in [R13] and [KC*03].

Before the introduction of glGA, both the attendees and
the instructor faced a number of difficulties, since shader-
based OpenGL [AS11] was a totally new addition at the CS
curriculum of the University of Crete and furthermore it
had to be presented to students with no prior particular
experience of C++, except only C or Java. It has been
proven over the semesters of its introduction, that glGA
can empower student knowledge in multiplatform, shader-
based CG development, from simple geometrical and light-
ing examples to textured, rigged and animated virtual char-
acters with 3D scene GUI interactive parameter-altering
capabilities. The glGA framework has been tested in the
last three semesters at Computer Science Department of
University of Crete (winter 2012, spring 2013 and the win-
ter 2013 semester).

In this paper we will discuss exhaustively all of the edu-
cative aspects of glGA as an alternative for shader-based
CG educational tool with a new insight that increases stu-
dent learning: based on the “keep it simple” programming
rule, when students are introduced to new, modern CG
concepts in one semester, they can simply and quickly im-
plement and understand them through a thin but powerful
layered architecture of open-source CG libraries that a)
hide non-graphics related tasks b) expose the heavyweight
GPU programming tasks. Thus they avoid the steep learn-
ing curve or advanced C++ and software engineering con-
cepts that other complete CG frameworks feature (e.g.
NGL, Ogre3D or OpenScenegraph) or ‘black-box’ com-
mercial engines (e.g. Unity, Unreal). To highlight the
above, we also provide basic examples and sample assign-
ments that we employed so that instructors can take them
straight into their classrooms. Finally we present an exam-
ple of an outstanding student project based on glGA on
life-size, marker-less augmented reality (AR) character
simulation.

2. The glGA Framework Description

glGA is a modern, shader-based CG simulation frame-
work designed to offer simplicity to students that want to
explore CG but also empower them so that at a later stage
they can easily migrate to a modern game-engine, having

understood underlying GPU-based application program-
ming concepts. Not only it contains four introductory ex-
amples for the students, but it also contains six adjustable
sample applications that can be used by the instructor as
assignments. All open-source code samples that are imple-
mented in glGA run in all major 3 desktop platforms: Win-
dows, Linux and OSX with no modifications other than the
definition of the platform in a single #define. The exact
same code base that is used in glGA can run in any of these
platforms, producing the same results as it is based on
modern OpenGL. Furthermore, the same glGA framework
and its examples can also be executed as they are, in mo-
bile architectures such as iOS (Android is also currently
been implemented), accompanied with an Objective C/C++
wrapper, due to the requirements of iOS.

One of our primary aims was that the novice students
would not be discouraged at the beginning by the burst of
CG application development information from books & net
tutorials. Our main educative testing field was the under-
graduate CS358 course where basic CG concepts were
taught. Our primary objective was that every student that
undertook the CG development tasks would be able to
build from scratch, colloquial but engaging, shader-based
3D real-time CG applications. These applications would be
based on firm knowledge given by the course lectures on
topics such as: window initialization, the GL shading lan-
guage, linear algebra matrix transformations, window
events, modeling, materials and lighting, texturing, 3D
model loading, and even more advanced topics such as
linear blend skinned character animation and GUI-based
scene and scenegraph manipulation in real-time. In the
following sections (2.1 and 2.2) we present the basic ex-
amples that come as part of the standard glGA framework
as well as a sample of the different assignments (1,2,3) and
(4,5,6) that were presented to the students of the under-
graduate (CS358) course during two semesters. Besides the
examples in glGA we present basic assignments in pairs as
they cover topics of equivalent increasing complexity. The
sample lecture course slides (assuming as course textbook
the one from [TPP*07]) are soon to be released as open
course notes under the University of Crete open lectures
and regarding the assignment material, instructors are wel-
come to contact the main author.

2.1 Examples

BasicWindow: This is the first example (Figure 1) that
someone has to understand in order to have a basic start in
the CG field. It shows how a student can initialize a win-
dow employing the well-known open-source GLFW win-
dow toolkit and create a graphics context using either the
Opengl 2.1 compatibility profile or OpenGL 3.2 core pro-
file. We also employed the GLEW open-source s/w library
to load the GL extensions and to retrieve support infor-
mation on our hardware. In the main loop, a very simple
empty scene rendering is taking place by clearing the color
buffer with a basic RGB color.

 Papagiannakis G., Papanikoalou P. et al / glGA: an OpenGL Geometric shader-based Application framework 10

© The Eurographics Association 2014.

