
EUROGRAPHICS 2012/ M.-P. Cani, F. Ganovelli STAR – State of The Art Report

Interactive Simulation of Rigid Body Dynamics in Computer
Graphics

Jan Bender1, Kenny Erleben2, Jeff Trinkle3 and Erwin Coumans4

1Graduate School CE, TU Darmstadt, Germany
2Department of Computer Science, University of Copenhagen, Denmark

3Department of Computer Science, Rensselaer Polytechnic Institute, USA
4Advanced Micro Devices, Inc., USA

Abstract
Interactive rigid body simulation is an important part of many modern computer tools. No authoring tool nor a
game engine can do without. The high performance computer tools open up new possibilities for changing how
designers, engineers, modelers and animators work with their design problems.
This paper is a self contained state-of-the-art report on the physics, the models, the numerical methods and the
algorithms used in interactive rigid body simulation all of which has evolved and matured over the past 20 years.
The paper covers applications and the usage of interactive rigid body simulation.
Besides the mathematical and theoretical details that this paper communicates in a pedagogical manner the paper
surveys common practice and reflects on applications of interactive rigid body simulation. The grand merger of
interactive and off-line simulation methods is imminent, multi-core is everyman’s property. These observations
pose future challenges for research which we reflect on. In perspective several avenues for possible future work
is touched upon such as more descriptive models and contact point generation problems. This paper is not only a
stake in the sand on what has been done, it also seeks to give newcomers practical hands on advices and reflections
that can give experienced researchers afterthought for the future.

Keywords: Rigid Body Dynamics, Contact Mechanics, Articulated Bodies, Jointed Mechanisms, Contact Point
Generation, Iterative Methods.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Physically-based modeling; Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation; Mathematics of Computing [G.1.6]: Numerical Analysis—Nonlinear programming

1. Motivation and Perspective on Interactive Rigid
Body Simulation

Rigid body dynamics simulation is an integral and important
part of many modern computer tools in a wide range of ap-
plication areas like computer games, animation software for
digital production including special effects in film and ani-
mation movies, robotics validation, virtual prototyping, and
training simulators just to mention a few.

In this paper we focus on interactive rigid body dynamics
simulation a subfield that has evolved rapidly over the past
10 years and moved the frontier of run-time simulation to
applications in areas where off-line simulation only recently
were possible. As a consequence this changes the computer

tools humans use and has great social economical impact on
society as a whole.

The term “interactive” implies a loop closed around a hu-
man and simulation tool. For applications like games where
the feedback is simply animation on a screen, a reasonable
goal is that the simulation deliver 60 frames per second (fps).
For haptic rendering, the simulation would be part of a feed-
back loop running at 1000Hz, where this rate is needed to
display realistic forces to the user.

In this state-of-the-art paper we will cover the important
past 20 years of work on interactive rigid body simulation
since the last state-of-the-art report [Bar93b] on the subject.
Rigid body dynamics has a long history in computer graph-

© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/stars/095-134

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/stars/095-134

J. Bender et al. / Interactive Rigid Body Simulation

Figure 1: Interactive rigid body simulations require the ef-
ficient simulation of joints, motors, collisions and contacts
with friction.

ics for more than 30 years [AG85, MW88, Hah88, Bar89,
BBZ91] and a wealth of work exists on the topic. As early
as 1993 there were written state-of-the-art reports on the
subject [Bar93b]. In his 93 STAR paper Baraff discussed
penalty based methods and constraint based methods being
an acceleration-level linear complementarity problem for-
mulation. He did not cover many details on solving the linear
complementarity problem. Not until 94 where Baraff pub-
lished his version of a direct method based on pivoting was
it feasible to compute solutions for Baraff’s complementar-
ity problem formulation. For years the 94 Baraff solution
was the de-facto standard method of rigid body dynamics
choice in both Maya and Open Dynamics Engine [Smi00].
However, the solution only remained interactive for small
sized configurations (below 100 interacting objects or so).
When the number of interacting objects increased the com-
putational cost quickly made simulations last for hours and
the acceleration-level formulation caused problems too with
existence of solutions and uniqueness. Besides, solutions
found by his algorithm did not always satisfy the static fric-
tion constraints. In the following years after Baraff’s 1994
results, the impulse based paradigm was revisited by Mir-
tich in 96 [Mir96b] and become a strong competitor when
concerning interactive simulation. Soon the interactive sim-
ulation community moved onto iterative methods and veloc-
ity level formulations, eventually evolving into the technol-
ogy one finds today in engines such as Bullet [Cou05] and
Open Dynamics Engine. As of this writing interactive sim-
ulation on single core CPUs with several 1000 and up to
10000 interacting objects are feasible. Multi-core and GPU
works even go far beyond these limits. Even today much ac-
tive cross-disciplinary work is ongoing on different contact
formulations and iterative solvers taking in people not only
from the field of computer graphics, but also from applied
math, contact mechanics, robotics and more. Looking be-
yond contact problems, one also finds that simulation meth-

Figure 2: The simulation loop provides a coarse description
of data flow and processes in a rigid body simulator.

ods for articulated bodies have also undergone rapid devel-
opment. In computer graphics, the reduced coordinate for-
mulations have won much recognition as being superior for
interactive rag-doll simulations.

1.1. The Anatomy and Physiology of a Rigid Body
Simulator

A rigid body simulator is a complex and large piece of soft-
ware. Traditionally it has been broken down into smaller
well-defined pieces that each are responsible for solving a
simpler single task. All pieces are tied together by a simula-
tion loop shown in Figure 2. The loop begins with a col-
lision detection query to find the contact points between
the various bodies. These points are needed to write the
physical laws governing the motions of the bodies, which
are then solved to determine contact forces that provide
proper contact friction effects and prevent bodies from inter-
penetrating. This phase is termed “contact handling.” Newly
formed contacts imply collisions, which are accompanied
by impulsive forces (i.e., forces with infinite magnitudes
over infinitesimal time periods). Impulsive forces cause in-
stantaneous changes in the body velocities and so are often
handled separately from pre-existing resting contacts. One
refers to this as “collision resolving.” After computing all
the contact forces, the positions and velocities of the bodies
are integrated forward in time before a new iteration of the
simulation loop starts. Several iterations of the loop might
be performed before a frame is rendered.

In order to derive the correct physical laws for the scene,
all contacts between bodies must be found. If there are n
bodies, then there are O(n2) pairs of bodies to test for col-
lisions. To avoid collision detection becoming a computa-
tional bottleneck, it is broken into phases. In the first phase,
called the “broad phase”, bodies are approximated by simple
geometric primitives for which distance computations are
very fast (see Figure 3). For example, each body is replaced
by the smallest sphere that completely contains it. If the
spheres covering two bodies do not overlap, then neither do
the actual bodies. The broad phase culling happens in global
world coordinates. If the individual bodies are complex and

© The Eurographics Association 2012.

96

J. Bender et al. / Interactive Rigid Body Simulation

Figure 3: A modular phase description of the sub tasks of
a rigid body simulator helps decomposing a large complex
system into simpler components.

consist of many parts an additional stage called “mid phase”
is used to cull parts in local body space. The culling is typ-
ically performed using bounding volume hierarchies. In the
“narrow phase” the detailed geometries of bodies are used to
find the precise body features in contact and the location of
the contact points. However, this expensive operation must
be done only for the pairs of bodies with overlapping ap-
proximations. The narrow phase is often mixed with the mid
phase for performance reasons. Note that some narrow phase
algorithms do not return all the required contact information,
in which case a separate contact point generation algorithm
can be applied (see section 6.3)

1.2. The Quest for Robustness, Accuracy, and
Performance

The recent trend in interactive rigid body simulation has fo-
cused on delivering larger and larger simulations of rigid
bodies or creating simulation methods that can deliver re-
sults faster. Thus, the old saying bigger and faster is better
is very descriptive for many past works in the field of inter-
active rigid body simulation. The need for bigger and faster
is motivated by rigid body simulators being used in for in-
stance digital production. It looks more interesting to have
a pile of skeleton skulls in a movie than having a hand full
of cubes and spheres. Thus, the need in production for cre-
ating interesting motion requires more complex simulation
scenarios.

The well known tradeoff between accuracy and perfor-
mance is an inherent property of interactive rigid body sim-
ulation. Many applications enforce a performance constraint
which leaves too little time for computing accurate solutions.
Thus, one must often balance accuracy and stability proper-
ties to meet the performance constraint.

Robustness is another desirable numerical trait of a simu-
lator. The motivation for this is often caused by having a hu-
man being (or the real world in case of robotics) interacting

with a simulator. This may be the cause for much pain and
frustrations as humans have a tendency to be unpredictable.

In summary, the holy grail of interactive rigid body sim-
ulation is extremely fast and robust simulation methods that
can deal gracefully with large scale complex simulation sce-
narios under hard performance constraints.

1.3. Application Areas of Interactive Rigid Body
Simulation

The maturing technology makes it possible to use rigid body
simulators as sub-parts in larger systems. For instance in
time critical scenarios like tracking humans or maneuvering
a robot, a simulator can be used as a prediction tool.

From a digital design viewpoint, one may define a spec-
trum of technology. At one end of the spectrum one finds
off-line simulators that may take hours or days to compute
results, but on the other hand they deliver high quality re-
sults. For movie production several such computer graph-
ics simulation methods have been presented [Bar94,GBF03,
KSJP08]. At the other end of the spectrum one finds the fast
run-time simulators capable of delivering plausible results
very fast. This kind of simulator often originates from game
physics. One example is Bullet. At the middle of the spec-
trum one finds moderately fast simulators that may deliver
high fidelity results. These are very suitable for testing de-
sign ideas or training.

In general different application areas have different needs
in regards to performance/quality trade-offs and accuracy.
With this in mind we will discuss a few application areas in
the next four subsections.

1.3.1. Entertainment for Games and Movies

For games and movies rigid body simulation has to be plau-
sible rather than physically realistic. For games, the simu-
lation needs to be real-time. Simulations for movies do not
have the real-time constraint, but fast simulation methods are
also preferred, since very complex scenarios are simulated
for special effects and simulation time costs money. There-
fore, the development in the two areas go in the same direc-
tion. Iterative constraint solving methods are popular in both
areas.

Many games using 2D and 3D graphics rely on a rigid
body dynamics engine to deal with collision detection and
collision response. In some cases the motion of the objects
is fully driven by rigid body dynamics, for example the game
Angry Birds,using the Box2D physics engine or a 3D Jenga
game. More commonly, object motion is customized in a
non-physical way to a certain degree, to favor a satisfying
game playing experience over physical realism. This intro-
duces the challenge of interaction between rigid bodies and
kinematically animated objects. Kinematically animated ob-
jects can be represented as rigid bodies with infinite mass,

© The Eurographics Association 2012.

97

J. Bender et al. / Interactive Rigid Body Simulation

so that the interaction is one way. The influence from rigid
body to kinematically animated objects is often scripted in a
non-physical way.

With increasing CPU budgets, there is growing interest in
using more realistic, higher quality simulation. In particular
the combination of rag-doll simulation, animation, inverse
kinematics and control requires better methods. It requires
constraint solvers that can deal with very stiff systems and
strong motors that can deal with the large change in veloc-
ity. Several game and movie studios are using Featherstone’s
articulated body method to simulate rag-dolls.

Destruction and fracture of objects can generate a lot of
dynamic rigid bodies, and to handle them, games use multi-
core CPUs or offload the rigid body simulation onto GPUs.

1.3.2. Interactive Digital Prototyping

Interactive virtual prototyping can be an important computer
tool for verifying a design idea or as a pre-processing tool
to tune parameters for more computational expensive sim-
ulation tools. CEA LIST [CEA11], CMLabs, robot simula-
tors Webots, Gazebo, or Microsoft robotics developer stu-
dio [KP09,Cyb09,Mic09] are a few examples of many such
tools. The main goal is to reduce the time to market and
thereby lower overall production costs. A secondary goal is
development of better products of higher quality.

Interactive prototyping has been motivated by the compu-
tational fast technology that has evolved in the gaming and
movie industries. The instant feedback that can be obtained
from such simulations is attractive for rapid iterative proto-
typing. However, although interactivity is attractive, one can
not compromise the physical correctness too much. Thus,
plausible simulation [BHW96] may not be good enough for
trusting a virtual design. A current trend is seen where inter-
active simulation tools are improved for accuracy and moved
into engineering tools [Stu08, TNA08, TNA∗10, CA09].

Even the European space agency (ESA) is using PhysX
for verification of the Mars sample rover for the ExoMars
Programme to investigate the Martian environment [KK11].

1.3.3. Robotics

The main goal of the field of robotics is the development
of intelligent man-made physical systems that can safely
and efficiently accomplish a wide range of tasks that aid
the achievement of human societal goals. Tasks that are
particularly difficult, dangerous or boring are good candi-
dates for robotic methods, e.g., assembly in clean-room envi-
ronments, extra-terrestrial exploration, radioactive materials
handling, and laparoscopic surgery. In addition, methods for
robotics are increasingly being applied in the development
of new generations of active prosthetic devices, including
hands, arms and legs. The most challenging of these tasks
most directly related to this paper are those that cannot be

accomplished without (possibly) intermittent contact, such
as walking, grasping and assembly.

Until now, robot manipulation tasks involving contact
have been limited to those which could be accomplished by
costly design of a workcell or could be conducted via tele-
operation. The ultimate goal, however, is to endow robots
with an understanding of contact mechanics and task dy-
namics, so they can reason about contact tasks, automati-
cally plan and execute them, and enhance their manipulation
skills through experience. The fundamental missing compo-
nent has been fast, physical simulation tools that accurately
model effects such as stick-slip friction, flexibility, and dy-
namics. Dynamics is important for robots to perform manip-
ulation tasks quickly or to allow it to run over uneven terrain.
Physical simulation today has matured to the point where it
can be integrated into algorithms for robot design, task plan-
ning, state-estimation and control. As a result, the number of
robotic solutions to problems involving contact is poised to
experience a major acceleration.

1.3.4. Industrial and Training Simulators

Computer simulators are cheap and risk free ways to train
people to handle heavy equipment in critical situations under
large stress. Examples include large forest machines as well
as bulldozers to cable simulations in tug boats and maneuver
belt vehicles [SL08]. Driving simulators are another good
example [Uni11, INR11]. The simulators in this field need
to be responsive as well as accurate enough to give proper
predictions of the virtual equipment being handled. This is
similar to interactive virtual prototyping. In fact in our view
it is mostly the purpose that distinguishes the two, one is
design the other is training.

The driving simulators are very specialized and include
many aspects of virtual reality. The largest and most com-
plex simulator, National Advanced Driving Simulator
(NADS), costs in the order of $54 million. In contrast,
Gazebo is free software and commercial software such as
Vortex [CM 11] or Algoryx [Alg11]) are cheap in compari-
son with NADS.

2. A Quick Primer

Rigid body simulation is analogous to the numerical solu-
tion of nonlinear ordinary differential equations for which
closed-form solutions do not exist. Assume time t is the in-
dependent variable. Given a time period of interest [t0, tN],
driving inputs, and the initial state of the system, the dif-
ferential equations (the instantaneous-time model) are dis-
cretized in time to yield an approximate discrete-time model,
typically in the form of a system of (state-dependent) al-
gebraic equations and inequalities. The discrete-time model
is formulated and solved at each time of interest, (t0, .., tN).
In rigid body simulation, one begins with the Newton-Euler
(differential) equations, which describes the dynamic motion

© The Eurographics Association 2012.

