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Abstract

In the context of teaching geomorphology phenomena, producing illustrations and animations can be a tedious
process. We propose an experimental framework, dedicated to 3D erosion and sedimentation modeling written
in C++, combined with an existing topological modeler. Using the “generalized maps” as the underlying 3D
model, we process each case of collision between elements in the scene in order to guarantee both topological and
geometrical coherence during user-defined animations. Erosion and sedimentation operations can be combined
to manipulate evolution scenarios leading for example to the creation of arches, bridges, tunnels or caves. Some
of these scenarios, implemented in our framework with the help of a geology teacher, are presented in this paper
in order to show the technical feasibility of our project before developing new ones.

Categories and Subject Descriptors (according to ACM CCS): K.3.1 [COMPUTERS AND EDUCATION]:
Computer Uses in Education—Computer-assisted instruction (CAI) 1.3.7 [COMPUTER GRAPHICS]: Three-

Education Paper

Dimensional Graphics and Realism—Animation

1. Introduction

Although the landscapes surrounding us may seem static,
they are continually evolving at a variety of time and spa-
tial scales. These phenomena are mainly studied by geomor-
phology, which seeks to explain the history and dynamics of
landforms. To produce visual illustrations of such phenom-
ena to teach introductory geomorphology can be a tedious
process: most of them come as a set of successive images,
usually in 2D as shown of Figure 1 (top) or in pseudo 3D
(bottom). These illustrations are usually created thanks to
dedicated software such as Geographic Information Systems
(GIS) or traditional 3D modeling tools: Blender, Maya, etc.

In this paper we chose to focus on erosion and sedimenta-
tion phenomena, which can lead to the formation of complex
geometries such as natural arches, bridges or tunnels. In this
case, relying on existing software is not possible since 3D
illustrations are mandatory and complex fopological events
can occur that usually require expensive volumetric repre-
sentations.

Our framework is able to simulate the geomorphological
evolution of a 3D terrain represented as a set of volumes,
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relying on a topological model named “generalized maps”,
along with atomic operations to handle topological events
in a robust way. These operations can be overridden to im-
plement complex evolution scenarios in a modeling soft-
ware based on generalized maps, by defining C++ functions
that process collisions occurring between vertices, edges or
faces. This paper describes different early experiments with
a geomorphology teacher to define such C++ code and pro-
duce visual illustrations of erosion and sedimentation phe-
nomena that will be used in an introductory geology course.

Our work addresses various topics of CG-based educa-
tion: first of all, we want to create an educational program
combining topological representation with geomorphology.
We also intend to show how rather simple C++ code can
produce visual illustrations for teaching purposes. A primary
objective for these illustrations is to enhance student learning
and help understand complex geomorphological phenom-
ena.

This paper is organized as follows: the next section
presents different works related to visual and programming
tools in geomorphology and other disciplines, and gives an
insight for the reader to understand the basic concepts of
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Figure 1: Examples of visual illustrations in 2D and pseudo
3D commonly found in introductory geomorphology classes

topological modeling. Section 3 describes our graphical and
programming environment, and shows how our main simu-
lation loop can be modified to adapt to various scenarios. In
Section 4 we present different experiments conducted with
a geologist in order to produce simple animations of erosion
and sedimentation phenomena, which are discussed in the
final section.

2. Related Works
2.1. Education papers

The goal of our work is to produce visual illustrations of
complex phenomena in Earth science; of course it has al-
ready been shown that graphics, images and animations are
able to enhance learning in many disciplines [MBOS5].

Producing such illustrations for a geology or geomorphol-
ogy course could rely on advanced terrain generation meth-
ods such as [PGMGO09], however none of these works ad-
dress the specific problem of topological changes in the 3D

model. Other methods are specifically targeted towards ge-
ology, sometimes based on high-level user interactions. A
graphical system that uses geological sketches is described
in [LHV12]. Their solution is built on a flip-over metaphor
that sketches the individual steps of a “geological story”.
In [SVBCS13] the system can be used to visually explore
and annotate geological outcrops through multitouch inter-
actions, including a 3D navigation technique and horizon
surface creation and edition. But again these softwares are
more oriented towards the creation of geological represen-
tations than their evolution. Another problem is the human
resources and task force necessary to develop such advanced
programs which are usually restricted to specific API and
hardware. It could be possible to rely on computer graphics
students to develop advanced software as shown in [Liel3]:
these students can benefit from having software engineer-
ing projects in other departments, but in our opinion this ap-
proach still requires a significant amount of help from CG
teachers and researchers to develop and maintain such soft-
ware.