Figure 1: BasicWindow glGA example in Windows (left)
and iOS (right) platforms.

BasicTriangle: In this second basic example, we introduce
the use of GLSL with simple, pass-through shaders in order
for someone to start grasping the modern programmable
GPU rendering pipeline with GLSL. At the beginning of
this example, students are taught how to create and handle
Vertex Array Objects (VAOs) and Vertex Buffer Objects
(VBOs). The VBO is filled with vertex positions that will
be later used in the vertex shader as attributes. As for the
rendering part and to allow for simplicity, only a single
triangle is drawn in the upper right corner of the window,
as shown below.

Figure 2: BasicTriangle glGA example in Linux(left) and
iOS (right) platforms.

BasicCube: The only conceptual difference with the previ-
ous example is that a colored-per-vertex, 3D cube is ren-
dered instead of a triangle, via basic GL camera and projec-
tion matrices. By doing so, the students learn about the
basic primitives and how to use them in order to later com-
pose more complex geometries. Other than positions, we
introduce colors and normals as vertex data attributes in
VBOs. Finally, they learn how to package positions, colors
and normals all together in VBOs and VAOs for multiple
primitives and pass these attributes to the shaders.

BasicCubeGUI: A GUI Toolkit is a very important part of
any CG application, as it allows the run-time manipulation
of the 3D scene and via various parameter-tweaking en-
hancing the basic understanding of their real value. Thus,
in this example we focus on the introduction of
AntTweakBar, an extremely simple, light and easy-to-use
for novices GUI Toolkit built in C/C++ that can be em-
ployed in any GL application. It can support different types
of adjustable variables through simple widgets such as

buttons, sliders, combo boxes, etc. Not only it gives the
students the capability to create a basic interaction between
user and application, but it also helps them significantly
with run-time debugging of their GL shader-based applica-
tion. One of the main adopting reasons of this open-source
C++ GUI library is due to its simplicity. In the assignments
that follow, the students had to employ AntTweakBar in
order to parameterize their GLSL parameters such as ma-
trices for lighting, scene transformations and GL camera
projections.

Figure 3: BasicCubeGui example in Linux

The skeleton-code of each glGA example is particularly
created as simple as possible (single .cpp file). In the Ap-
pendix of this paper, we present the code of the basic-
CubeGUI example and illustrated in the figure above. As
shown there, the first task is to define the geometry posi-
tions and colors. For example, to render a cube, as in
[AS12], we need to define 8 positions and 8 colors, which
correspond to one position and one color for each vertex of
the cube. The most important parts of each example and
assignment are the init() and display() functions, which
handle the geometry initialization and rendering respective-
ly, and are called within the main(). Thus, in the basic-
CubeGUI example the init() function has to perform the
following tasks:

1. Load and compile the shaders: The vertex and frag-
ment GLSL shader files are given as parameters in the
LoadShaders() function of the glGAHelper.h compo-
nent. That function reads the files and stores the
source code in string variables. After their compila-
tion, they are attached to a GL shader program object,
which will be employed by the scene for rendering
purposes.

2. Generate a Vertex Array Object (VAO) and a Vertex
Buffer Object (VBO): Usually a VAO can contain
multiple VBOs. To keep this example simple we pre-
fer to use only one from each category. So first we
create the vertex data that are stored within the VBO
as positions and colors. This procedure is taken care of
by the colorcube() function (sample shown in Appen-
dix) that creates 6 quads calling the quad function.
Each of these structures is then stored in a different
sub region arrays within the same VBO.

 Papagiannakis G., Papanikoalou P. et al / glGA: an OpenGL Geometric shader-based Application framework 11

 Papagiannakis G., Papanikoalou P. et al / glGA: an OpenGL Geometric shader-based Application framework

© The Eurographics Association 2014.

3. Create and connect the attributes that will use the
VBO data in shaders: Having stored the required ren-
dering data in the VBO, the final task is to define the
attributes that will be associated and connected with
the colors and positions provided in the scene descrip-
tion. Hence we create two shader parameters with the
names vPosition and vColor that are used in the Ver-
tex Shader and show how to connect them to the re-
spective VBO arrays.