98

J. Bender et al. / Interactive Rigid Body Simulation

of the bodies without contact. These differential equations
are then augmented with three types of conditions: nonpene-
tration constraints that prevent the bodies from overlapping,
a friction model that requires contact forces to remain within
their friction cones, and complementarity (or variational in-
equality) constraints that enforce certain disjunctive relation-
ships among the variables. These relationships enforce criti-
cally important physical effects; for example, a contact force
must become zero if two bodies separate and if bodies are
sliding on one another, the friction force acts in the direc-
tion that will most quickly halt the sliding. Putting all these
components together yields the instantaneous-time model,
as a system of differential algebraic equations and inequali-
ties that can be reformulated as a differential nonlinear com-
plementarity problem (dNCP). The dNCP cannot be solved
in closed form or directly, so instead, one discretizes it in
time, thereby producing a sequence of NCPs whose solu-
tions approximate the state and contact force trajectories of
the system. In the ideal case, the discrete trajectories pro-
duced in this process will converge trajectories of the orig-
inal instantaneous-time model. Computing a discrete-time
solution requires one to consider possible reformulations of
the NCPs and a choice of solution method. There are many
options for instance reformulation as nonsmooth equation
using Fischer-Burmeister function or proximal point map-
pings etc.

2.1. Classical Mechanics

Simulation of the motion of a system of rigid bodies is based
on a famous system of differential equations, the Newton-
Euler equations, which can be derived from Newton’s laws
and other basic concepts from classical mechanics:

• Newton’s 1st law: The velocity of a body remains un-
changed unless acted upon by a force.

• Newton’s 2nd law: The time rate of change of momentum
of a body is equal to the applied force.

• Newton’s 3rd law: For every force there is an equal and
opposite force.

Two important implications of Newton’s laws when applied
to rigid body dynamics are: (from the first law) the equations
apply only when the bodies are observed from an inertial
(non-accelerating) coordinate frame and (from the third law)
at a contact point between two touching bodies, the force
applied from one body onto the second is equal in mag-
nitude, opposite in direction, and collinear with the force
applied by the second onto the first. Applying these two
implications to Newton’s second law gives rise to differen-
tial equations of motion. While the second law actually ap-
plies only to particles, Euler was kind enough to extend it
to the case of rigid bodies by viewing them as collections
of infinite numbers of particles and applying a bit of calcu-
lus [GPS02, ESHD05]. This is why the equations of motion
are known as the Newton-Euler equations.

{N}

{B}
x

v
ω

Fτ
g

Figure 4: Illustration of a spatial rigid body showing the
body frame {B} and inertial frame {N} as well as notation
for positions, velocities and forces.

Before presenting the Newton-Euler equations, we need
to introduce a number of concepts from classical mechanics.
Figure 4 shows a rigid body in space, moving with transla-
tional velocity v and rotational velocity ω, while being acted
upon by an applied force F and moment τ (also known as a
torque).

2.1.1. Rigid Bodies

A rigid body is an idealized solid object for which the dis-
tance between every pair of points on the object will never
change, even if huge forces are applied. A rigid body has
mass m, which is distributed over its volume. The centroid
of this distribution (marked by the circle with two black-
ened quarters) is called the center of mass. To compute ro-
tational motions, the mass distribution is key. This is cap-
tured in a 3×3 matrix known as the mass (or inertia) matrix
I ∈ R(3×3). It is symmetric and positive definite matrix with
elements known as moments of inertia and products of iner-
tia, which are integrals of certain functions over the volume
of the body [Mei70]. When the integrals are computed in a
body-fixed frame, the mass matrix is constant and will be
denoted by Ibody. The most convenient body-fixed frame for
simulation is one with its origin at the center of mass and
axes oriented such that Ibody is diagonal. When computed in
the inertial frame, the mass matrix is time varying and will
be denoted by I.

2.1.2. Rigid Body Kinematics

The body’s position in the inertial (or world) frame is given
by the vector x ∈ R3, from the origin of the inertial frame
{N} fixed in the world to the origin of the frame {B} fixed
in the body. Note that since three independent numbers are
needed to specify the location of the center of mass, a rigid
body has three translational degrees of freedom.

The orientation of a rigid body is defined as the orien-
tation of the body-fixed frame with respect to the inertial
frame. While many representations of orientation exist, here
we use rotation matrices R ∈ R3×3 and unit quaternions

© The Eurographics Association 2012.

99

J. Bender et al. / Interactive Rigid Body Simulation

Q ∈ H. Rotation matrices are members of the class of or-
thogonal matrices. Denoting the columns by R1, R2, and
R3, orthogonal matrices must satisfy: ‖ Ri ‖= 1; i = 1,2,3
and RT

i R j = 0; ∀i 6= j; i = 1,2,3; j = 1,2,3. Since the nine
numbers in R must satisfy these six equations, only three
numbers can be freely chosen. In other words, a rigid body
has three rotational degrees of freedom. A unit quaternion
is four numbers [Qs, Qx, Qy, Qz], constrained so that the
sum of their squares is one. The fourth element can be com-
puted in terms of the other three, and this redundancy serves
as additional confirmation that orientation has three degrees
of freedom. Considering translation and rotation together, a
rigid body has six degrees of freedom.

The rotational velocity ω ∈ R3 (also known as, angular
velocity) of a body can be thought of as vector whose di-
rection identifies a line about which all points on the body
instantaneously rotate (shown as a red vector with a double
arrowhead in Figure 4). The magnitude determines the rate
of rotation. While the rate of rotation may be changing over
time, at each instant, every point on a rigid body has exactly
the same rotational velocity. The three elements of ω corre-
spond to the three rotational degrees of freedom.

Translational velocity v ∈ R3 (also inaccurately referred
to as linear velocity) is an attribute of a point, not a body,
because when a body rotates, not all points have the same
velocity (see the red vector with a single arrowhead in Fig-
ure 4). However, the velocity of every point can be deter-
mined from the velocity of one reference point and the an-
gular velocity of the body. In rigid body dynamics, the center
of mass is typically chosen as the reference point.

Next we need velocity kinematic relationships. Kinemat-
ics is the study of motion without concern for forces, mo-
ments, or body masses. By contrast, dynamics is the study of
how forces produce motions. Since dynamic motions must
also be kinematically feasible, kinematics is an essential
building block of dynamics. The particular kinematic rela-
tionships needed here relate the time derivatives of position
and orientation variables to the translational and rotational
velocities.

Let us define q = (x, Q) as the tuple containing the po-
sition of the center of mass and the orientation parameters.
Note that the length of q is seven if Q is a quaternion (which
is the most common choice). The generalized velocity of
the body is defined as: u = [vT

ω
T]T ∈ R6. The velocity

kinematic equations for a rigid body relate q̇ to u, which
may have different numbers of elements. The relationship
between the translational quantities is simple: ẋ = v. The
time rate of change of the rotational parameters Q is a bit
more complicated; it is the product of a Jacobian matrix and
the rotational velocity of the body: Q̇ = G(Q)ω, where the
details of G(Q) are determined by the orientation represen-
tation. In the specific case when Q is a unit quaternion, G(Q)

is defined as follows:

G =
1
2

−Qx −Qy −Qz

Qs Qz −Qy
−Qz Qs Qx

Qy −Qx Qs

 .
Putting the two velocity kinematic relationships together
yields:

q̇ = Hu (1)

where H =

[
13×3 0

0 G

]
, where 13×3 is the 3-by-3 identity

matrix. Note that when the orientation representation uses
more than three parameters, G is not square, although it has
the property that GT G = 1, where 1 is the identity matrix of
size 3.

2.1.3. Constraints

Constraints are equations and inequalities that change the
way pairs of bodies are allowed to move relative to one an-
other. Since they are kinematic restrictions, they also affect
the dynamics. Constraints do not provide a direct means to
compute the forces that must exist to enforce them. Gener-
ally, constraints are functions of generalized position vari-
ables, generalized velocities, and their derivatives to any or-
der:

C(q1,q2,u1,u2, u̇1, u̇2, ..., t) = 0 (2)

or

C(q1,q2,u1,u2, u̇1, u̇2, ..., t)≥ 0 (3)

where the subscripts indicate the body. Equality and inequal-
ity constraints are referred to as bilateral and unilateral con-
straints, respectively.

As an example, consider two rigid spheres of radii r1 and
r2 and with centers located at x1 and x2. Consider the con-
straint function:

C(x1,x2) = ||x1−x2||− (r1 + r2),

where || · || is the Euclidean two-norm. If C = 0, then the sur-
faces of the spheres touch at a single point. If this bilateral
constraint is imposed on the Newton-Euler equations, then
regardless of the speeds of the spheres and the sizes of the
forces, the surfaces will always remain in single-point con-
tact. Intuitively, for this to happen the constraint force nor-
mal to the sphere surfaces can be compressive (the spheres
push on each other) or tensile (the spheres pull). By contrast,
C≥ 0, then the two spheres may move away from each other
but never overlap. Correspondingly, the constraint force can
only be compressive.

The form of a constraint (see Figure 5) impacts the way in
which the Newton-Euler equations should be solved. Holo-
nomic constraints are those which can be expressed as an
equality in terms of only generalized position variables and
time. These are further subdivided into those independent of

© The Eurographics Association 2012.

100

J. Bender et al. / Interactive Rigid Body Simulation

Figure 5: Constraint classification

time, known as scleronomic, and those dependent on time,
rheonomic. An example of a scleronomic constraint is the
equality constraint of the spheres discussed above). Rhe-
nomic constraints typically arise when one body is kinemat-
ically controlled (i.e., it is required to follow a known trajec-
tory regardless of the forces that might be required to make
that happen).

Any constraint that is not holonomic is said to be non-
holonomic. This class includes all unilateral constraints and
equality constraints which are not integrable in the sense that
generalized velocity variables and derivatives of the gener-
alized position variables (and higher derivatives, if present)
cannot be eliminated. The steering constraint for a car on a
flat surface whose wheels are not allowed to skid is a non-
holonomic equality constraint. If the car is driving along,
then its rotational velocity is directly proportional the car’s
forward speed and the angle of the front wheels. This means
the fundamental constraint between two velocities cannot be
integrated to yield an equivalent constraint written solely
in terms of position variables, hence the constraint is non-
holonomic.

Holonomic constraints remove degrees of freedom from
the system, i.e., the dimension of the space of possible gen-
eralized positions is reduced. For instance two free rigid bod-
ies have a total of 12 degrees of freedom, but as in the pre-
vious case of the touching spheres, one degree of freedom is
lost. Assume that one sphere can be moved at will through
space using all six degrees of freedom. Now view the sec-
ond sphere from a frame of reference fixed in the first. From
this perspective, the second sphere can rotate with all three
degrees of freedom while maintaining contact and also trans-
late with the contact point moving across the surface of the
first sphere. Since this surface is two-dimensional, the sec-
ond sphere has only two translational degrees of freedom.
Thus a system of two spheres with one contact constraint
has 11 degrees of freedom. If instead, two bodies were con-
nected by a hinge joint, the system would have seven degrees
of freedom. That is, if you allow one body to move with six
degrees of freedom, then the other can only rotate about the
hinge joint with respect to the first body. This also implies

that a hinge constraint cannot be represented with fewer than
five holonomic constraints.

One should note that non-holonomic equality constraints
remove only instantaneous, or local, degrees of freedom
from the system. In the car example, the car cannot translate
instantaneously directly left or right. However, every com-
petent driver can accomplish a lateral move of his car by ex-
ecuting the kind of maneuver used to parallel park in a small
space.

2.1.4. Forces and Moments and Relative Velocity

A force f is a vector with a line of action. A force produces a
moment τ or torque about any point not on the line of action
of the force. Let r and ρ be two distinct points such that r is
on the line of action and ρ is not. Then the moment of f with
respect to r is defined as τ = (r−ρ)× f. Moments need not
be byproducts of forces; they exist in their own right, which
is why one is shown applied to the body in Figure 4.

Many sources of forces exist in rigid body dynamics, for
example, forces from wind, gravity, and electro-magnetics.
However, the forces that are most difficult to deal with, but
also critically important in interactive simulation are con-
straint and friction forces.

Gravity, as we experience it on Earth, acts equally on ev-
ery particle of mass in a rigid body. Nonetheless, the grav-
ity force is shown in Figure 4 as a single force of magni-
tude mg with line of action through the center of mass of the
body. This is because the affect of gravity acting on an entire
body is equivalent to a single force of magnitude mg acting
through its center of mass. Friction forces are dissipative.
They act in contact interfaces to halt sliding at sliding con-
tacts and to prevent sliding at sticking and rolling contacts.
The type of friction force focused on here is dry friction,
which is assumed to act at contacts between body surfaces,
including the inner surfaces of joints. Dry friction, as op-
posed to viscous friction, allows bodies to stick together and
requires a non-zero tangential force to initiate sliding.

For point contacts between body surfaces, we consider
the standard isotropic Coulomb friction model. Assume that
contact occurs at a single point with a uniquely defined tan-
gent plane. Then place the origin of the contact coordinate
frame at the contact point and let the t- and o-axes lie in the
tangent plane (see Figure 6(a)). The n-axis is orthogonal to
the t- and o-axes and is referred to as the contact normal.
A contact force f is decomposed into a normal componen
fn and tangential components, ft and fo. Because bodies are
able to push against each other, but not pull, the normal force
is unilateral, i.e., fn ≥ 0. Similarly, the relative velocity be-
tween the touching points on the bodies ν is decomposed
into components, νn, νt , and νo (see Figure 6(b)). The con-
tact is sliding if νn = 0 and νt or νo is nonzero, and separat-
ing if νn is greater than zero. Negative νn is not allowed, as
it corresponds to interpenetration of the bodies.

© The Eurographics Association 2012.

101

J. Bender et al. / Interactive Rigid Body Simulation

ft

fo

fn

ν
t̂

ô

n̂

(a) A Friction Cone

νt

νo

νn

ν

νf

(b) Contact velocities

Figure 6: The friction cone of a contact and the decomposi-
tion of the relative contact velocity.

The Coulomb model has two conditions: first, the net con-
tact force must lie in a quadratic friction cone (see the gray
cone in Figure 6(a)) and second, when the bodies are slip-
ping, the friction force must be the one that directly opposes
sliding. The cone is defined as follows:

F(fn,µ) = {µ2f2
n− f2

t − f2
o ≥ 0, fn ≥ 0} (4)

where µ≥ 0 is the friction coefficient. The friction force that
maximizes friction dissipation is:

ft = −µfn
νt

β
(5)

fo = −µfn
νo

β
(6)

where β =
√

ν2
t +ν2

o is the sliding speed at the contact (see
Figure 6(b)).