Another way to address these problems is to consider the
help of scripting or programming. Programming is now a
wide-spread task in the scientific community, especially in
geology where GIS software is rather common [PJR*11].
Bridging the gap between scientific researchers and pro-
gramming tools developers through the practice of compu-
tational science is actually a rather old idea [FP75], and in-
troductory computer science courses are now wide spread in
science curricula.

Therefore, a non-visual software that relies on an API in
C++ or another programming language can now be used
by non-programmers, and developing such tools is certainly
less time-consuming and much more stable. Numerous ex-
amples can be found, such as Processing [RF06], where pro-
gramming is used by students, artists, designers, architects,
and researchers to learn, prototype and produce high-level
animations. Of course, there is no shortcut in learning to
program and sufficient time to become familiar with basic
concepts is needed [HMO6].

Finally, it should be noted that simplified APIs aimed at
non-programmers can be developed to “hide” most of the
difficult tasks, as for example in [SCN12] which describes a
simple parallel computing framework intended to avoid de-
veloping with CUDA for different scientific applications. In
this case again we believe that an important effort is needed
from computer scientists to design and maintain such APIs
but this approach could be a future direction for our work.

2.2. Topological structures

Our topological model is based on generalized maps, an ex-
tension of combinatorial maps that can represent the topo-
logical structure of a subdivided volume composed of ver-
tices, edges, faces and volumes linked together by adjacency
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/ incidence relationships. Its compact and uniform represen-
tation simplifies definitions and evolution algorithms in any
dimension. It also makes it easier to implement mesh modi-
fications such as triangulation, insertion and subdivision, as
well as neighborhood search in constant time.

A n-dimensional generalized map (or n-G-map) is a set of
abstract elements called darts, defined in an homogeneous
way for any dimension n, linked by combinatorial involu-
tions. A 3-G-map can be seen as a generalization of simi-
lar topological representations such as winged edges or half
edges which use explicitly linked structures to store the ge-
ometry and topology of faces, edges, and vertices. This is
illustrated in Fig. 2 with two views of the same two volumes
sharing a common face. The bottom view shows a graphical
representation of darts which define the topological struc-
ture.

MOKA - [Mére : Vue 30]

Darts: 80; Selected:0; Vertices:S; Darts unmarked

Figure 2: Compact and exploded views of two volumes shar-
ing a common face

For our project it is sufficient to say that darts can repre-
sent vertices, edges or faces depending on the context of an
erosion operation; interested readers can refer to [Lie94] for
a complete presentation of n-G-maps.
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3. Graphical and Programming Environment
3.1. Overview

Defining an erosion/sedimentation scenario in our system is
basically a two-steps process:

o Use the modeler to define the initial topology and geom-
etry of the volumetric elements and define how a selected
set of vertices will move during the animation. In the first
picture in Fig. 3 the selected vertex appears marked with
a red cross, and its direction is set vertically downwards:
it will be displaced when running the scenario as in the
second picture.

e Define what should happen in case of topological incon-
sistencies, such as a moving vertex colliding with a vol-
ume, using C++ code. In our example this leads to the
creation of new vertices (third picture, when the yellow
vertex collides with the bottom volume) to maintain the
consistency of the topology.

The main difficulty is to define how to create new
vertices during the animation and how they should be-
have in order to obtain the desired result. Our API pro-
vides a set of C++ operations for this purpose such as
vertexFaceCollision (v, £, &newV) which fills a
list of new vertices newV resulting from the collision of a
moving vertex v with a face £. Section 4 gives several ex-
amples where these operations are used to describe different
erosion/sedimentation scenarios (including the basic digging
operation shown here) within our framework.

An event queue stores all initial and new moving vertices
during the animation, and a C++ class called geo represents
the context of the whole operation.

3.2. Topological modeler

Our framework relies on Moka, a 3D geometrical modeler
based on a 3-G-map kernel [VD], which contains different
operations such as basic object creation, cell insertion, re-
moval and contraction, and triangulations. Our topological
operations run as an additional library that interacts both
with the kernel and the modeler libraries.

The initial 3D model can be imported into Moka from an
OBJ file created with another 3D modeling software, or de-
fined from scratch by the user. Moka provides all necessary
operations, and can also apply basic CSG operations such
as removing a part of the model for inside visualization (see
Fig. 3, bottom picture).