2.2 glGA Sample Assignments

All of the previous examples are given to the students
within the basic glGA distribution via the course e-learning
web-site, in order to help them in their initial steps to CG
application development. In this section we describe some
of the assignments that the students had to accomplish in
the undergraduate CG course (CS358). The first three were
given in 2012 (1, 2, 3) and the final three (4, 5, 6) in 2013.
We present them in pairs (1-4, 2-5, 3-6) as they progress
with increasing but similar difficulty, following the pro-
gression of the respective oral lectures given by the instruc-
tor and occasional tutorial by the course TAs:

Assignment1 & Assignment4: In these first assignments,
the students have to learn to use uniform parameters and
matrix transformations in order to apply the vertex pro-
cessing on basic 3D objects and convert them from object
space to window coordinates. To do so, they have to pass
the Model, View and Projection matrices in a vertex shader
and multiply them correctly with them vertex positions. In
this manner they can grasp interactively the notions of the
virtual camera that allows them to navigate around the 3D
scene. For the creation of the GL View and Projection ma-
trix representations, the students use the open-source GLM
library that provides them with all the needed helper math-
ematical structures and functions, such as: lookAt(...), per-
spective(...), vec3, mat4 etc. . The final multiplication of the
matrices is taking place in the vertex shader, in the correct
order for column-vectors and the GL column-major matri-
ces. The major difference between Assignments 1 and 4,
was that in the later one, the use of the AntTweakBar GUI
lib was asked in order to handle the view matrix and other
parameters in real-time.

Figure 4: Assignment 1 (left) and Assignment 4 (right).

Assignment2 & Assignment5: In these assignments, stu-
dents learned how to implement the basic blinn-phong
illumination model, in order to add local lighting properties
on the rendered objects. A number of built-in functions
were used in the shaders in order to achieve the expected

results. The difference in these two assignments is that
assignment 2 uses the cube from the previous assignment,
while assignment 5 asks for a user-loaded 3D model on
which the algorithm is applied. That means in assignment 5
students had to use the provided helper glGAMesh compo-
nent that allows for 3D model loading, abstracting the
open-source, C++ Assimp s/w library for various 3D-
formats asset loading.

Figure 5: Assignment 2 (left) and Assignment 5 (right).

Assignment3 & Assignment6 with Optional Bonus As-
signment: In this final round of assignments the student is
introduced to texturing and skinned characters. Assignment
3 implements basic texturing on a cube, while Assignment
6 applies it on an animated-skinned or static, external 3D
model. To support textures, students have to activate the
Texture class in the glGAHelper component by defining
the #define USE_MAGICK. The loading of skinned models
as well as their rendering is implemented in the glGAR-
igMesh helper class. The vertex shader of assignment 6
also contains the bone matrix multiplications with the ver-
tex positions necessary for linear blend skinning implemen-
tation.

Figure 6: Assignment 3 (left) and Assignment 6 (right).

Figure 7: Normal & shadow mapping bonus assignment.

In the figure above, the bonus, optional assignment is
illustrated. Based on the lextures on hard shadows and
texturing, students were asked to implement in glGA the
normal and shadow-mapping algorithms for any 3D model
loaded with the glGAMesh or glGARigMesh helper classes.

12

© The Eurographics Association 2014.

2.3 Utility functions and classes provided

In order to help the students to avoid some elementary
tasks required for the assignments (e.g. shader loading and
compilation, texture handling etc.) or abstract the use of
external, open-source libraries (e.g. Assimp) we have cre-
ated a minimal set of utility functions and classes that im-
plement these tasks. Thus, we provide them with only 3
small utility classes: glGAHelper, glGAStaticMesh and
glGARigMesh. These few classes and associated functions
are implemented in C/C++ and illustrated in Figure 8.

2.3.1 Shader Loader

The function LoadShaders() simplifies loading and com-
piling of shaders: First, it reads the vertex and fragment
shader files that are given as parameters and stores them in
string variables. Then, both shader source codes are com-
piled and checked for errors. In the end, they are linked to
the program that will be used for rendering.

2.3.2 Texture class

This small utility class simplifies external image loading
form various formats and handles the texture object crea-
tion in OpenGL (generating, binding, initializing with tex-
ture environment parameters).

2.3.3 Model Loader

This functionality is connected to the final glGAMesh
and glGARigMesh classes. The first one is used for static
3D model loading, while the second one for skinned and
animated. In order to render a model, students need to load
the mesh from the external resources using the respective
class methods. These 2 classes parse the model files and
create a geometry tree corresponding to the scene retrieved
from the file. After that the student can retrieve in C++ the
positions, normals and texture coordinates which then can
be used in vertex buffer objects. In case the model is
skinned, glGARigMesh class creates also a bone data struc-
ture that contains information about all of the bones used
from each vertex.