Common variations on this model include using two dif-
ferent friction coefficient; one for sticking contact and a
lower one for sliding. When friction forces are higher in
one direction than another, one can replace the circular cone
with an elliptical cone. In some simulation schemes the non-
linearity of the friction cone causes problems, and so it is
eliminated by approximating the cone as a symmetric poly-
hedral cone. Finally, to model the fact that contacts between
real bodies are actually small patches, the friction cone can
be extended, as done by Contensou, to allow for a fric-
tion moment that resists rotation about the contact normal
[Con93, TTP01].

A similar model for dry friction acting to resist joint mo-
tion will be discussed in section 3.

2.1.5. The Newton-Euler Equations

The Newton-Euler equations are obtained by applying New-
ton’s second law twice; once for translational motion and
again for rotational motion. Specifically, the net force F ap-
plied to the body is equal to the time rate of change of trans-
lational momentum mv (i.e., d

dt (mv) = F) and the net mo-
ment τ is equal to the time rate of change of rotational mo-

mentum Iω (i.e., d
dt (Iω) = τ). Specializing these equations

to the case of a rigid body (which, by definition, has constant
mass) yields:

mv̇ = F (7)

Iω̇+ω× Iω = τ. (8)

where recall that I is the 3-by-3 inertia matrix and × repre-
sents the vector cross product.

The second term on the left side of the rotational equation
is called the “gyroscopic force” which arises from the proper
differentiation of the rotational momentum. The rotational
velocity and mass matrix must both be expressed in the same
frame, which is usually taken as a body-fixed frame (which
is rotating with the body in the inertial frame) or the inertial
frame. In a body-fixed frame, Ibody is constant, but ω is a
vector expressed in a rotating frame, which means that Iω

is also a vector expressed in a rotating frame. The first term
represents the rate of increase of angular velocity along the
vector ω.

One might be tempted to try to eliminate the second
term by expressing the rotational quantities in the inertial
frame and differentiating them there. However this does
not work, because the inertia matrix expressed in the iner-
tial frame I is time-varying, as seen by the following iden-
tity I = RIbodyRT . Differentiating inertial frame quantities
yields an equivalent expression with equivalent complexity.

The Newton-Euler equations contain the net force F and
moment τ. F is simply the vector sum of all forces acting on
the body. τ is the vector sum of the moments of all the forces
and pure moments. One can see from equation (7), that the
net force causes the center of gravity to accelerate in the di-
rection of the net force proportional to its magnitude. This is
true independent of the location of the line of action in space.
Equation (8) implies that the net moment directly affects the
rotational velocity of the body, but in a more complicated
way. The gyroscopic moments tend to cause the axis of ro-
tation of a rotating rigid body to “precess” about a circular
cone.

Simulation of free body motion is done by integrating
the Newton-Euler equations (7,8) and the velocity kinematic
equation (1) simultaneously. If there are contacts and joints,
then these equations must be augmented with the constraint
equations (2,3). If in addition, dry friction exists in contacts,
then equations (4,5,6) must be included. The complete sys-
tem of differential and algebraic equations and inequalities is
challenging to integrate, but methods to do this robustly have
been developed over the past 20 years. To push the bound-
aries of interactive rigid body dynamics, one must maintain
the current level of solution robustness and greatly increase
the solution speed.

2.1.6. Impulse

When a pair of bodies collides, those bodies, and any other
bodies they are touching, experience very high forces of very

© The Eurographics Association 2012.

102

J. Bender et al. / Interactive Rigid Body Simulation

short duration. In the case of ideal rigid bodies, the force
magnitudes become infinite and the duration becomes in-
finitesimal. These forces are referred to as impulsive forces
or shocks. One can see from equation (7), that shocks cause
infinite accelerations, which makes direct numerical integra-
tion of the Newton-Euler equations impossible. One way to
deal with this problem during simulation is to use a stan-
dard integration method up to the time of impact, then use
an impulse-momentum law to determine the jump disconti-
nuities in the velocities, and finally restart the integrator.

Let [t, t +∆t] be a time step during which a collision oc-
curs. Further, define p =

∫ t+∆t
t Fdt as the impulse of the

net force and mv as translational momentum. Integrating
equation (7) from t to t + ∆t yields m(v(t + ∆t)− v(t)) =∫ t+∆t

t Fdt, which states that impulse of the net applied force
equals the change of translational momentum of the body. In
rigid body collisions, ∆t approaches zero. Taking the limit as
∆t goes to zero, one obtains an impulse momentum law that
is applied at the instant of impact to compute post collision
velocities. Since ∆t goes to zero and the velocities remain
finite, the generalized position of the bodies are fixed during
the impact. After processing the collision, one has the val-
ues of the generalized positions and velocities, which are the
needed initial conditions to restart the integrator. Note that
integration of the rotational equation (8) yields an impulse-
momentum law for determining jump discontinuities in the
rotational velocities.

Based on impulse-momentum laws, several algebraic col-
lision rules have been proposed. Newton’s Hypothesis is
stated in terms of the normal component of the relative ve-
locity of the colliding points just before and just after colli-
sion: v+n =−εv−n , where v−n is relative normal velocity just
before impact, v+n is the relative normal velocity just after
impact, and ε ∈ [0,1] is known as the coefficient of restitu-
tion. Setting ε to zero yields a perfectly plastic impact (i.e.,
an impact with no bounce). Setting this value to 1 yields per-
fectly elastic impacts (i.e., no energy is lost).

Poisson’s Hypothesis is similar, but is a function of col-
lision impulse rather than the rate of approach. The normal
impulse is divided into two parts, pc

n and pr
n, which are re-

lated as follows pr
n = εpc

n, where again ε ∈ [0,1]. Immedi-
ately prior to the collision, ν

−
n of the impact points is neg-

ative. The compression impulse pc
n is defined as the amount

of impulse required to cause the relative normal velocity to
become zero - just enough to prevent body interpenetration
with no bounce. The restitution impulse is applied after the
compression impulse to generate bounce (i.e., ν

−
n > 0).

The same idea can be applied to frictional collision im-
pulses by replacing the normal components of the impulses
and velocities with the tangential components (see for ex-
ample [Bra91]). The normal and tangential impact hypothe-
ses can be used together to determine the velocity jumps
caused by impacts. While simple and intuitive, this approach
can unfortunately generate energy during oblique collisions.

To prevent such unrealistic outcomes, Stronge developed
an energy-based collision law that imposes a condition that
prevents energy generation. Chatterjee and Ruina incorpo-
rated Stronge’s energy constraint and recast the collision
law in terms of two parameters that are physically mean-
ingful [CR98].

3. Models for Interactive Simulation

The laws of physics must be combined into what we term an
instantaneous-time model, which describes the continuous
motions of the rigid bodies. Following this, we discretize this
model over the time domain to obtain a discrete-time model,
which is a sequence of so-called time-stepping subproblems.
The subproblems are formulated and numerically solved at
every time step to simulate the system.

In this section, we present generic models for systems
with multiple simultaneous frictional contacts in Section 3.1.
The particulars of models for dealing with aspects of reduced
coordinate formulations are covered in Section 3.2.

3.1. Modeling of Simultaneous Frictional Contacts

Here we take a strict approach trying to keep the physics
as correct as possible by only introducing errors of lin-
earization and discretization. The model consists of five
parts: the Newton-Euler equation [Lan86], a kinematic map
(to relate time derivatives of configuration parameters to
translational and angular velocity variables), equality con-
straints (to model permanent joint connections), normal con-
tact conditions (to model intermittent contact behavior),
and a dry friction law satisfying the principle of maximum
power dissipation, also known as the principle of maximum
work [Goy89]. These five parts will be explained in detail
below.

Two types of constraints exist: permanent mechanical
joints, each represented by a system of equations (five scalar
equations in the case of a one-degree-of-freedom joint), and
isolated point contacts with well-defined contact normals,
each represented by one scalar inequality constraint. Let B
and U denote the mutually exclusive sets of bilateral (equal-
ity) and unilateral (inequality) contacts:

B = {i : contact i is a joint} (9)

U = {i : contact i is a point contact} (10)

where B∪U = {1, ...,nc} and nc is the number of contacts.
Note that distributed contacts can be approximated arbitrar-
ily well by a number of isolated point contacts.

To formulate the equations of motion properly, one needs
precise definitions of contact maintenance, sliding, and
rolling. It is convenient to partition possible relative mo-
tions at each contact into normal and frictional subspaces.
Let κCin and κCi f , where κ ∈ {b, u}, denote signed distance

© The Eurographics Association 2012.

103

J. Bender et al. / Interactive Rigid Body Simulation

functions (or gap functions) in the normal and friction sub-
space directions at contact i. If two bodies touch at contact i,
then κCin = 0. This is always enforced for joints (bCin = 0),
which are permanent contacts, but not for unilateral contacts,
which can be broken as bodies separate (uCin > 0).

The first time derivatives of the distance functions are the
relative contact velocities, κ

νiσ = d
dt
(

κCiσ
)

; κ∈ {b, u},σ∈
{n, f}. Note that κ

νin and κ
νi f are orthogonal subspaces,

where unallowed motions are prevented by body structures
and sliding motions are resisted by friction forces, respec-
tively. If a pair of contact points (one on each body at the
point of touching) are in rolling contact, instantaneously, the
distance between those bodies in the direction of possible
sliding is zero (κ

νi f = 0). If they slip, at least one friction di-
rection displacement will become nonzero. For example, the
friction direction of a one-degree-of-freedom joint is in the
direction of motion of the joint. For a unilateral contact with
isotropic Coulomb friction, the friction subspace will consist
of relative translation in the t- and o-directions. The corre-
sponding displacement functions will be denoted by uCit and
uCio. Relative rotations are not resisted by body structure or
friction, so they are not included in either subspace.

We now partition all contacts into sliding and rolling sub-
sets. At the position level, contact i is sustained if the dis-
tance function κCin(q, t); κ ∈ {b,u} is equal to zero for a
finite period of time. However, one cannot distinguish slid-
ing from rolling with this position-level condition; one needs
time derivatives. The velocity-level set definitions are:

S = {i : κCin = 0, κ
νin = 0, κ

νi f 6= 0} (11)

R = {i : κCin = 0, κ
νin = 0, κ

νi f = 0}, (12)

where the sets S andR are mutually exclusive.

We are now in a position to develop the system of equa-
tions and inequalities defining the instantaneous-time dy-
namic model of a multi-rigid-body system with bilateral and
unilateral contacts. Recall the five parts mentioned above.

Newton-Euler Equations: The Newton-Euler equation can
be written as follows:

M(q)u̇ = g(q,u, t), (13)

where M(q) is the generalized mass matrix containing the
body mass properties and g(q,u, t) is the vector of loads,
including the gyroscopic moment (the cross-product term in
equation (15)). Specifically for the jth rigid body we have:

M j =

[
m j13×3 0

0 I j(Q j)

]
, (14)

g j =

[
F j

τ j−ω j× I j(Q j)ω j

]
, (15)

where 13×3 is the 3-by-3 identity matrix. Recall that I is the
3-by-3 inertia matrix, and F j and τ j are the externally ap-
plied force and moment. Also note that M is positive definite
and symmetric.

Kinematic Map: The time rate of change of the general-
ized coordinates of the bodies q̇ is related to the generalized
velocities of the bodies u:

q̇ = H(q)u. (16)

where H(q) is the generalized kinematic map. The diagonal
blocks H j j are given by equation 1 and off diagonal blocks
are zero.

Joint Constraints: Since joints are permanent contacts, if
contact i is a joint (i.e., i ∈ B), then the vector function
bCin(q, t) = 0 for all time. Stacking the bCin functions for
all i ∈ B into the vector bCn(q, t), yields the position-level
constraint for all joints:

bCn(q, t) = 0. (17)

From a physical perspective, these constraints are main-
tained by reaction forces bfin that are unconstrained. That
is, generalized forces normal or anti-normal to the constraint
surface in the system’s configuration space can be generated.
When viewing multibody dynamics from a variational per-
spective, these forces are Lagrange multipliers [Lan86].

Normal Contact Constraints: For the unilateral contacts,
the scalar functions, uCin(q, t) for all i ∈ U must be non-
negative. Stacking all the gap functions into the vector
uCn(q, t) yields the following position-level non-penetration
constraint:

uCn(q, t)≥ 0. (18)

From a physical perspective, this constraint is maintained by
the normal component of the contact force ufin between the
bodies. Again, this force can be viewed as a Lagrange multi-
plier, but since the constraint is one-sided, so is the multiplier
(i.e., ufin ≥ 0). This means that constraint forces at unilateral
contacts must be compressive or zero. Combining all ufin for
all i ∈ U into the vector ufn, we write all normal force con-
straints as:

ufn ≥ 0. (19)

There is one more aspect of unilateral contacts that must be
modeled. If contact i is supporting a load (i.e., ufin > 0), then
the contact must be maintained (i.e., uCin = 0). Conversely,
if the contact breaks (i.e., uCin > 0), then the normal com-
ponents (and hence the frictional components) of the contact
force must be zero (i.e., ufin = 0). For each contact, at least
one of ufin and uCin must be zero, (i.e., uCin

ufin = 0). These
conditions are imposed at every contact simultaneously by
an orthogonality constraint:

uCn(q, t) · ufn = 0 (20)

where · denotes the vector dot product.

Friction Law: At contact i, the generalized friction force
κfi f can act only in a subset of the unconstrained directions
and must lie within a closed convex limit setFi(

κfin,µi). The

© The Eurographics Association 2012.

104

J. Bender et al. / Interactive Rigid Body Simulation

limit set must contain the origin, so that a zero friction force
is possible. Also, typically, the limit set scales linearly with
the normal component of the contact force, thus forming a
cone of possible contact forces.

When contact i is rolling, the friction force may take on
any value within the limit set. However, when the contact is
sliding, the friction force must be the one within Fi(

κfin,µi)
that maximizes the power dissipation. Such models are said
to satisfy the principle of maximum dissipation [Goy89]. At
the velocity level, maximum dissipation can be expressed as
follows:

κfi f ∈ argmax
f′i f

{
−κ

νi f ·f′i f : f′i f ∈ Fi(
κfin,µi)

}
(21)

where f′i f is an arbitrary vector in the set Fi(
κfin,µi). No-

tice that when this set is strictly convex, then the friction
force will be unique. For example, under the assumption of
isotropic Coulomb friction at a unilateral contact, the limit
set is the disc µ2

i
uf2

in− uf2
it − uf2

io ≥ 0 and the unique friction
force is the one directly opposite the relative sliding velocity,
(u

νit ,
u
νio).

Finally, our instantaneous-time dynamic model is the sys-
tem of differential algebraic inequalities (DAIs) composed
of equations (13,16–21), where the sliding and rolling con-
tact sets are defined as in equations (11) and (12) In the cur-
rent form, the DAI is difficult to solve. However, as will be
shown, it is possible to cast the model as a differential com-
plementarity problem [CPS92b,TPSL97], then discretize the
result to form simulation subproblems in the form of non-
linear or linear complementarity problems, allowing one to
apply well-studied solution algorithms.

Complementarity Problems

The standard nonlinear complementarity problem (NCP) can
be stated as follows:

Definition 1 Nonlinear Complementarity Problem: Given an
unknown vector x ∈ Rm and a known vector function y(x) :
Rm→ Rm, determine x such that:

0≤ y(x)⊥ x≥ 0, (22)

where ⊥ implies orthogonality (i.e., y(x) · x = 0).