In our project, the set of moving vertices (associated with
specific darts of the 3-G-map) must be selected by the user
before the evolution scenario starts. They appear in red and
are marked by a specific boolean value called i sMarked in
the C++ code. We will use the API provided by Moka and
the ability to define any type of mark associated with darts
to implement our own operations described in the remainder
of this paper.
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Figure 3: Progressive steps of a simple erosion operation
generated with our framework from a selected vertex go-
ing downwards. The last picture shows an inside view of the
model obtained with a CSG difference.

3.3. Evolution of topological structures

All vertices stored in the event queue move during the ani-
mation, and as stated previously the user must define how
new vertices created during the animation should behave.
The following structure describes a moving vertex:

typedef struct {

CDhart+ dart; // position of the moving vertex

CVertex dir; // direction

float t; // time of collision

CDhartx obj; // dart
the moving vertex

(vertex, face or edge) colliding with

} Move;

New vertices are created only in case of specific events,
i.e. collisions between a moving vertex and different darts
(another vertex, an edge or a face). Fig. 4 summarizes the 9
possible cases that can occur. These collisions are not sym-
metric, since only one moving vertex M is processed at a
given time. For example, a vertex-face collision means that
M crosses a face F that it does not belong to (but M and F
can belong to the same volume). In geology this configura-
tion could correspond to a stalactite reaching the ground. A
face-vertex collision implies that the face which M belongs
to moves and collides with another vertex, for example if,
on the contrary, the ground being uplifted by sedimentation
reaches a static object.

Figure 4: 9 different types of collisions that can occur in our
model

Each of these 9 cases triggers a default method defined by
three main steps in C++:

e call a procedure from our library that may return a set of
new vertices

o define the properties of these new vertices

e add these vertices in the main event queue if they are set
to move at the next step

All 9 methods can be overridden for his/her own purpose
by the user, who must also define an initialization function
called init at the beginning of the animation.
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4. Experimental results

Experiments with our framework were conducted with a ge-
ology professor who had basic notions of C++ program-
ming. In the following we describe three different scenarios
that can be combined together to obtain a rather complex
animation.

4.1. Digging a hole with differential erosion

As shown on Fig. 3, a hole can be created by the vertical
motion of a single vertex; troubles begin when this moving
vertex collides with a volume of rock that is less sensitive to
erosion (this phenomena is called differential erosion). The
erosion rate can be set in Moka thanks to a user-defined field
value. First let us have a look at the init function:

void ScenarioDigging::init () {

// define a vertical direction

CVertex dirErosion = CVertex(0,-0.25,0);

int markV = ctrl->getSelectionMark();

// find selected vertices

for (CDynamicCoverageAll it (map); it.cont(); ++it) {
if (map->isMarked(xit, markV)) {
Geomorphology: :Move m;
m.dart = *it;
m.dir = dirErosion;
geo->eventQueue.push_back (m) ;

This function simply defines dirErosion as a verti-
cal direction, then vertices that were previously marked in
Moka as in Fig. 3 (top) are given this direction and added
to the event queue. Now we must define what happens when
a moving vertex collides with the top face of the lower vol-
ume:

void ScenarioDigging::caseVertexFace (Geomorphology: :Move m)
{

list<Geomorphology: :Move> newVertices;

CDartx d = m.dart; // moving vertex

CDhartx obj = m.obj; // colliding face

CVertex dir = m.dir;

// topological operation

geo—>vertexFaceCollision(d, obj, &newVertices) ;

CVertex initial = smap->findVertex (d);
// process new vertices
while (!newVertices.empty()) {

Geomorphology: :Move m2 = newVertices.front ();
// define a radial direction around the moving vertex
m2.dir = (xmap->findVertex(m2.dart) - initial) .normalized
() = 0.05¢f;

*map->findVertex (m2.dart) += m2.dir = 0.1f;
geo—>nextStep.push_back (m2) ;

newVertices.pop_front();

}

}

New  vertices obtained from the  subroutine
vertexFaceCollision are given a radial direc-
tion around the colliding vertex. Tweaking the hard coded
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value 0.1f allows to speed up or slow down their motion
at subsequent steps, which will be processed when these
vertices pop out of the event queue. This parameter could
also be linked to a configuration file or a slider component
in the GUI to allow modification at run-time.