2.3.4 Real-Time Animation

As we have mentioned, glGA supports from simple 3D
models up to animated, skinned charcaters. In order to help
the students visualize the externally rigged virtual charac-
ters (e.g. Collada or MD5 models) glGA provides the func-
tionality required to parse the bone tree in real-time and
retrieve the transformation matrix from each one of the
joints. These matrices are then passed as uniform and ver-
tex attribute parameters to the vertex shader.

2.3.5 glGA external, open-source dependencies and
framework overall architecture

In the following table and figure below we provide the
clear and concise overview of the glGA external dependen-

cies. Six well-known, well-documented and actively sup-
ported open-source libraries are utilized under the hood of
glGA. The basic glGA application contains in a single file,
only the main(), init() and display() C++ methods, so that a
student in one parse can understand the existing examples
and also create the new functionality required in the as-
signments.

GLFW Window creation and OpenGL
context handling

GLEW OpenGL extension loading library

GLM Template-based, C++ mathematics
library similar to GLSL built-in
math functions and types

AntTweakBar GUI toolkit for widget creation and
real-time shader/scene parameter
handling based on user input

Image Magick Multi-format Image/Texture load-
ing

Assimp Loading of static or skinned models

Table 1: glGA Open-source, external s/w libraries

Figure 8: The glGA overall framework s/w architecture

2.4 Platforms Supported

We have developed glGA in such a way so that all of its
examples and sample assignments can run in any of the
standard desktop and mobile platforms: Windows, Linux,
OSX and iOS. In order for all of those (10 in total) applica-
tions to be supported, we had to create a short Platform-
Wrapper component that handles the platform specific
functionality.

In addition to the desktop platforms of Windows, Linux
and OSX, the glGA examples are also supported in the
mobile iOS platform. Here is where the PlatformWrapper
is also employed not only due to the header files but also
due to the different OpenGLES methods and calls (instead

 Papagiannakis G., Papanikoalou P. et al / glGA: an OpenGL Geometric shader-based Application framework 13

 Papagiannakis G., Papanikoalou P. et al / glGA: an OpenGL Geometric shader-based Application framework

© The Eurographics Association 2014.

of standard OpenGL). An additional difference between
desktop and mobile platforms is the way that external as-
sets (e.g. textures, 3D models etc.) are loaded by the appli-
cation. E.g. iOS uses bundles, while Windows, Linux and
Mac retrieve the assets directly from the disk with either
relative or absolute paths. Other than these, the current time
retrieval is also different from desktop to mobile. E.g. it is
essential during character animation, where we have to
recalculate the matrix transformations based on the time
passed since the animation started. As we have already,
mentioned the code of the examples and assignments is in
portable, standard C++, thus a standard C++ compiler (e.g.
gcc, LLVM, Intel or Microsoft) is mandatory to be em-
ployed. In glGA, we have also included some IDE project
files for certain platforms already set up and ready to be
built and executed. The project files that exist in glGA are
for Visual Studio 2010 for Windows and Xcode 5.0.2 for
Mac and iOS, while we also provide the basic gcc/g++
makefiles for Linux. The only modification required is to
define the specific platform on top of the PlatformWrapper
header file. Of course, other IDEs can also be used as long
as they support standard C++.

2.5 AR glGA as an outstanding student project

As part of the learning context of the graduate course in
Computer Graphics at the University of Crete, is to encour-
age individual students to bring their creativity in new CG
applications via project-based learning [R13]. Thus a crea-
tive post-graduate student chose as his course project to
explore the capabilities of the METAIO SDK
(http://www.metaio.com/sdk/) and investigate how to inte-
grate it is to an application of glGA, based on our previous
works in AR characters [VLP*04] and [PMT07] with the
results shown in Figure 9.

Figure 9: Μarker-less AR of a Virtual Character (left)
along with a Real Character (right) as rendered in the
same scene in an iPod 4.

 The task was to create an iOS mobile marker-less Aug-
mented Reality (AR) application that embeds the glGA
skeleton-based deformable animated virtual human charac-
ters in a real scene. The vision-based camera tracking func-
tionality was provided by the METAIO SDK.

2.6 Results & Discussion

This glGA framework has been tested in the last three
semesters at the Computer Science Department of the Uni-
versity of Crete. Specifically in 2012, 50 students regis-
tered for CS358, while 32 participated in the course as-
signments (not mandatory as the total mark was 70% from
the final exams and 30% from the assignments). With aver-
age score 1.9 out of 3 in assignments and 70% success rate
in the finals, we can say that our effort to teach shader-
based Computer Graphics to students with no previous
experience has been successful as all students that partici-
pated in the assignments could write moderately complex
CG applications using shaders, by the middle of the course,
as shown in Figure 10.