The standard linear complementarity problem (LCP) is a
special case in which the function y(x) is linear in x:

Definition 2 Linear Complementarity Problem: Given an
unknown vector x ∈ Rm, a known fixed matrix A ∈ Rm×m,
and a known fixed vector b ∈ Rm, determine x such that:

0≤ Ax+b⊥ x≥ 0. (23)

We adopt the shorthand notation, LCP(A,b).

3.1.1. Complementarity Formulation of the
Instantaneous-Time Model

To achieve model formulation as a properly posed comple-
mentarity problem, we must write all the conditions (13,16–
21) in terms of a common small set of dependent variables.
In the current formulation, the dependent variables are posi-
tions, velocities, and accelerations. However, by taking the
appropriate number of time derivatives, all equations will be
written in terms of accelerations, thus generating a model
in which all dependent variables are forces and accelera-
tions. This transformation will be carried out below in three
steps. First, express the principle of maximum dissipation as
a system of equations and inequalities in forces and accel-
erations, second, reformulate the Newton-Euler equation to
expose the forces, and third, differentiate the distance func-
tions twice with respect to time to expose the accelerations.

Reformulation of maximum dissipation The principle of
maximum dissipation (21) can be replaced by an equiva-
lent system of equations and inequalities by formulating it
as an unconstrained optimization problem, and solving it in
closed form. To do this, however, one must choose a spe-
cific form of Fi. In this paper, we will demonstrate the so-
lution process for isotropic Coulomb friction at a unilateral
contact and apply the result to dry friction of constant maxi-
mum magnitude in a one-degree-of-freedom joint. The same
procedure can be applied to other friction models, including
Contensou [TP97, TTP01].

Closed-form solutions of optimization problems can
sometimes be found by obtaining a system of equations
corresponding to necessary and sufficient conditions for
an optimal solution, then solving them. The most com-
mon approach is to augment the objective function with
the constraints multiplied by Lagrange multipliers and then
obtain the equations, known as the Karush-Kuhn-Tucker
(KKT) equations, by partial differentiation. To be valid, the
system must satisfy a regularity condition (also known as,
“constraint qualification”). In the case of isotropic Coulomb
friction, the system does not satisfy any of the possible reg-
ularity conditions at the point of the cone (where ufin = 0),
so the method fails.

Fortunately, the more general Fritz-John conditions
[MF67] do satisfy a regularity condition everywhere on
the cone. In the case of isotropic Coulomb friction, the
augmented objective function (recall equation (21) is:

−u
βi0(

ufit
u
νit +

ufio
u
νio)+

u
βi(µ

2
i

uf2
in− uf2

it − uf2
io), (24)

where u
βi and u

βi0 are Lagrange multipliers. To obtain a sys-
tem of equations and inequalities equivalent to the maximum
dissipation condition (21), one takes partial derivatives with
respect to the unknown friction force components and La-
grange multipliers and then imposes the additional condi-
tions of the Fritz-John method: u

βi0 ≥ 0 and (u
βi0,

u
βi) 6=

(0,0). Following the derivation on pages 28-30 of [Ber09],

© The Eurographics Association 2012.

105

J. Bender et al. / Interactive Rigid Body Simulation

one arrives at the following system of constraints:

µi
ufin

u
νit +

ufit
u
βi = 0

µi
ufin

u
νio +

ufio
u
βi = 0

u
αi = µ2

i
uf2

in− uf2
it − uf2

io ≥ 0

0≤ u
αi ⊥ u

βi ≥ 0

 ∀ i ∈ {U ∩S}, (25)

where u
αi is a slack variable for the friction limit set. Note

that u
βi =‖

u
νi f ‖ at the optimal solution, and represents

the magnitude of the slip velocity at contact i (i.e., u
βi =

‖ u
νi f ‖=

√
uν2

it +
uν2

io). Note that this condition is not writ-
ten in terms of accelerations, because at a sliding contact, the
friction force (ufit ,

ufio) can be written in terms of the normal
force and eliminated. For example, in the case of Coulomb
friction, equations (5) and (6) are used. Tangential acceler-
ation at a contact does not enter unless the contact point is
rolling.

If contact i is a one-degree-of-freedom joint, we will as-
sume that the maximum magnitude of the dry friction force
is independent of the load in the other five component direc-
tions. Thus, the friction limit set for a bilateral joint Fi(µi)
will be:

Fi(
bfi fmax) =

{
bfi f :

∣∣∣bfi f

∣∣∣≤ bfi fmax

}
, ∀ i∈ {B∩S} (26)

where |·| denotes the absolute value of a scalar and bfi fmax

is the nonnegative maximum magnitude of the generalized
friction force in joint i.

Notice that this joint friction model is a special case of the
result obtained for Coulomb friction; fix ufinµi to the value
of bfi fmax and remove one of the friction directions, say the
t-direction. The result is:

bfiomax
b
νio +

bfio
b
βi = 0

b
αi =

bf
2
iomax −

bf
2
io ≥ 0

0≤ b
αi ⊥ b

βi ≥ 0

 ∀ i ∈ B. (27)

As before, b
βi =‖

b
νi f ‖ at an optimal solution.

Contact Constraints in Terms of Accelerations Contact
constraints (unilateral and bilateral) can be written in terms
of accelerations through Taylor series expansion of con-
straint functions, κCiσ(q, t); κ ∈ {b, u}; σ ∈ {n, f} Let
q̃ = q+∆q and t̃ = t +∆t where ∆q and ∆t are small per-
turbations.

Then the Taylor expansion of one of these scalar displace-
ment functions truncated to the quadratic terms is:

κ̂Ciσ(q̃, t̃) = κCiσ(q, t)

+
∂

κCiσ

∂q
∆q+

∂
κCiσ

∂t
∆t

+
1
2

(
(∆q)T ∂

2κCiσ

∂q2 ∆q+2
∂

2κCiσ

∂q∂t
∆q∆t +

∂
2κCiσ

∂t2 ∆t2

)

Notice that if contact exists at the current values of q and t,
then the first term is zero. Dividing the linear terms by ∆t and
taking the limit as ∆t (and ∆q) goes to zero, one obtains the
relative velocity, κ

νiσ at the contact. Dividing the quadratic
terms by (∆t)2 and taking the limit yields the relative accel-
eration κaiσ:

κaiσ = κJiσu̇+ κkiσ(q,u, t) (28)

where

κJiσ =
∂(κCiσ)

∂q
H

κkiσ(q,u, t) =
∂(κCiσ)

∂q
∂H
∂t

u+
∂

2(κCiσ)

∂q∂t
Hu+

∂
2(κCiσ)

∂t2 ,

where recall that κ is either b or u and σ is either n or f .

Stacking all the quantities above for every unilateral and
bilateral contact (as defined in equations (11) and (12)), one
arrives at the definitions of κan, κJn, and κkn, which allows
us to express equations (17-20) in terms of accelerations as
follows:

ban = 0. (30)

0≤ ufn ⊥ uan ≥ 0. (31)

The principle of maximum dissipation (21) must be con-
sidered further. When contact i is sliding, the solutions of
conditions (25) and (27) produce the correct results (i.e., the
friction force obtains its maximum magnitude and directly
opposes the sliding direction) and, we can use these condi-
tions to eliminate κfi f . Also as required, when a contact is
rolling, these conditions allow the friction force to lie any-
where within the friction limit set. What these conditions do
not provide is a mechanism for determining if a rolling con-
tact will change to sliding. However, this problem is easily
remedied by replacing the relative velocity variables in equa-
tion (21) with the analogous acceleration variables.

µi
ufin

uait +
ufit

u
βi = 0

µi
ufin

uaio +
ufio

u
βi = 0

u
βi = µ2

i
uf2

in− uf2
it − uf2

io ≥ 0

0≤ u
βi ⊥

u
βi ≥ 0

 ∀ i ∈ U ∩R (32)

where u
βi =‖

uai f ‖ at the optimal solution, and

bfi fmax
bai f +

bfi f
b
βi = 0

b
βi =

bf
2
i fmax −

bf
2
i f ≥ 0

0≤ b
βi ⊥

b
βi ≥ 0

 ∀ i ∈ B∩R (33)

where bfi f =
∣∣∣bai f

∣∣∣ at the optimal solution.

Exposing the Contact Forces in the Newton-Euler Equa-
tion Recall that the vector g(q,u, t) represents the resultant
generalized forces acting on the bodies, and naturally gener-
ated gyroscopic forces. In order to complete the formulation
as an NCP, g(q,u, t) is expressed as the sum of the normal

© The Eurographics Association 2012.

106

J. Bender et al. / Interactive Rigid Body Simulation

and friction forces at the unilateral and bilateral contacts and
all other generalized forces. The Newton-Euler equation be-
comes:

M(q)u̇ = uJn(q)T ufn +
uJ f (q)

T uf f (34)

+ bJn(q)T bfn +
bJ f (q)

T bf f +gext(q,u, t)

where gext(q,u, t) is the resultant of all non-contact forces
and moments applied to the bodies, uf f and bf f are formed
by stacking the generalized friction vectors at the unilateral
and bilateral contacts respectively, and the matrices κJσ map
contact forces into a common inertial frame.

3.1.2. A Differential NCP

The instantaneous dynamic model is now complete.

Definition 3 CP1: Equations (16,25,27,30–34) constitute a
differential, nonlinear complementarity problem.

It is known that solutions to CP1 do not always exist
(see [TPSL97]), however, if the principle of maximum dis-
sipation is relaxed so that friction forces merely need to be
dissipative, rather than maximally dissipative, then a solu-
tion always exists [PT96]. If one wanted to use this NCP in
an integration scheme to simulate the motion of a multibody
system, the PATH algorithm by Ferris and Munson is the
most robust, general purpose NCP solver available [CPN11].
One should also note that this NCP can be converted into an
approximate LCP by linearizing the friction cone constraint
(see [TPSL97] for details). The LCP then can be solved by
Lemke’s algorithm [CPS92b], but the solution non-existence
problem persists unless the maximum dissipation require-
ment is relaxed as just stated above.

3.1.3. A Nonlinear Discrete-Time Model

We recommend against applying a integration method to the
instantaneous-time model due the possible non-existence of
computable solutions (i.e., a values of the unknown acceler-
ations and constraint forces might not exist OR the solution
might contain infinite values). However, this problem can be
alleviated by applying discrete-time derivative approxima-
tions to the model over a time step ∆t and then recasting the
model as a time-stepping complementarity problem whose
unknowns are impulses (time integrals of forces) and veloc-
ities (time integrals of accelerations). We demonstrate the
process in this section.

Let ∆t denote a positive step size and t` the current time,
for which we have estimates of the configuration q(`) = q(t`)
and the generalized velocity u(`) = u(t`) of the system. Our
goal is to compute configurations q(`+1) = q(t` + ∆t) and
velocities u(`+1) = u(t`+∆t) that lie as close as possible to
a solution of the differential NCP, CP1.

In the derivation, we will require estimates of the matrices
M, κJσ, and the vector gext, which all vary with the system
configuration q. As will be seen, the simplest choice will be

to use their values at q(`), denoted by M(`),κJ(`)σ , and g(`)ext,
because that will result in an explicit time-stepping method
with each step requiring the solution of an NCP, whose only
nonlinearity is the quadratic constraint of the friction cone.
Approximating the cone constraint with a polyhedral cone
will replace the quadratic constraints with linear ones, and
thus will convert the NCP into an LCP, which is typically
easier to solve.

In the following section, we discretize the five compo-
nents of the instantaneous-time model derived above. To
simplify our presentation, we choose the simple backward
Euler approximation of the state derivatives, i.e., u̇(t`+1) ≈
(u(`+1)−u(`))/∆t and q̇(t`+1)≈ (q(`+1)−q(`))/∆t.

Discrete-Time Newton-Euler Equations Applying the
backward Euler approximation to the Newton-Euler equa-
tion (34) yields the equation below in which all quantities
are evaluated at the end of the time step:

M(`+1)
(

u(`+1)−u(`)
)
= (uJT

n)
(`+1)up(`+1)

n (35)

+(uJT
f)

(`+1)up(`+1)
f +(bJ

T
n)

(`+1)bp
(`+1)
n

+(bJ
T
f)

(`+1)bp
(`+1)
f +(pext)

(`+1),

where the vectors are unknown generalized contact impulses
defined as p(`+1) = ∆tf(`+1) and pext = ∆tgext is the impulse
of the generalized forces applied to the bodies over the time
step.

Discrete-Time Kinematic Map Applying the backward
Euler approximation to the kinematic map (16) gives:

q(`+1)−q(`) = ∆tH(`+1)u(`+1), (36)

which is nonlinear in the unknown system configuration
q(`+1). An important issue arises when solving this equation
for q(`+1). The “vector” q(`+1), is NOT a vector; the orienta-
tion part of q lives in a curved space, not a vector space. For
example, when orientation is represented by a unit quater-
nion, then quaternion elements of q(`) and q(`+1) must have
unit length, but adding ∆tH(`+1)u(`+1) to q(`) slightly in-
creases the length. This problem can be solved simply by
normalizing the quaternion elements of q(`+1) after each
time step.

Discrete-Time Contact Constraints The contact and joint
constraints given in equations (17,18,20) can be incorpo-
rated into the discrete-time framework by replacing the con-
figuration variables with their values at time t(`+1). An al-
ternative is to expand the functions in a Taylor series and
choose the point of truncation, to control the level of accu-
racy and nonlinearity. Denoting κCσ

(
q(`), t(`)

)
by κC(`)

σ , a

© The Eurographics Association 2012.

107

J. Bender et al. / Interactive Rigid Body Simulation

Taylor series expansion is:

κ̂C
(`+1)
σ = κC(`)

σ +(κJσ)
(`)u(`+1)

∆t +
∂

κC(`)
σ

∂t
∆t +H.O.T,

(37)
where the hat over the C in denotes an approximation and
H.O.T. denotes higher-order terms.

Discrete-Time Normal Contact Constraints Given that
the discrete time Newton-Euler equations are written in
terms of unknown impulses, equation (19) should also be
converted to impulses. Since up(`+1)

n = ∆tuf(`+1)
n and ∆t is

strictly positive, equation (19) becomes:

up(`+1)
n ≥ 0. (38)

Last, for each unilateral contact, we must enforce com-
plementarity between the gap function at the end of the time
step and the normal impulse. Inserting the Taylor series ap-
proximation into equation (20) yields:

0≤ up(`+1)
n ⊥ ûC

(`+1)
n ≥ 0. (39)

Note that, in general, the right-hand inequality is nonlinear
in the unknown u(`+1). However, it can be made linear by
truncating the Taylor series after the linear terms. It is also
important to see that this relationship implies that the normal
impulse up(`+1)

n at the end of the time step can be nonzero
only if the approximated distance function at the end of the
time step is zero.