4.2. Cave formation

Following the previous example, a cave can be created by en-
larging the hole in a user-defined lateral direction into the up-
per volume, as shown on Fig. 5. This is illustrated in the fol-
lowing algorithm where the hole will progressively extend
to the right by defining this direction as the vector (1,0,0).
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Figure 5: Enlarging a hole to create a cave

In this case we must modify the previous function to add
a lateral direction and choose a new vertex to progressively
create the cave. This can actually be done by slowing down
the radial motion of all new vertices except one.
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void ScenarioCave: :caseVertexFace (Geomorphology: :Move m) {

// define a lateral direction
CVertex dirCave = CVertex(1l,0,0);
// define and modify the lateral motion

list<Geomorphology: :Move>::iterator it = newVertices.begin
O

for (it; it != newVertices.end(); ++it) {

CVertex dir2 = smap->findVertex((xit).dart) - initial;

(*it) .dir = dir2.normalized();
// if the radial direction for this vertex is not "close"
to dirCave:
if ( ! (dotProduct (dirCave.normalized(), (xit).dir) > 0.8) )
(xit) .dir += 0.4; // we simply slow down its motion

}

4.3. Stalactites and stalagmites

In this experiment, erosion and sedimentation combine to
create a single column. First of all, two vertices moving ver-
tically are selected at the top and at the bottom of the cave
(which is not necessarily closed as depicted in Fig. 6). As
the animation runs, these vertices may actually collide. This
is handled by the following code:

void ScenarioColumn::caseVertexVertex (Geomorphology: :Move m)
{

list<Geomorphology: :Move> newVertices;

CDart* d = m.dart; // moving vertex

CDart* obj = m.obj; // colliding vertex

// make sure we do not process the colliding vertex (who
could also appear in the event queue)

int mark = map->getNewMark () ;

map->markVertex (obj, mark) ;

geo—->switchIfMarked (mark) ;

map->unmarkVertex (obj,mark) ;

map->freeMark (mark) ;

geo->vertexVertexCollision(d, obj, &newVertices);

// create new vertices with radial motions

The last part of this routine, which is designed to enlarge
the column, is not shown here for the sake of clarity but it is
very similar to the case of a hole colliding with a face.

4.4. A complete example

By combining these different functions and by selecting
moving vertices carefully, our experimental user was able to
create a complete example starting with a single hole, then
a cave enlarging as shown on Fig. 5, and finally small sta-
lactites and stalagmites appearing in the cave as depicted on
Fig. 7 (top). This setup was inspired by a typical illustra-
tion that is used to explain differential erosion to geology
students shown on Fig. 1 (bottom).
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Figure 6: Fusion of a stalactite with a stalagmite

5. Conclusion and future work

Our framework is designed as a versatile tool to implement
various scenarios and produce visual illustrations for a geo-
morphology class. The user can interact with the model in
Moka, and implement and compile evolution functions in a
standard C++ integrated development environment. The pre-
liminary results presented in this paper are encouraging: our
experimenter, who was not familiar with topological model-
ing, was really interested in understanding the various prob-
lems that can arise from the displacement of vertices inside
a 3D model. Although for now it is almost impossible for a
non-computer scientist to implement a given scenario with-
out our help, we are currently adding new simulations that
could be used during the next semesters in the class, and
also to enroll other geology teachers in our experiments. It
will then be possible to conduct a full-scale evaluation of the
impact of our 3D simulations on geology students, based on
grades and guided interviews.

Several directions for future work can be considered. The
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Figure 7: Stalactites and stalagmites inside the cave shown
on Fig. 5.

first one would be to develop a simplified API that will hide
most of the complex operations, as described in [SCN12] for
GPU programming. This solution would certainly increase
the autonomy of the non specialists and give more visibil-
ity to our work, but it is still a challenge to find the correct
balance between a complex library and a simple API with
limited possibilities.

Another promising direction consists in integrating other
types of interactions. One of them is hydraulic erosion: since
most of the examples presented in this paper are actually
caused by the action of water, it could be interesting to add
a fluid simulation to automatically select moving points and
drive the animation in a more realistic way. This would also
offer new directions for geomorphology research (for exam-
ple to study the accumulation of sediments and the environ-
mental impact of a retaining dam). We could also try to im-
plement different types of faults or fractures to create earth-
quakes and subduction rocks as in [LHV12].

Finally, different desirable features could be added to ob-
tain a visual result closer to the usual representations shown
in Fig. 1, such as the export of the 3D model at each step to-
wards another rendering pipeline or the possibility to include
annotations.
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