Figure 10: The grades of those that participated in As-
signments. Vertical Axis refers to grade while the horizon-
tal refers to students (32 students participated total). Aver-
age score 1.9 out of 3, along with 0.15 for bonus tasks.

However, novice students (especially those never ex-
posed to third-party open-source libraries) faced difficulties
setting up their build environment. For that reason the in-
structor with the help of the three course TAs carried out
the following necessary actions: a) setup an online forum
for questions/answers on the course e-learning site, b) dur-
ing each lecture devoted time on live Q&A session and c)
recorded video tutorials on how to build certain open-
source libraries from scratch (e.g. Assimp, ImageMagick)
in case the students could not use the already provided
ones, due to platform issues (e.g. 64-bit vs 32-bit etc.). It
has to be noted that most students have used before Linux
and few of them OSX for programming but a large number
of them wanted to try Visual Studio IDE and Windows.
Hence the TAs had also to strive with the fact that many
students needed help on that migration. However, students
did not receive any extra help apart from the lectures, the
lecture notes and the above Q&A sessions online or during
the course (i.e. no extra helper code was provided).

Online code and tutorials [TMO13], [D13], [M13] are
valuable but not always helpful to appreciate the larger
context as they tend to solve only particular CG or platform
specific issues, while missing always some features e.g.
mobile platform integration, GUI toolkit functionality etc.

0	

1	

2	

3	

4	

1	
 11	
 21	
 31	

14

© The Eurographics Association 2014.

or rely on complex s/w engineering classes and external
libraries that the student has first to understand before pro-
ceed with the CG task. Other similar, exceptional previous
works on shader-based teaching have also to be mentioned,
such as [FWW12], [AS12], [BC07], and [OZC*05] but
they follow different approaches as they are either based on
s/w rasterizers, or focus on only surface material shader
effects or do not contain valuable features such as 3D asset
loading, character animation and GUI widgets. During the
provided CG courses, students were encouraged to explore
the whole CG pipeline of modeling, rendering, animation
and a large number of them responded enthusiastically: i.e.
they modeled in Google Sketchup™ their 3D models, tex-
tured them and exported them in the Collada™ format.
Subsequently used glGA to load these models and use them
in their assignments for rendering and animation. A small
subset of students they also voluntarily created small 3D
games only using glGA and what they have learned during
the course.

2.7 Conclusions & Future Work

It is undoubtedly hard for someone new as an under-
graduate student to enter the CG field. And if he/she has to
program a complex graphics application and at the same
time learn a new language (GL Shading Language) is even
harder. This is why many CG educators still teach the dep-
recated, fixed-function OpenGL or rely on far more com-
plex game engines or other toolkits that hide difficult no-
tions from the end user. However, they often end up either
abstracting too much (black-box effect) or pose extensive
s/w engineering demands. We have managed to create a
simple, thin-layer, open-source framework that curbs the
CG complexity by easily allowing students to grasp basic
but exciting modern CG principles. In the meantime it pre-
pares them with all the necessary knowledge through the
hands-on assignments to later take on larger CG scene-
graph frameworks or game engines. The provided series of
glGA examples and assignments that can be used for edu-
cational purposes have proven to be able to help students
comprehend the ways of creating modern 3D GPU-based
applications.

glGA will continue to be supported and evolve (include
geometry and tessellation shaders) with more examples and
sample assignments as well as more documentation. We
also want to support more Integrated Development Envi-
ronments, specifically for Linux, as well as more platforms
such as Android (already under-way). A CG class teaches
far more than a good API or framework but a good frame-
work empowers the CG educator to teach key topics in
computer graphics in an easier and more engaging way.
glGA aims to hide the non-graphics related programming
tasks and expose the students directly to the underlying
heavyweight art of GPU-based application development
and algorithm implementation. glGA can be accessed
freely at: http://george.papagiannakis.org/?page_id=513

References

[AS12] ANGEL, E. AND SHREINER, D. 2012. Interactive
computer graphics: a top-down approach with Shader-
based OpenGL (6th Edition). Addison-Wesley ISBN
13:978-0-13-254523-5, 1–778
[AS11] ANGEL, E. AND SHREINER, D. 2011. Teaching a
Shader-Based Introduction to Computer Graphics. Com-
puter Graphics and Applications, IEEE 31, 2, 9–13.
[BC07] BAILEY, M. AND CUNNINGHAM, S. 2007. A hands-
on environment for teaching GPU programming. 39, 1,
254–258.
[D13] TOM DALLING (2013), Modern OpenGL. Retrieved
from http://tomdalling.com
[FWW12] FINK, H., WEBER, T., AND WIMMER, M. 2012.
Teaching a modern graphics pipeline using a shader-based
software renderer. Computers & Graphics.
[KC*03] KOLODNER, J. L., CAMP, P. J., CRISMOND, D.,
FASSE, B., GRAY, J., HOLBROOK, J. AND RYAN, M., Prob-
lem-based learning meets case-based reasoning in the mid-
dle-school science classroom: Putting learning by de- sign
(tm) into practice. The journal of the learning sciences,
12(4), 495-547.