Discrete-Time Maximum Dissipation Principle To mod-
ify the maximum dissipation condition for use in time step-
ping, one integrates the force over a short time interval to ob-
tain an impulse. If the direction of sliding changes little over
the time step, then the friction law can be well approximated
by simply replacing force variables with impulse variables.
Thus, equation (21) becomes:

κp(`+1)
i f ∈ argmax

p′
i f

{
−
(

κ
ν
(`+1)
i f

)T
p′i f :

p′i f ∈ Fi(
κp(`+1)

in ,µi)
} (40)

where p′i f is an arbitrary vector in the set Fi(
κp(`+1)

in ,µi). As
it was the case during the formulation of the instantaneous
model, we cannot complete the formulation of the discrete-
time model without assuming a particular form of Fi.

3.1.4. The Discrete-Time Model as an LCP

To develop a discrete-time model in the form of an LCP, all
equations and inequalities in the model must be linear in the
unknown configuration q(`+1), velocity u(`+1), and impulse
(pext)

(`+1). The discrete-time Newton Euler equation (35)
appears to be linear in the unknown impulses and velocities,
but the Jacobian matrices are functions of the unknown con-
figuration and the external impulse (pext)

(`+1) is generally

a function of both q(`+1) and u(`+1). The standard way to
obtain a linear equation is to evaluate the Jacobians and the
external impulse at t`.

M(`)
(

u(`+1)−u(`)
)
= (uJT

n)
(`)up(`+1)

n (41)

+(uJT
f)

(`)up(`+1)
f +(bJ

T
n)

(`)bp
(`+1)
n

+(bJ
T
f)

(`)bp
(`+1)
f +(pext)

(`).

Another option is to extrapolate these quantities forward in
time using quantities known as time t`, as done in [PAGT05].
A drawback of this approach is that it requires computation
of derivatives of the matrices.

Equation (36) is also nonlinear due to the dependence of
H on q(`+1). As above, evaluating it at t` yields a linear ap-
proximation:

q(`+1)−q(`) = ∆tH(`)u(`+1). (42)

As mentioned earlier, the distance function constraints
can be made linear by truncating the Taylor series after the
linear terms. For the bilateral contacts, equation (37) be-
comes:

bC
(`)
n +(bJn)

(`)u(`+1)
∆t +

∂
bC

(`)
n

∂t
∆t = 0. (43)

Similarly, the normal complementarity condition (39) be-
comes:

0≤ up(`+1)
n ⊥ uC(`)

n +(uJn)
(`)u(`+1)

∆t +
∂

uC(`)
n

∂t
∆t ≥ 0.

(44)
It only remains to linearize the friction model. To do so, how-
ever, requires a specific choice of friction limit set. There-
fore, at this point, we will choose isotropic Coulomb friction
and demonstrate the process of linearization for it, which
is illustrated in Figure 7. The circular friction limit set is a
circle of radius µi

up(`+1)
in (shown in Figure 7(b)). This cir-

cle is approximated by a convex polygon whose vertices are
defined by nd the unit vectors d̂i j that positively span the
friction plane.

To constrain the friction impulse at contact i, up(`+1)
i f , to

lie within the polygonal limit set, we employ nonnegative
barycentric coordinates, u

αi j ≥ 0; j = {1, ...,nd}. The inte-
rior and boundary of the linearized friction impulse limit set
can be represented as follows:

up(`+1)
i f = uDi

u
αi

∑
nd
j=1

u
αi j ≤ µi

up(`+1)
in

 ∀ i ∈ U (45)

where uDi is the matrix whose jth column is the unit vector
d̂i j and u

αi is the vector with jth element given by u
αi j.

For the developments in the next few paragraphs, it is im-
portant to see that if u

αi j = µi
up(`+1)

in , then the friction im-
pulse is simply µid̂i j, which is a vertex of the polygon. If

© The Eurographics Association 2012.

108

J. Bender et al. / Interactive Rigid Body Simulation

t̂

ô

n̂

(a) Friction Cone

t̂

ô
f

ν

(b) Limit Set

Figure 7: Example of friction cone linearization using seven
friction direction vectors. Note the linearization side-effect -
the friction force that maximizes dissipation is not exactly
opposite the relative velocity at the contact point.

u
αi j +

u
αik = µi

up(`+1)
in , where d̂i j and d̂ik are adjacent di-

rection vectors, then the friction impulse is on an edge of
the polygon. Importantly, these are the only ways to repre-
sent friction impulses on the boundary of the limit set using
barycentric coordinates. All other coordinate combinations
define a friction impulse on the interior of the polygon.

It remains to enforce that at rolling contacts, the friction
impulse must be within the limit set, but while sliding, it
must maximize power dissipation, which requires the im-
pulse to be on the boundary of the limit set. Let the non-
negative slack variable u

βi be a scalar sliding indicator for
contact i, where u

βi = 0 implies rolling and u
βi > 0 implies

sliding. When u
βi = 0, the friction impulse may be anywhere

in the interior of the polygon or on its boundary, but when
u
βi > 0 it must be on the boundary.

These two requirements suggest a complementarity re-
lationship between the representation (second equation in
bracketed equations just above) and u

βi:

0≤
(

µi p
(`+1)
in − ueT

i
u
αi

)
⊥ u

βi ≥ 0 ∀ i ∈ U . (46)

where ei is a vector length nd with all elements equal to
one. This condition ensures that the friction impulse is in
the cone, but it does not enforce maximum dissipation. To
achieve the latter, one must introduce another condition that
allows only one or two consecutive barycentric coordinates
to be nonzero. One way to accomplish this is by the intro-
duction of another complementarity constraint that maps the
relative velocity of the friction subspace ν

(`+1)
i f onto the d̂i j

vectors (this can be accomplished with uDT
i

uJi f u(`+1)) and

identifies j such that d̂i j is most directly opposite to ν
(`+1)
i f .

The following linear complementarity condition, in conjunc-
tion with condition (46), identifies the correct d̂i j:

0≤
(

uDT
i

uJi f u(`+1) +ei
u
βi

)
⊥ u

αi ≥ 0 ∀ i ∈ U . (47)

Consider for a moment complementarity condition (47).
If the contact is sliding u

βi > 0, at least one element of u
αi

must be positive. The only way to have a positive element
of u

αi is to have at least one element of the expression on
the left be zero, which can only happen when u

βi takes on its
minimum value. Note that this minimum value can never be
zero as long as the vectors d̂i j; i = 1, ...,nd positively span
the friction subspace, and furthermore, it approximates the
slip speed, with the approximation converging to the exact
slip speed as nd goes to infinity.

One important side-effect of the above approximation of
the principle of maximum dissipation is that a finite cone
of relative velocities at contact i leads to exactly the same
friction impulse. Even if the direction of sliding changes
smoothly, the direction of the friction impulse jumps from
one direction vector to the next.

Combining the tangential complementarity conditions for
all unilateral contacts yields linear complementarity systems
that replace equations (25) and (32) in the instantaneous-
time model:

0≤
(

uDT uJ f u(`+1) + uEu
β

)
⊥ u

α≥ 0

0≤
(

U up(`+1)
n − uET u

α

)
⊥ u

β≥ 0
(48)

where the column vectors u
α and u

β are formed by stacking
the vectors u

αi and scalars u
βi,

uDT is formed by stacking
the matrices uDT

i , uE is a block diagonal matrix with nonzero
blocks given by uei, and U is the diagonal matrix with ele-
ment (i, i) equal to µi.

If all joints in the system are one-degree-of-freedom
joints, equations (27) and (33) of the instantaneous-time
model are replaced with the following:

0≤
(

bD
T bJ f u(`+1) + bEb

β

)
⊥ b

α≥ 0

0≤
(

bp f max−
bE

T b
α

)
⊥ b

β≥ 0
(49)

where the column vectors b
α and b

β are formed by stacking

the vectors b
αi and scalars b

βi,
bD

T
is formed by stacking

the matrices bD
T
i , bE is a block diagonal matrix with nonzero

blocks given by bei, and bp f max is ∆t bf f max.

3.1.5. A Time-Stepping LCP

Equations (41–44,48,49) constitute a discrete-time model in
the form of a mixed LCP, that is “mixed,” because it con-
tains equations that cannot be directly put into the form of
a linear complementarity condition: the Newton-Euler equa-
tion (41), the kinematic map (42), and the normal joint con-
straint (43). Notice, however, that the only place in the mixed
LCP in which the unknown generalized position q(`+1) ap-
pears is the kinematic map equation (42). Therefore, the
mixed LCP can be decoupled into an LCP with unknown
generalized velocities and impulses and the kinematic map

© The Eurographics Association 2012.

109

J. Bender et al. / Interactive Rigid Body Simulation

equation with unknown generalized positions. The decou-
pled systems can be solved in two steps: solve the smaller
mixed LCP (LCP1 defined below), then use the solution to
LCP1 in the kinematic map to update the generalized posi-
tions.

Definition 4 LCP1: A mixed LCP with unknown velocities
and impulses is constituted by equations (41,43,44,48,49).

It is known that solutions always exist to LCP1 if the terms
uC(`)

n , ∂
uC(`)

n
∂t ∆t, and ∂

bC(`)
n

∂t ∆t from equations (43) and (44) are
removed (see [AP97a]).

The mixed LCP1 can be solved in its current form by
the PATH algorithm [FM99] or it can first be reformulated
as a standard LCP and then solved. Since M is symmetric
and positive definite, and under the assumption that the null

space of bJ
(`)
n is trivial (which is usually true if there are no

kinematic loops in mechanisms), then one can solve for both

u(`+1) and bp
(`+1)
n with equations (41) and (43) and substi-

tute the results into equations (39,48,49). Before substitution
these equations :

0≤

uJ(`)n u(`+1) +
uC(`)

n
∆t +

∂
uC(`)

n
∂t

uDT uJ f u(`+1) + uE u
β

bD
T bJ f u(`+1) + bE b

β

U up(`+1)
n − uET u

α

bp f max−
bE

T b
α

⊥

up(`+1)

u
α

b
α

u
β

b
β

≥ 0. (50)

For the remainder of section 3.1.5, we will drop the su-
perscript (`) on all matrices and constraints, since they are
evaluated at time t`. Continuing with the derivation of LCP1,
we cast equations (41) and (43) into matrix form:[

M −bJ
T
n

−bJn 0

][
u(`+1)

bp
(`+1)
n

]
=

[
x1
x2

]
(51)

where

x1 =
uJT

n
up(`+1)

n + bJ
T
f

bDb
α+ uJT

f
uDu

α+Mu(`) +pext

x2 =
bCn

∆t
+

∂
bCn

∂t
.

Inverting the matrix on the left side of equation (51) yields:[
u(`+1)

bp
(`+1)
n

]
=

[
S11 S12
ST

12 S22

][
x1
x2

]
. (52)

Letting B = −bJnM−1bJ
T
n , then S11, S12, and S22 are de-

fined as follows:

S11 = M−1 +M−1 bJ
T
n B−1 bJn M−1 (53a)

S12 = B−1 bJnM−1 (53b)

S22 = B−1. (53c)

Substituting back into inequalities (50) and using the short-
hand κJD = κJ f

κDT yields a standard LCP(A, b) with A, b,

and x given as follows:

b =

uJnr+

uCn
∆t + ∂

uCn
∂tuJDr

bJDr
0

bp f max

 x =

upn
u
α

b
α

u
β

b
β

A =

uJnS11
uJT

n
uJnS11

uJT
D

uJnS11
bJ

T
D 0 0

uJDS11
uJT

n
uJDS11

uJT
D

uJDS11
bJ

T
D

uE 0
bJDS11

uJT
n

bJDS11
uJT

D
bJDS11

bJ
T
D 0 bE

U −uET 0 0 0
0 0 −bE

T
0 0

where

r = S11

(
Mu(`) +pext

)
+S12

(
bCn

∆t
+

∂
bCn

∂t

)
. (54)

Note that it is known that when there are no joints (i.e., rows
three and five are removed from A, b, and x and columns
three and five are removed from A) and the sum

uCn
∆t + ∂

uCn
∂t

is nonnegative, then a solution always exists.

3.2. Modeling of Articulated Bodies and Jointed
Mechanics

An articulated-body is a system of rigid bodies connected
by joints (see figure 8). Each joint defines a holonomic con-
straint which must be resolved during the simulation. A
holonomic constraint reduces the number of degrees of free-
dom of the system permanently (see section 2.1).

Figure 8: This articulated body is a tree of rigid bodies
which are connected by spherical joints.

For the simulation of articulated bodies there exist two
different formulations: the reduced (or generalized) coordi-
nate formulation and the maximal coordinate formulation.
The first one models the holonomic constraints by using a

© The Eurographics Association 2012.

110

J. Bender et al. / Interactive Rigid Body Simulation

reduced set of coordinates to describe the state of the sys-
tem. An articulated-body has as many degrees of freedom
as its number of independent coordinates. In contrast to that
the maximal coordinate formulation uses the original coor-
dinates of the rigid bodies and introduces additional forces
or impulses in order to maintain the constraints.

3.2.1. Maximal coordinate formulation

The maximal coordinate formulation is well-known in the
area of computer graphics. One of the first studies about
multi-body simulation using this formulation was [BB88]
which describes physically-based modeling with constraints.
In the following, we will introduce different methods for this
formulation.

Penalty force method The penalty force method can handle
holonomic and nonholonomic equality constraints. These
constraints are given in form of implicit functions in the
form C = 0. In a simulation step we can determine the vi-
olation of a constraint by evaluating its implicit function for
the current state of the system. The result is zero if the con-
straint is fulfilled. Otherwise we add a force to the system
in order to reduce the violation. For a holonomic equality
constraint C(q, t) = 0 this force can be computed by the fol-
lowing equation [dJB94]:

Fpenalty =−αJT (Ω2 C+2Ωµ Ċ+ C̈),

where J is the Jacobi matrix of the constraint C. The val-
ues α, Ω and µ are constant parameters which are used to
control the magnitude of the force. Multiplying the matrix
JT projects the force into the space of the constraint. The
derivatives of the constraint Ċ and C̈ are used in order to in-
crease the stability. The resulting force is equivalent to the
force of a damped spring with the spring constant α, natural
frequency Ω and the damping ratio µ.

The force for a nonholonomic constraint is determined by

Fpenalty =−α

(
∂C
∂u

)T

(µC+ Ċ).

For the simulation the penalty forces are added as ex-
ternal forces to the equation of motion. The penalty force
method is easy to implement and very fast since the compu-
tation of penalty forces is very simple. The disadvantage of
the method is that constraints can only be fulfilled approxi-
mately. An accurate solution is only possible for a very large
value of α which leads to stiff differential equations.

Lagrange multipliers In contrast to the penalty force
method the Lagrange multiplier method computes forces
in order to prevent a violation of constraints. This method
can simulate systems with holonomic and nonholonomic
equality constraints. These constraints are transformed in
the general constraint form

J(q,u, t) u̇+k(q,u, t) = 0. (55)

In an n-dimensional system with an m-dimensional con-
straint the matrix J has the dimension m× n and the vector
k the dimension m. A holonomic constraint is transformed
in the general form by differentiating the constraint function
C twice with respect to time. A nonholonomic equality con-
straint has just to be differentiated once. For a holonomic
constraint C(q, t) = 0 we get (cf. Equation 28)

J =
∂C
∂q

H, k =
∂C
∂q

∂H
∂t

u+
∂

2C
∂q∂t

Hu+
∂

2C
∂2t

.

A nonholonomic constraint C(q,u, t) = 0 results in

J =
∂C
∂u

, k =
∂C
∂q

Hu+
∂C
∂t

.

Most commonly in computer graphics the Lagrange mul-
tipliers λ are computed as follows. For each rigid body the
mass matrix is defined by equation 14. The mass matrix for
a particle with mass m is just the upper left block m13×3.
Constraints are simulated by additional forces Fc which are
added to the equation of motion

u̇ = M−1 (Fext +Fc) (56)

where M is the mass matrix of the system which contains
the mass matrices M j of all bodies on the diagonal.

Substituting equation (56) into the general constraint (55),
we obtain

JM−1 Fc =−JM−1 Fext−k.

Regarding D’Alembert’s principle [GPS02], it follows that

Fc = JT
λ. (57)

Hence, the constraint forces always act in the constrained di-
rections of system. Such forces do not influence the motion
of the n−m degrees of freedom of an articulated body. Fi-
nally, we get a system of linear equations for the Lagrange
multipliers

JM−1 JT︸ ︷︷ ︸
A

λ =−JM−1 Fext−k︸ ︷︷ ︸
b

. (58)

The matrix A is positive definite if there are no conflicting
or redundant constraints. Furthermore, the matrix is sparse
for the most models since it reflects the structure of the ar-
ticulated body. After solving for λ the constraint forces are
determined by equation 57.

One of the most well-known Lagrange multiplier methods
in computer graphics is the one of David Baraff [Bar96].
This method allows the simulation of articulated bodies
without closed loops in linear time. Only constraints that act
between a pair of bodies are supported.

For a linear time computation the system of linear equa-
tions 58 is transformed in the following form(

M −JT

−J 0

)
︸ ︷︷ ︸

K

(
y
λ

)
=

(
0
−b

)
.

© The Eurographics Association 2012.

111

J. Bender et al. / Interactive Rigid Body Simulation

Matrix K is known as the KKT-matrix [NW99]. The matrix
A is smaller than K and positive definite if J has full rank
while K is not. A has a row and column for each constraint
while K has a row and column for each degree of freedom
and each constraint. The advantage of the new formulation
is that K is always sparse and symmetric.

The next step is to create an undirected graph for K with
a node for each block of the matrix and an edge between
the nodes i 6= j for each Ki j 6= 0. This graph is acyclic since
the model has no loops. By a depth search in this graph the
matrix is reordered so that the row index that corresponds to
a node in the graph is greater than the one of its children.
Afterwards a LDLT decomposition is performed. Due to the
reordered matrix structure the decomposition introduces no
new nonzero elements, can be stored in linear space and per-
formed in linear time. The system of linear equations for the
Lagrange multipliers can also be solved in linear time. Fi-
nally, the velocities and positions are determined by numer-
ical integration.

The Lagrange multiplier method computes constraint
forces in order to prevent a violation of constraints due to
external forces. If the constraints are violated in a different
way, e.g. by errors that occur during numerical integration,
the method cannot correct this. These errors sum up over the
simulation and the method is not able to prevent joints from
breaking. The problem is that a holonomic constraint is not
regarded directly. It is just demanded that its second deriva-
tive is zero. An error term of the form k1t+k2 where k1 and
k2 are two arbitrary constant vectors cannot be corrected in
this way since

d2

d2t
C(q, t) = d2

d2t
(C(q, t)+k1t +k2) .

Therefore, joints will break due to numerical errors. An anal-
ogous problem exists for nonholonomic equality constraints.
Therefore, an additional stabilization is required for the sim-
ulation with Lagrange multipliers.

The method of Baumgarte is often used for stabiliza-
tion [Bau72]. This method replaces the equation C̈ = 0 of
a holonomic constraint by

C̈+2αĊ+β
2C = 0

where α and β are constant parameters. In this way position
and velocity errors are regarded in the simulation. The equa-
tion Ċ = 0 of a nonholonomic equality constraint is replaced
by

Ċ+ γC = 0

where the parameter γ defines the weight of the velocity error
in the multiplier computation.

The stabilization terms can be added to the general form
of a constraint (equation (55)). Alternatively, the terms can
be taken into account by adding additional forces to the
equation of motion [WW90]. The determination of suitable

parameters for the stabilization is not easy. Ascher et al. dis-
cuss the problems of finding suitable parameters and propose
an enhanced stabilization method [ACPR95].

Impulse-based simulation The impulse-based method
[BFS05, BS06b, Ben07, WTF06] is similar to the Lagrange
multiplier method. The main difference between these meth-
ods is that the impulse-based approach determines impulses
to perform a simulation with constraints by using a preview
while the Lagrange multiplier method computes additional
forces just regarding the current state.

Witkin et al. introduced a Lagrange multiplier
method based on a constraint formulation with connec-
tors [WGW90]. A connector is e.g. a point or vector in
local coordinates of a body which is used to define a con-
straint. This allows to formulate generic constraints without
knowledge about the object itself. For example, if two
points are attached together, the corresponding constraint is
C(P1,P2) = ‖P1−P2‖ = 0 where the points P1 and P2 are
connectors. The connector concept also solves the problem
that the generalized position q and velocity u of a body
commonly have not the same length (see Section 2.1).

In the following, constraints are defined by connectors
Pi(q, t) fixed to the bodies:

C(P1, . . . ,Pm, t) = 0.

In this way the translational and rotational degrees of free-
dom can be constrained. By differentiating the constraint
function C with respect to time we get a general constraint
form for velocities Ju+k = 0 which is analogous to the one
of equation 55. The matrix J and the vector k are determined
by

Ji j = ∑
k

∂Ci

∂Pk

∂Pk
∂q j

H j, ki =
∂Ci

∂t
+∑

k

∂Pk
∂t

.

Now a system of linear equations for the impulses could
be created which is analogous to the one of equation 58.
However, the impulse-based method uses a different right
hand side b for the system in order to solve the stabilization
problem of the Lagrange multiplier method. The vector b is
determined by a prediction of the joint state. This idea was
first introduced by Bender et al. [BFS05] and later also used
by Weinstein et al. [WTF06].

Figure 9 shows the preview of a ball joint with the holo-
nomic constraint C = a−b = 0. For the preview we assume
that both rigid bodies are unconstrained. Then, we can eas-
ily compute the positions of the connector points a(t + h)
and b(t + h) after a time step of size h by integration. The
preview of a vector r fixed to a body is obtained by solving
the differential equation

ṙ = ω× r. (59)

The predicted position of a point a is obtained by first solv-
ing equation 59 for the vector r(t) = a(t)− x(t) from the

© The Eurographics Association 2012.

112

J. Bender et al. / Interactive Rigid Body Simulation

rigid body 1

rigid body 2

a

b

d
p

−p

Figure 9: Preview of a ball joint. The points a and b have
different positions which must be corrected by a pair of im-
pulses p and −p.

center of mass of the body to the point to get r(t +h). Then,
we solve the equation of motion for the center of mass and
determine the new position as a(t +h) = r(t +h)+x(t +h).
For the predicted state we evaluate the constraint function
and get the distance vector d(t + h) = a(t + h)− b(t + h).
This vector shows us the violation which would occur with-
out additional impulses in the system. Now we want to com-
pute a pair of impulses p and −p for time t to prevent the
violation. These impulses must cause a velocity change of
the connectors so that the constraint d(t +h) = 0 will be ful-
filled.

The required impulses for a constraint can be determined
by solving a nonlinear equation. Weinstein et al. use Newton
iteration for the solution [WTF06]. In a system with multiple
constraints there exist dependencies between the constraints
if they have a common body. These dependencies are han-
dled in an iterative way by Weinstein et al. In contrast to
that Bender et al. linearize the equation by an approxima-
tion of the required velocity change. If the connectors have
a linear relative motion, the required velocity change would
be ∆v = d(t + h)/h. Bender et al. use this value as an ap-
proximation for the nonlinear case which leads commonly to
small errors [BS06b]. These errors are eliminated by solving
the following system for the impulses p iteratively

JM−1 JT p = ∆v

where ∆v is the vector containing the velocity changes for
all constraints.

Numerical comparisons and of the impulse-based ap-
proach with other simulation methods can be found
in [SB05,SBP05]. Bender showed in [Ben07] that the system
of linear equations can be solved in linear time for articu-
lated bodies without loops. In [BS06a] the impulse-based
method is extended by inequality constraints in order to sim-
ulate collisions and resting contacts. Bayer et al. [BDB09]
presented different optimizations for the impulse-based
approach which increase the performance.

3.2.2. Reduced coordinate formulation

If we have a system of rigid bodies with m degrees of free-
dom and remove c of them by constraints, only the remain-
ing n = m− c degrees of freedom have to be simulated. The
reduced coordinate formulation uses a parameterization for
the m maximal coordinates in terms of n independent coordi-
nates qi which are called reduced or generalized coordinates.
The m maximal coordinates of the system can be written as
function of the reduced coordinates

xi = xi(q1, . . . ,qn), i ∈ [1, . . . ,m].

Figure 10 shows an example for a reduced coordinate for-
mulation. A particle with position x ∈ R2 rotates around the

Figure 10: The only degree of freedom of a particle moving
on a circular path can be described by the angle α.

origin on a circular path with radius r. This particle has only
one degree of freedom which can be described by the angle
α. The position in maximal coordinates is determined by

x(α) = r
(

cosα

sinα

)
. (60)

Equation 60 defines all valid positions x for the particle.

In order to perform a simulation with reduced coordinates
we must first find a parameterization for our model. Then,
we form the equations of motion with respect to the reduced
coordinates. The resulting system of differential equations
can be solved by numerical methods.

The equations of motion can be obtained by using the
Lagrange formulation [GPS02, Fea07]. We require the La-
grangian function L = T −V where T and V are the total
kinetic and potential energy respectively. This function de-
scribes the difference of the total kinetic and potential en-
ergy of the system which should be conserved. By the Euler-
Lagrange equation

d
dt

∂L
∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . ,n

we get a system of differential equations for the motion of
the bodies which can be solved numerically. Methods based
on Lagrange formulation have a complexity of O(n4).

An overview over more efficient reduced coordinate

© The Eurographics Association 2012.

113

J. Bender et al. / Interactive Rigid Body Simulation

methods can be found in [FO00]. One of them is the well-
known articulated-body algorithm (ABA) of Featherstone
with a complexity of O(n) for articulated bodies with tree-
structure [Fea87]. This algorithm works in two phases. In the
first phase the kinematic parameters are determined consid-
ering external forces. The parameters of a body in the tree
only depend on the parameters of its parent. Therefore, the
kinematic parameters are computed in one traversal of the
tree. In the second phase the tree is traversed in reverse. Dur-
ing this traversal the internal forces are determined for each
body which just depend on the children of the body. A de-
tailed description of the ABA of Featherstone can be found
in [Mir96b] and [Fea07].

The method of Featherstone is used in different areas
of computer graphics. One application area is the simu-
lation of rag-dolls which have a tree-structure. These are
used for example for improved motion synthesis techniques
which combine motion capture data with physical simula-
tion [MZS09]. There are also other application areas like
the simulation of strands [Had06] or in games [Kok04]. Re-
don et al. [RGL05] presented an adaptive variant of Feath-
erstone’s method in order to improve the performance. This
approach allows to reduce the numbers of degrees of free-
dom (at the cost of accuracy) while it automatically deter-
mines the best set of active joints.

The method of Featherstone works for models without
kinematic loops. Models with loops cause problems which
are discussed in detail by Wittenburg [Wit77]. An example
is shown in Figure 11. The model consists of one static rigid
body and five dynamic bodies where each has six degrees of
freedom. Therefore, the free system has 30 degrees of free-
dom. If we create hinge joints between the bodies as shown
in the figure, these degrees of freedom are reduced. Each of
the six hinge joints eliminates five degrees of freedom in a
loop-free model. Hence, we could expect that the model has
no degrees of freedom left. But in fact it has still one.

Figure 11: Closed kinematic loop with one degree of free-
dom.

The degrees of freedom of a closed-loop model can vary
and forces in such a model can be indeterminate when the
system is overconstrained. Therefore, these models needs
some special treatment. A common approach to handle
closed loops is to remove joints from the articulated body

until we have a tree structure [FO00]. This is done by ex-
tracting a spanning tree from the connectivity graph. Now a
simulation step is performed for the spanning tree and addi-
tional forces are added to mimic the effects of the kinematic
loops. Loop handling is explained in detail in [Fea07].

4. The Numerical Solution Methods

Once discrete models have been obtained we must apply nu-
merical methods to compute solutions. We start with how to
integrate the motion of free moving rigid bodies such as bod-
ies in ballistic motion without any collisions or contact. Sub-
sequently in Sections 4.2- 4.4 we cover numerical methods
for computing solutions of the discrete LCP contact model
from Section 3.1.

4.1. Time Integration of Free Motion

For the simulation of constrained rigid bodies we extend the
equation of motion by additional forces or impulses. Alter-
natively, we can formulate these equations in terms of re-
duced coordinates. In both cases we have to perform an inte-
gration step to obtain the dynamic state of a body for the
next time step. Therefore, we want to introduce the most
important numerical integration methods: semi-implicit Eu-
ler (also called symplectic Euler), Runge-Kutta methods and
adaptive methods like the embedded Runge-Kutta.

In contrast to the well-known explicit Euler, the semi-
implicit Euler uses the velocity at time t0 +h instead of time
t0 for the integration of the position vector:

u(t0 +h) = u(t0)+hM−1 g(q,u, t0)
q(t0 +h) = q(t0)+hHu(t0 +h)

where M, g(q,u, t) and H are defined by equations 1, 14
and 15. The semi-implicit Euler is a first-order symplectic
integrator. The advantage of integrating the velocities first
is that the new velocities can be adapted before the posi-
tion integration in order to resolve collisions or to simulate
damping [GBF03, MHHR07].

Runge-Kutta methods are also very popular in the field of
rigid body dynamics [BWAK03, RGL05, BS06b, Ben07] for
solving the initial value problem given by the equation of
motion. An initial value problem is an ordinary differential
equation

ż = h(t,z(t))

together with an initial value (t0,z0). One of the most impor-
tant methods in this field is the fourth-order Runge-Kutta:

k1 = hh(ti, zi)

k2 = hh(ti +
1
2

h, zi +
1
2

k1)

k3 = hh(ti +
1
2

h, zi +
1
2

k2)

k4 = hh(ti +h, zi +k3)

© The Eurographics Association 2012.

114

J. Bender et al. / Interactive Rigid Body Simulation

zi+1 = zi +
1
6
(k1 +2k2 +2k3 +k4).

This method can also be combined with adaptive time-
stepping [PFTV92, Mir96b]. The goal of using an adaptive
time step size is to achieve a predefined accuracy ε with
a minimal computational effort. For the determination of
the current step size, the truncation error of a step must
be estimated. One way to do this is using the embedded
Runge-Kutta formulas introduced by Fehlberg. Cash and
Karp [CK90] use the general form of a fifth-order Runge-
Kutta formula

k1 = hh(ti, zi)

k2 = hh(ti +a2h, zi +b21k1)

...

k6 = hh(ti +a6h, zi +b61k1 + . . .+b65k5)

in combination with two different sets of parameters for the
solution

zi+1 = zi +
6

∑
j=1

c j k j +O(h6)

z∗i+1 = zi +
6

∑
j=1

c∗j k j +O(h5).