[M13] ETAY MEIRI (2013), Modern OpenGL Tutorials.
Retrieved from http://ogldev.atspace.co.uk/index.html

[OZC*05] OWEN, G.S., ZHU, Y., CHASTINE, J., AND PAYNE,
B.R. 2005. Teaching programmable shaders: lightweight
versus heavyweight approach. SIGGRAPH '05:
SIGGRAPH 2005 Educators program.

[PMT07] PAPAGIANNAKIS, G. AND MAGNENAT-THALMANN,
N. 2007. Mobile Augmented Heritage: Enabling Human
Life in ancient Pompeii. The International Journal of Ar-
chitectural Computing, Multi-Science Publishing 5, 2, 395–
415.

[R13] ROMERO, M. 2013. Project-Based Learning of Ad-
vanced Computer Graphics and Interaction. Eurographics
2013-Education Papers.

[RLG*10] ROST, RJ, LICEA-KANE, B., GINSBURG, D.,
KESSENICH, J., LICHTENBELT, B., MALAN, V., WEIBLEN, M.,
OpenGL Shading Language - Third Edition, Addison-
Wesley, 2010
[TMO13] Tutorials For Modern OpenGL (3.3+) (2013).
Retrieved from http://www.opengl-tutorial.org

[TPP*07] THEOHARIS, T, PAPAIOANNOU, G, PLATIS, N,
PATRIKALAKIS, N., Graphics and Visualization: Principles
& Algorithms, AK Peters, 2007

[VLP*04] VACCHETTI, L., LEPETIT, V., PAPAGIANNAKIS, G.,
M PONDER, P FUA, D THALMANN, MAGNENAT-THALMANN,
N., 2004. Stable real-time AR framework for training and
planning in industrial environments. Virtual Reality and
Augmented Reality Applications in Manufacturing, Ong, S.
K., Nee, A.Y.C. (eds), ISBN: 1-85233-796-4, Springer-
Verlag, 125–142.

 Papagiannakis G., Papanikoalou P. et al / glGA: an OpenGL Geometric shader-based Application framework 15

 Papagiannakis G., Papanikoalou P. et al / glGA: an OpenGL Geometric shader-based Application framework

© The Eurographics Association 2014.

Appendix

	

BasicCubeGUI	
 c++	
 code	
 (important	
 parts,	
 based	
 on	
 [AS12]):	

const	
 	
 	
 int	
 NumVertices	
 =	
 36;	

typedef	
 	
 glm::vec4	
 point4;	

point4	
 	
 points[NumVertices];	

color4	
 	
 colors[NumVertices];	

point4	
 	
 vertex_positions[8]	
 =	
 {	

	
 point4(
 -­‐0.5,	
 -­‐0.5,	
 	
 0.5,	
 1.0	
),	

	
 point4(
 -­‐0.5,	
 	
 0.5,	
 	
 0.5,	
 1.0	
),	

	
 point4(
 	
 0.5,	
 	
 0.5,	
 	
 0.5,	
 1.0	
),	

	
 point4(
 	
 0.5,	
 -­‐0.5,	
 	
 0.5,	
 1.0	
),	

	
 point4(
 -­‐0.5,	
 -­‐0.5,	
 -­‐0.5,	
 1.0	
),	

	
 point4(
 -­‐0.5,	
 	
 0.5,	
 -­‐0.5,	
 1.0	
),	

	
 point4(
 	
 0.5,	
 	
 0.5,	
 -­‐0.5,	
 1.0	
),	

	
 point4(
 	
 0.5,	
 -­‐0.5,	
 -­‐0.5,	
 1.0	
)	