The first set gives us a fifth-order Runge-Kutta. From the
second set we obtain an embedded fourth-order formula.
The values for the parameters ai, bi j , ci and c∗i can be found
in [CK90]. Now the error can be estimated as

∆z = zi+1− z∗i+1 =
6

∑
i=1

(ci− c∗i) ·ki.

Since this error is of order five, a new step size can be deter-
mined by

hnew = h
(

ε

|∆z|

) 1
5

.

If the estimated error is smaller than the desired accuracy,
the step size is increased. Otherwise if the desired accuracy
could not be reached, the last step has to be simulated again
with the new decreased step size.

4.2. Direct Methods

Direct methods are known to be computational heavy to use.
Therefore, they are often not preferred for interactive sim-
ulation. However, their ability to deliver accurate solutions
make them ideal to handle problems such as large mass ra-
tios. Thus, for some applications direct methods are the only
option. Among direct methods for linear complementarity
problems (LCPs) based on pivoting are the Lemke method
and the Keller method [CPS92a, Lac03]. We will present an
incremental pivoting method in the spirit of [Bar94]. Before
doing so we will first present a guessing approach that ex-
ploits that a LCP is a combinatorial problem. The LCP can

be written as

y≥ 0, x≥ 0, and yT x = 0,

where y = Ax+b. By algebraic manipulation we have,[
1 −A

][y
x

]
= b.

Next we define the whole index set I = {1, . . . ,n} and intro-
duce one index set of free variables yi > 0 and one of active
variables yi = 0,

F ≡ {i | yi > 0} and A≡ {i | xi > 0} .

We assume strict complementarity holds meaning we never
simultaneously have yi = 0 and xi = 0. Thus, F ∩A= ∅ and
F ∪A = {1, . . . ,n}. The idea is to create a method that can
verify if any guess ofF andA is a solution for the given LCP
formulation. Using the index sets we make the partitioning[

1·F −A·A
]︸ ︷︷ ︸

C

[
yF
xA

]
︸ ︷︷ ︸

x

= b.

where 1·F and A·A are the sub matrices given by the column
indices F and A. Our problem is simplified to verifying if
the linear programming (LP) problem

Cx = b subject to x≥ 0

has a solution (same as b in positive cone of C). This can
be done by first computing xA = −A−1

AAbA, and verify if
xA ≥ 0. Next one uses the feasible xA to compute yF =
AFAxA+bF and finally verify if yF ≥ 0. If that last verifi-
cation succeeds then a solution has been found. Observe that
during the verification processes we only need to compute
A−1
AA. If ‖ A ‖� n then verification will be fast.

In worst case the time complexity of guessing would
be O(n32n) which is not computational very efficient. An-
other strategy is to be clever in making new guesses. For
instance by applying a pivoting strategy or some strategy
that builds up the index sets incrementally. Here we will
focus on the latter idea. In the kth iteration a new index
will be selected from the current set of unprocessed indices,
U ≡ I \{F ∪A}. The index sets F andA are initially both
empty. Throughout, the complementarity conditions are kept
as invariants. We will use superscript k to denote the values
at a given iteration number. For any unprocessed index j ∈U
we implicitly assume xk

j = 0. Initially in the kth iteration we
use the partitioningyk

A
yk
F

yk
U

=

AA,A AA,F AA, j
AF ,A AF ,F AF , j
AU ,A AU ,F AU ,U

xk
A

xk
F
0

+
bA

bF
bU

 .
The next candidate index to be processed in the method is
selected as the index j ∈ U that minimize yk

j as this corre-
sponds to an index in U with a most violated complementar-
ity constraint. If for the minimum value yk

j ≥ 0 is fulfilled,

© The Eurographics Association 2012.

115

J. Bender et al. / Interactive Rigid Body Simulation

the method terminates as this would indicate that all the re-
maining unprocessed indices trivially fulfill the complemen-
tarity conditions. If no unique feasible minimum exists then
one may pick a minimizing index at random. In the kth iter-
ation we use the partitioning and keep the complementarity
conditions as invariants implying yk+1

A = 0 and xk+1
F = 0, so 0

yk+1
F

yk+1
j

=

AA,A AA,F AA, j
AF ,A AF ,F AF , j
A j,A A j,F A j, j

xk+1
A
0

xk+1
j

+
bA

bF
b j

 .
The changes in yF and xA with respect to xk+1

j > 0 are given
by

xk+1
A = xk

A+∆xAxk+1
j ,

yk+1
F = yk

F +∆yFxk+1
j ,

yk+1
j = yk

j +∆y jxk+1
j

where

∆xA =−A−1
A,AAA, j,

∆xA =−A−1
A,AAA, j,

∆y j =−A j, j−A j,AA−1
A,AAA, j.

The idea is to increase xk+1
j as mush as possible without

breaking any of the complementarity constraints. Thus, xk+1
j

is limited by the blocking constraint set

BA ≡

{
−xk

q

∆xq

∣∣∣∣∣ q ∈ A ∧ ∆xq < 0

}
, (63a)

BF ≡

{
−yk

r
∆yr

∣∣∣∣∣ r ∈ F ∧ ∆yr < 0

}
. (63b)

If no blocking constraints exist then xk+1
j is unbounded by

A and F . Thus, each partition results in the bounds

xAj =

{
∞ : BA = ∅
minBA ;

, (64a)

xFj =

{
∞ : BF = ∅
minBF ;

, (64b)

x j
j =

−yk

j
∆y j

;∆y j < 0

0 ;
. (64c)

The solution for the value of xk+1
j will be the minimum

bound. If a blocking constraint is found fromBA then a pivot
operation is initiated moving the blocking index from A to
F and vice versa if a blocking constraint is found in BF .

The blocking constraint sets are changed as the active and
free index sets A and F are changed by a pivoting opera-
tion. This implies that one could increase xk+1

j further after
a pivoting step. Thus, we will continue to look for block-
ing constraints and perform pivoting on them until no more

blocking constraints exist. Depending on the final value of
xk+1

j index j is assigned to either F or A.

Noticing that the pivot step only swaps one index and
therefore only changes the size of A by one an incremen-
tal factorization method can be used for computing A−1

A,A.

There exist incremental factorization running in O(n2) time
complexity. Baraff [Bar94] proved that the outer loop runs at
most O(n). Thus, a positive overall time complexity for the
pivoting method is O(n3).

The pivoting method is capable of finding an accurate so-
lution for the LCP whereas the iterative methods we cover in
Section 4.3 and 4.4 only find approximate solutions. How-
ever, the accuracy is at the expense of having to form the
A-matrix in the first place whereas the iterative methods of-
ten can exploit a factorization of the A-matrix given by the
constraint Jacobians and the mass matrix, JM−1JT . These
matrices are extremely sparse and one can evaluate matrix-
vector products more efficiently using the factorization than
by first assembling the A-matrix which can be very dense
even if it consists of products of sparse matrices.

If we let b be the number of rigid bodies then storage
complexity of the matrix product factorization JM−1JT is
O(b+n) compared by theO(n2) storage complexity for the
full A-matrix. The assembly of the A-matrix takes at worse
O(nb2+bn2). The iterative methods often only need to com-
pute matrix-vector products using the matrix-product factor-
ization since we often have b� n this takesO(n) time com-
pared against a full matrix which takes O(n2) time.

4.3. Iterative Fixed Point Schemes

Most open source software for interactive real-time rigid
body simulation uses the Projected Gauss–Seidel (PGS)
method for computing contact forces. This includes the two
most popular open source simulators Bullet and Open Dy-
namics Engine. PGS is computational very efficient with an
iteration cost of O(n), careful memory layout of sparse ma-
trices allows for a memory footprint of O(n). In addition to
being computational and memory-wise efficient PGS is very
robust and can deal gracefully with even bad or erroneous
problems. For these reasons PGS is well suited for interac-
tive applications like computer games.

4.3.1. Matrix Splitting Methods

We introduce the matrix splitting A = M−N. Next we let
ck = b−Nxk then the LCP

Ax+b≥ 0, (65a)

x≥ 0, (65b)

(x)T (Ax+b) = 0. (65c)

© The Eurographics Association 2012.

116

J. Bender et al. / Interactive Rigid Body Simulation

becomes

Mxk+1 + ck ≥ 0, (66a)

xk+1 ≥ 0, (66b)

(xk+1)T (Mxk+1 + ck) = 0. (66c)

This results in a fixed-point formulation where we hope that
for a suitable choice of M and N the complementarity sub-
problem might be easier to solve than the original problem.
The splitting method can be summarized as

Step 0 Initialization, set k = 0 and choose an arbitrary non-
negative x0 ≥ 0.

Step 1 Given xk ≥ 0 solve the LCP (66).
Step 2 If xk+1 satisfy some stopping criteria then stop oth-

erwise set k← k+1 and go to step 1.

The splitting is often chosen such that M is a Q-matrix. This
means that M belongs to the matrix class of matrices where
the corresponding LCP has a solution for all vectors ck.
Clearly if xk+1 is a solution for (66) and we have xk+1 = xk

then by substitution into the subproblem given by (66) we
see that xk+1 is a solution of the original problem (65).

Next we will use the minimum map reformulation on the
complementarity subproblem, this is equivalent to

min(xk+1,Mxk+1 + ck) = 0. (67)

Subtract xk+1 and multiply by minus one,

max(0,−Mxk+1− ck +xk+1) = xk+1. (68)

Again we re-discover a fixed-point formulation. Let us per-
form a case-by-case analysis of the ith component. If(

xk+1−Mxk+1− ck
)

i
< 0 (69)

then xk+1
i = 0. Otherwise(

xk+1−Mxk+1− ck
)

i
= xk+1

i . (70)

That is

(Mxk+1)i = ck
i . (71)

For a suitable choice of M and back-substitution of ck =
b−Nxk we have(

M−1
(

Nxk−b
))

i
= xk+1

i . (72)

Combining it all we have derived the closed form solution
for the complementarity subproblem,

max
(

0,
(

M−1
(

Nxk−b
)))

= xk+1. (73)

Iterative schemes like these are often termed projection
methods. The reason for this is that if we introduce the vector
zk = M−1

(
Nxk−b

)
then

xk+1 = max
(

0,zk
)
. (74)

That is the k+ 1 iteration is obtained by projecting the vec-
tor zk onto the positive octant. In a practical implementation
one would rewrite the matrix equation (74) into a for loop
that sweeps over the vector components and updates the x-
vector in place. The result is the same pseudo code as given
in Section 4.3.2.

One would want to use a clever splitting such that the in-
version of M is computationally cheap. Letting L, D and
U be the strict lower, diagonal and strict upper parts of A,
then three popular choices are: the projected Jacobi method
M = D and N = L+U, the projected Gauss–Seidel (PGS)
method M = (L + D) and N = U, and the projected Suc-
cessive Over Relaxation (PSOR) method M = (D+ γL) and
N = ((1− γ)D− γU) where 0 ≤ γ ≤ 2 is the relaxation pa-
rameter. More about this parameter in Section 4.3.2.

It is worthwhile to note that A must at least have nonzero
diagonal for these splittings to work. In general for non-
symmetric matrices one may experience divergence. This
means we can not apply these methods directly to the LCP
model. Thus, In computer graphics an alternative model has
been used which drops the principle of maximum dissipa-
tion. This alternative allows for a matrix splitting method
to be derived [PNE10]. One may improve the accuracy and
convergence rate of the resulting numerical method by using
sub-space minimization [NSE10] or a nonsmooth nonlinear
conjugate gradient method [SNE10b].

It seems that all hope of using matrix splitting for the LCP
model is lost. However, as we show in Section 4.3.3 and
4.3.4 a blocked version of the matrix splittings can be used
for the LCP model.

4.3.2. Using A Quadratic Programming Problem

In our second approach for deriving the iterative methods
PGS and PSOR we will make use of the quadratic pro-
gramming (QP) problem reformulation. Our derivation fol-
lows in the footsteps of [Man84]. The reformulation allows
us to prove convergence properties of the PGS and PSOR
methods. We assume that A is symmetric and positive semi-
definite then the LCP can be restated as a minimization prob-
lem of a constrained convex QP problem

x∗ = argmin
x≥0

f (x) (75)

where f (x) ≡ 1
2 xT Ax + xT b. The first order optimality

(Karush-Kuhn-Tucker) conditions [NW99] is equivalent to
the LCP (65).

Given the ith unit axis vector êi where êi
j = 0 for all j 6= i

and êi
i = 1 then the ith relaxation step consists in solving the

one dimensional problem

τ
∗ = argmin

x≥0
f (x+ τêi) (76)

and then setting x← x+ τêi. One relaxation cycle consists
of one sequential sweep over all ith components.

© The Eurographics Association 2012.

117

J. Bender et al. / Interactive Rigid Body Simulation

The one dimensional objective function is rewritten as

f (x+ τêi) =
1
2

τ
2Aii + τ(Ax+b︸ ︷︷ ︸

≡r

)i + f (x).

From which we find the unconstrained minimizer as τu =
− ri

Aii
. Considering the constraint xi + τ≥ 0 we find the con-

strained minimizer to be τc = max(τu,−xi) which yields the
final update rule for the relaxation step

xi←max
(

0,xi−
ri

Aii

)
. (78)

This is algebraic equivalent to the ith component in the PGS
update (74). Consider the polynomial g(τ) ≡ 1

2 τ
2Aii + τri.

We know Aii > 0 so the legs of the polynomial are point-
ing upwards. The polynomial has one trivial root τ = 0 and

a minimum at τ = − ri
Aii

where g
(
− ri

Aii

)
= − r2

i
Aii

< 0. The

other root is found at τ = −2 ri
Aii

. Thus, any τ value in the
interval between the two roots has the property

τγ =−γ
ri

Aii
⇒ g(τγ)< 0, ∀γ ∈ [0..2]. (79)

From this it follows that

f (x+ τγêi) = g(τγ)+ f (x)≤ f (x), ∀γ ∈ [0..2] (80)

with equality if τγ = 0. This results in the over relaxed ver-
sion

xi←max
(

0,xi− γ
ri

Aii

)
. (81)

This is in fact algebraic equivalent to the ith component of
the PSOR update and contains the PGS method as a special
case of γ = 1. Observe that by (80) we are guaranteed a non
increasing sequence of iterates by our relaxation method.
The complete iterative method can be listed as

1 : method PSOR(N,γ,x,A,b)
2 : for k = 1 to N
3 : for all i
4 : ri← Ai∗x+bi

5 : xi←max
(

0,xi− γ
ri
Aii

)
6 : next i
7 : next k
8 : end method

where N is the maximum number of allowed iterations and
γ is the relaxation parameter.