};	

color4	
 vertex_colors[8]	
 =	
 {	

	
 color4(
 0.0,	
 0.0,	
 0.0,	
 1.0	
),	
 	
 //	
 black	

	
 color4(
 1.0,	
 0.0,	
 0.0,	
 1.0	
),	
 	
 //	
 red	

	
 color4(
 1.0,	
 1.0,	
 0.0,	
 1.0	
),	
 	
 //	
 yellow	

	
 color4(
 0.0,	
 1.0,	
 0.0,	
 1.0	
),	
 	
 //	
 green	

	
 color4(
 0.0,	
 0.0,	
 1.0,	
 1.0	
),	
 	
 //	
 blue	

	
 color4(
 1.0,	
 0.0,	
 1.0,	
 1.0	
),	
 	
 //	
 magenta	

	
 color4(
 1.0,	
 1.0,	
 1.0,	
 1.0	
),	
 	
 //	
 white	

	
 color4(
 0.0,	
 1.0,	
 1.0,	
 1.0	
)	
 	
 	
 //	
 cyan	

};	

void	
 quad(
 int	
 a,	
 int	
 b,	
 int	
 c,	
 int	
 d	
)	
 {	

	
 //first	
 triangle	

	
 colors[Index]	
 =	
 vertex_colors[a];	
 	

	
 points[Index]	
 =	
 vertex_positions[a];	
 	

	
 Index++;	

	
 colors[Index]	
 =	
 vertex_colors[b];	
 	

	
 points[Index]	
 =	
 vertex_positions[b];	
 	

	
 Index++;	

	
 colors[Index]	
 =	
 vertex_colors[c];	
 	

	
 points[Index]	
 =	
 vertex_positions[c];	
 	

	
 Index++;	

	
 //second	
 triangle	

	
 colors[Index]	
 =	
 vertex_colors[a];	
 	

	
 points[Index]	
 =	
 vertex_positions[a];	
 	

	
 Index++;	

	
 colors[Index]	
 =	
 vertex_colors[c];	
 	

	
 points[Index]	
 =	
 vertex_positions[c];	
 	

	
 Index++;	

	
 colors[Index]	
 =	
 vertex_colors[d];	
 	

	
 points[Index]	
 =	
 vertex_positions[d];	
 	

	
 Index++;}	

//	
 generate	
 12	
 triangles:	
 36	
 vertices	
 and	
 36	
 colors	

void	
 colorcube()	
 {	

	
 quad(
 1,	
 0,	
 3,	
 2	
);	

	
 quad(
 2,	
 3,	
 7,	
 6	
);	

	
 quad(
 3,	
 0,	
 4,	
 7	
);	

	
 quad(
 6,	
 5,	
 1,	
 2	
);	

	
 quad(
 4,	
 5,	
 6,	
 7	
);	

	
 quad(
 5,	
 4,	
 0,	
 1	
);}	

//Cube	
 VBO	
 and	
 VAO	
 initialization	

void	
 initCube(){	

	
 //	
 Load	
 shaders	
 	

program	
 =	
 LoadShaders(
 	

"vshaderCube.vert",	
 	

"fshaderCube.frag"	
);	

	
 glUseProgram(
 program	
);	

	
 //generate	
 and	
 bind	
 a	
 VAO	
 for	
 the	
 Cube	

	
 glGenVertexArrays(1,	
 &vao);	

	
 glBindVertexArray(vao);	

	
 colorcube();	

	
 //	
 Create	
 and	
 initialize	
 a	
 buffer	
 object	

	
 glGenBuffers(
 1,	
 &buffer	
);	

	
 glBindBuffer(
 GL_ARRAY_BUFFER,	
 buffer	
);	

	
 glBufferData(
 GL_ARRAY_BUFFER,	
 	

sizeof(points)	
 +	
 sizeof(colors),	

NULL,	
 GL_STATIC_DRAW	
);	

	
 glBufferSubData(
 GL_ARRAY_BUFFER,	
 	

0,	
 sizeof(points),	
 points	
);	

	
 glBufferSubData(
 GL_ARRAY_BUFFER,	
 	

sizeof(points),	
 sizeof(colors),	
 colors	
);	

	
 //	
 set	
 up	
 vertex	
 arrays	

	
 GLuint	
 vPosition	
 =	
 	

glGetAttribLocation(
 program,	
 "vPosition"	
);	

	
 glEnableVertexAttribArray(
 vPosition	
);	

	
 glVertexAttribPointer(
 vPosition,	
 4,	
 	

GL_FLOAT,	
 GL_FALSE,	
 	

0,BUFFER_OFFSET(0)	
);	

	
 GLuint	
 vColor	
 =	
 	

glGetAttribLocation(
 program,	
 "vColor"	
);	
 	

	
 glEnableVertexAttribArray(
 vColor	
);	

	
 glVertexAttribPointer(
 vColor,	
 4,	
 	

GL_FLOAT,	
 GL_FALSE,	
 	

0,BUFFER_OFFSET(sizeof(points))	
);	
 	

	
 glBindVertexArray(0);	

}	

void	
 displayCube(){	

	
 glUseProgram(program);	

	
 glBindVertexArray(vao);	

	
 glDrawArrays(
 GL_TRIANGLES,	
 0,	
 NumVertices	
);	

	
 glBindVertexArray(0);}	

	

BasicCubeGUI with the AntTweakBar lib:

//Initialization	
 of	
 AntTweakBar	

TwInit(TW_OPENGL_CORE,	
 NULL);	

TwWindowSize(windowWidth,	
 windowHeight);	

myBar	
 =	
 TwNewBar("myBar");	

TwAddVarRW(myBar,	
 "wire",	
 	

TW_TYPE_BOOL32,	
 &wireFrame,	

"	
 label='Wireframe	
 mode'	
 key=w	
 help='Toggle\	

wireframe	
 display	
 mode.'	
 "	

);	

TwAddVarRW(myBar,	
 "bgColor",	
 	

TW_TYPE_COLOR4F,	
 glm::value_ptr(bgColor),	
 	

"	
 label='Background	
 color'	
 "	

);	

//Ant	
 Tweak	
 Bar	
 Rendering	
 in	
 main	
 loop	

TwDraw();	

//Ant	
 Tweak	
 Bar	
 Termination	

TwTerminate();	

BasicCubeGUI	
 Vertex	
 Shader:	

#version	
 150	
 core	

in	
 	
 vec4	
 vPosition;	

in	
 	
 vec4	
 vColor;	

out	
 	
 vec4	
 color;	

void	
 main()	
 {	

	
 	
 gl_Position	
 =	
 vPosition;	

	
 	
 color	
 =	
 vColor;}	
 	

	

BasicCubeGUI	
 Fragment	
 Shader:	

#version	
 150	
 core	

in	
 	
 vec4	
 color;	

out	
 	
 vec4	
 colorOUT;	

void	
 main()	
 {	
 	

	
 	
 	
 	
 colorOUT	
 =	
 color;}	
 	

Assignment	
 5	
 Blinn-­‐Phong	
 Illumination	
 Model	
 (Fragment	
 Shader):	

#version	
 150	
 core	

//Data	
 as	
 passed	
 from	
 vertex	
 shader	

in	
 	
 vec3	
 wPosition;	

in	
 	
 vec3	
 EyeDirection;	

in	
 	
 vec3	
 LightDirection;	

in	
 	
 vec3	
 fNormal;	

out	
 	
 	
 	
 vec4	
 	
 colorOUT;	

uniform	
 vec3	
 LightPosition;	

uniform	
 vec3	
 MaterialDiffuseColor;	

uniform	
 vec3	
 MaterialAmbientColor;	

uniform	
 vec3	
 MaterialSpecularColor;	

uniform	
 float	
 LightIntensity;	

uniform	
 	
 float	
 Shininess;	

uniform	
 vec3	
 LightDiffuseColor;	

uniform	
 vec3	
 LightAmbientColor;	

uniform	
 vec3	
 LightSpecularColor;	

void	
 main()	

{	

	
 vec3	
 n	
 =	
 normalize(fNormal);	

	
 vec3	
 l	
 =	
 normalize(LightDirection);	

	
 vec3	
 v	
 =	
 normalize(EyeDirection);	

	
 vec3	
 H	
 =	
 normalize(l	
 +	
 v);	

	
 float	
 cosTheta	
 =	
 max(
 dot(
 n,l	
),	
 0.0	
);	

	
 float	
 cosAlpha	
 =	
 pow(
 max(dot(
 n,	
 H	
),	
 0.0),	
 Shininess);	

//Attenuation	

float	
 d	
 =	
 length(
 LightPosition	
 -­‐	
 wPosition	
);	

colorOUT	
 =	
 vec4(

MaterialAmbientColor	
 *	
 LightAmbientColor	
 +	

MaterialDiffuseColor	
 *	
 LightDiffuseColor	
 *	
 Light-­‐
Intensity	
 *	
 cosTheta	
 /	
 (d*d)	
 +	

MaterialSpecularColor	
 *	
 LightSpecularColor	
 *	
 Light-­‐
Intensity	
 *	
 cosAlpha	
 /	
 (d*d),	
 1.0	
);	

}	

16