4.3.3. The Blocked Gauss–Seidel Method

The matrix splitting and QP reformulation approaches im-
ply that Gauss–Seidel methods can not be used for the LCP
contact model due to its zero diagonal values and non sym-
metry of A. However, the splitting idea can be applied in
a blocked version. This results in a numerical method that
is very easy to implement and still preserves the good nu-
merical properties of the PGS method. A block is defined

as all variables from one contact point. In the case of a
four sided friction pyramid the ith block will consist of the
normal impulse xn,i, four friction impulses xt1,i, xt2,i, xt3,i,
xt4,i and one slack variable βi. We introduce the block no-

tation
[
x
]

i =
[
xn,i xt1,i · · · βi

]T . Similar
[
A
]

i j is the

sub block of A corresponding to the ith and jth contact point
variables. Thus, the blocked LCP can be written[

y
]

i = ∑
j

[
A
]

i j

[
x
]

j +
[
b
]

i ≥ 0 ∀i, (82a)[
x
]

i ≥ 0 ∀i, (82b)[
y
]T

i

[
x
]

i = 0 ∀i. (82c)

Now we may apply the Gauss–Seidel splitting to the blocked
LCP. The result is a blocked Gauss–Seidel (BGS) method,

1 : method BGS(N,x,A,b)
2 : for k = 1 to N
3 : for all i
4 :

[
b
]′

i ←
[
b
]

i−∑ j 6=i
[
A
]

i j

[
x
]

j

5 : solve-sub-lcp(
[
x
]

i ,
[
A
]

ii ,
[
b
]′

i)

6 : next i
7 : next k
8 : end method

The intuition behind the numerical method is that all con-
tact point variables other than the ith block are momentarily
frozen while solving for the variables of the ith block. The
BGS approach is also known as a “sweeping process” or as
the non-smooth contact dynamics (NSCD) method [Mor99,
Jea99].

The sub block LCP in line 5 can be solved using any LCP
solver one wants. Usually one would apply yet a splitting di-
viding the sub block LCP into a normal impulse sub block
and a frictional sub block. The normal part is a 1D problem
and can be solved by a projection. The frictional part would
in our case be a 5D problem. It is a bit unpleasant as we have
zero diagonal terms and non-symmetry of the frictional sub
block part of A. However, the low dimensionality would al-
low for an efficient direct enumeration approach or one may
drop the principle of maximum dissipation – changing the
contact model – but allowing us to reduce the number of
variables to a 2D problem with a symmetric positive semi-
definite frictional sub block matrix.

From a computer science viewpoint an implementation of
this method is indistinguishable from an implementation of
the propagation model. The main difference is that this is a
numerical method for solving a simultaneous contact model
whereas the other is a model in itself. Besides the former
solves for force impulses whereas the latter solves for col-
lision impulses. The similarity with the propagation model
also give intuition to some of the traits of the numerical
method. One may see propagation effects even though one
is using a simultaneous model.

The blocked Gauss–Seidel method offers many possibil-

© The Eurographics Association 2012.

118

J. Bender et al. / Interactive Rigid Body Simulation

ities. In Section 4.3.4 we divide a LCP into two sub blocks
one with normal variables only and the other containing the
rests. In fact one may use any kind of partitionings to create
the sub blocks. For instance If the LCP includes joints one
may create a sub block for all the joint variables. This joint
sub block of the LCP is known to be equivalent to a symmet-
ric positive semi-definite linear system. Thus, one may use a
preconditioned conjugate gradient (PCG) solver to solve for
joint impulses rather than a PGS method. As PCG has the
same per-iteration cost as PGS but better convergence rate
the result is much less joint drifting errors at the same cost
as PGS. If the number of joints is sufficiently small one may
even use an incomplete Cholesky factorization to solve for
joint impulses resulting in very accurate solutions. One may
even take the BGS idea one step further and solve the joint
sub block with a completely different approach like the re-
duced coordinate formulation in Section 3.2. In the extreme
case BGS can be used to partitioning a configuration into
sub blocks where one can apply specialized solvers for each
sub block. This has been termed hierarchical solvers by the
graphics and gaming community.

4.3.4. A Staggered Approach

One may combine the ideas of splitting the LCP and use QP
reformulations. The idea is referred to as staggering [Lot84,
KSJP08]. We partition the LCP variables into three index
sets, one corresponding to normal impulses N , and one to
friction impulses F and the last one is simply the slack vari-
ables β. Applying our partition would require us to solve the
two coupled LCPs,

ANN xN +(bN +ANFxF)≥ 0 ⊥ xN ≥ 0

and[
AFF e
−eT 0

][
xF
β

]
+

[
bF +AFN xN

µxN

]
≥ 0

⊥
[

xF
β

]
≥ 0.

Taking a staggered approach one solves the top-most LCP
first (normal force problem) and then the bottom-most LCP
second (the friction force problem) and continues iteratively
until a fixed-point is reached. This is in fact a blocked
Gauss–Seidel splitting method.

Observe that the normal force problem has a symmetric
positive semi-definite coefficient matrix ANN making QP
reformulations possible whereas the frictional problem has
an non-symmetric matrix. One may exploit a QP reformu-
lation anyway. Because the friction LCP is the first order
optimality conditions of the QP problem

x∗F = argmin
1
2

xT
FAFFxF + cT

FxF (83)

subject to

xF ≥ 0 and cN − eT xF ≥ 0, (84)

where cN = µxN and cF = bF +BFN xN . Thus, any con-
vex QP method can be used to solve for the normal and fric-
tion forces and one is guaranteed to find a solution for each
subproblem. Whether the sequence of sub QP problems con-
verge to a fixed point is not obvious.

There exist many variations over this staggering
scheme [LL11]. For instance one variation is to use a
blocked Gauss–Seidel method for the frictional problem
rather than a QP reformulation. This is mostly due to perfor-
mance. Keeping a QP solver for the normal problem helps
getting accurate normal forces which are needed to deal with
large mass ratios whereas accurate friction can be given up
to some degree in interactive applications which means a
Gauss–Seidel method is suitable for the friction problem.

4.4. Newton Methods

The PGS methods from Section 4.3 may suffer from viscous
artifacts due to linear convergence rate. One remedy is to use
Newton methods. These can provide quadratic convergence
rates and thus offers more accurate solutions at a slightly
higher per iteration computational cost than PGS methods.
PATH [Pat05] is a well known Newton type solver for LCPs
and used by many researchers in graphics and robotics. One
drawback of PATH is that computing time scales quadrati-
cally in the number of contacts O(n2). Here we will present
a specialized Newton type solver and an open source imple-
mentation can be found in [Erl11].

The Fischer function is defined as

φ(a,b) =
√

a2 +b2− (a+b) for a,b ∈ R. (85)

If one has the complementarity problem a ≥ 0 ⊥ b ≥ 0, a
solution (a∗,b∗) is only a solution if and only if φ(a∗,b∗) =
0. This may be proven by a case-by-case analysis of the signs
of a and b. Now consider the LCP

x≥ 0 ⊥ y = Ax+b≥ 0 (86)

where A ∈ Rn×n and b ∈ Rn are given constants. Using the
Fischer function the LCP may be reformulated as the nons-
mooth root search problem

F(x) = F(x,y) =

φ(x1,y1)
...

φ(xn,yn)

= 0. (87)

Thus, our problem is changed to that of finding the root of a
nonlinear nonsmooth equation. This problem may be solved
using a generalized Newton method which is an iterative
method. In the kth iteration the Newton method solves the
generalized Newton system

J∆xk =−F(xk) (88)

for the Newton direction ∆xk. Here J ∈ ∂F(xk) is any mem-
ber from the generalized Jacobian ∂F(x). After having com-
puted the Newton direction one performs a Newton update

© The Eurographics Association 2012.

119

J. Bender et al. / Interactive Rigid Body Simulation

to obtain the next iterate,

xk+1 = xk + τ
k
∆xk. (89)

Here τ
k is the step length of the kth Newton direction. A line

search method will be used to determine the value τ
k.

We will briefly introduce some definitions and theorems
from nonsmooth analysis. Let F : Rn 7→ Rn and let D ⊂ Rn

denote the set of all x ∈ Rn where F is continuously dif-
ferentiable. Assume F is Lipschitz continuous at x then the
B-subdifferential of F at x is defined as

∂BF(x)≡{H ∈ Rn×n |

∃(x j)⊂D and lim
x j→x

∇F(x j) = H}.

Clarke’s generalized Jacobian of F at x is defined as the con-
vex hull of the B–subdifferential [Cla90],

∂F(x)≡ co(∂BF(x)) . (90)

As an example consider the Euclidean norm e : R2 7→R then
for z ∈ R2 \{0} we have

∂e(z) = ∂Be(z) =∇e(z) = zT

‖ z ‖ ; ∀z 6= 0. (91)

For z = 0 we have

∂Be(0) = {yT | y ∈ R2 and ‖ y ‖= 1} (92a)

∂e(0) = {yT | y ∈ R2 and ‖ y ‖≤ 1}. (92b)

For z =
[
a b

]T ∈ R2 we write the Fischer function as

φ(a,b) = φ(z) = e(z)− f (z) where f (z) =
([

1 1
]T z
)

is
a everywhere continuous differentiable function. From this
we find

∂Bφ(z) = ∂Be(z)−∇ f (z) (93a)

∂φ(z) = ∂e(z)−∇ f (z). (93b)

Hence for z 6= 0,

∂φ(z) = ∂Bφ(z) =
{

zT

‖ z ‖ −
[
1 1

]T} (94)

and

∂Bφ(0) = {yT −
[
1 1

]T | y ∈ R2 and ‖ y ‖= 1}

∂φ(0) = {yT −
[
1 1

]T | y ∈ R2 and ‖ y ‖≤ 1}.

The Clarke generalized Jacobian of the Fischer reformula-
tion (87) can be written as

∂F(x)≡ Da(x)+Db(x)A (96)

where Da(x) = diag(a1(x), . . . ,an(x)) ,Db(x) =
diag(b1(x), . . . ,bn(x)) ∈ Rn×n are diagonal matrices. If

yi 6= 0 or xi 6= 0 then

ai(x) =
xi√

x2
i +y2

i

−1, (97a)

bi(x) =
yi√

x2
i +y2

i

−1 (97b)

else if yi = xi = 0 then

ai(x) = αi−1, (98a)

bi(x) = βi−1 (98b)

for any α,β ∈ R such that ‖
[
αi βi

]T ‖≤ 1.

Proof: Here we will only show the case for yi 6= 0 or xi 6=
0. The differential of the i th component is given by

dFi(x,y) = d
(

x2
i +y2

i

) 1
2 −d (xi +yi) . (99)

Using the chain rule we have

dFi(x,y) =
1
2

(
x2

i +y2
i

)− 1
2

d
(

x2
i +y2

i

)
−dxi−dyi

=
xidxi +yidyi√

x2
i +y2

i

−dxi−dyi

=

 xi√

x2
i +y2

i

−1

︸ ︷︷ ︸

ai(x)

 yi√
x2

i +y2
i

−1

︸ ︷︷ ︸

bi(x)

[

dxi
dyi

]
.

Finally, let Ai· be the ith row of A then we have dy = Adx,
so dyi = Ai·dx substitution of this results in

dFi(x,y) =
(

ai(x)êT
i +bi(x)Ai·

)
︸ ︷︷ ︸

≡∇Fi(x)

dx. (101)

The case xi = yi = 0 follows from the previous examples.

We can choose any element in the generalized Jacobian. If
xi = yi = 0 we could choose βi = 1 and αi = 0. Thus, result-
ing in using the negative ith unit axis vector as the ith row of
J. A more practical implementation approach would simply
consist in whenever xi = yi = 0 one would use x′i = xi+ε in-
place of xi when evaluating the generalized Jacobian where
ε is a sufficiently small value.

A line search method is often used to achieve global con-
vergence of the Newton method. We propose a backtrack-
ing line search with an Armijo condition to ensure suffi-
cient decrease and that the chosen step length is not too
small [NW99]. The line search uses the natural merit func-
tion of F(x) as a measure of convergence. The natural merit
function is defined as Ψ(x) = 1

2 ‖ F(x) ‖2. The Armijo con-
dition is given by

Ψ(xk +∆xk)≤Ψ(xk)+ cτ
k∇Ψ(xk)T

∆xk (102)

where the sufficient decrease parameter is c ∈ (0,1) and

© The Eurographics Association 2012.

120

J. Bender et al. / Interactive Rigid Body Simulation

Figure 12: A simulation of 100k rigid bodies running real-
time on a Radeon 7970 GPU using OpenCL.

the gradient of the merit function is given by ∇Ψ(xk) =
JT F(xk).

The objective of the line search method is to find a step
length τ

k such that (102) is satisfied. The back tracking ap-
proach starts with the guess of τ

k = 1 and then test if (102)
holds. If not τ

k is reduced by a step reduction fraction and
the test is repeated. This continues until the test passes and
one will have obtained the final value τ

k.

5. Parallel Processing and Optimizations

Parallelization is an important topic since multi-core systems
and massively parallel GPUs are very common today.

OpenMP (Open Multi-Processing) or MPI (Message
Passing Interface) are often used for developing parallel ap-
plications for multi-core systems. OpenMP is designed for
shared memory computers and provides a very simple and
flexible interface for programmers. A programmer can use
simple compiler directives in order to parallelize his code.
MPI runs also on distributed memory architectures and can
be used on a wider range of problems than OpenMP but it
is harder to program. In general a MPI program consists of
multiple processes that communicate by messages in order
to solve a problem in parallel.

The parallel programming of GPUs is a far more com-
plex task than programming a multi-core CPU. GPUs have
a SIMD architecture since they were designed for render-
ing. The first parallel simulation methods on GPUs were
implemented as shader programs which were executed in
the render pipeline for each pixel or each vertex of a spe-
cial scene. Such a scene had exactly the same number of
pixels or vertices as required program executions. The data
of the simulation had to be encoded as textures. The intro-
duction of high-level languages for programming GPUs like
OpenCL and NVIDIA’s Compute Unified Device Architec-
ture [Khr11,NVI11] made General Purpose Computation on
Graphics Processing Unit (GPGPU) more interesting for the
community. A GPU program (also called kernel) can access

different kinds of memories with different sizes and different
performance characteristics. Therefore, the memory access
and memory layouts play an important role for getting a high
performance. OpenCL and CUDA provide access to global,
local and shared memory. The interaction between CPU and
GPU is also important since memory transfers between both
are costly. The number of kernel calls also influence the per-
formance significantly. Therefore, it is desirable to reduce
the number of calls to a minimum. Since the parallelization
on a GPU is not straightforward, efficient data structures and
algorithms are required that are optimized for parallel rigid
body simulations.

For the simulation of bilateral constraints one has to solve
a system of linear equations (see Section 3.2). This can be
done in parallel by using a solver like PARDISO [SG04]
which is optimized for multi-core processors. Alternatively,
there exist multiple methods for solving such a system on the
GPU. Bolz et al. [BFGS03] as well as Krüger and Wester-
mann [KW03] used shader programs and special textures to
implement different parallel solvers on the GPU. Optimized
data structures for sparse matrix operations on the GPU have
been developed in [BG09] and [BCL09]. For achieving a
high performance a good memory layout of these structures
is very important. The optimized matrix operations allow the
efficient solution of sparse systems which generally occur
in multibody simulations with bilateral constraints. Another
approach was presented by Bayer et al. [BBD09]. They cre-
ate groups of independent constraints in a precomputation
step. Then, all constraints in a group can be solved indepen-
dently from each other. This is done in parallel using dif-
ferent pixel shader programs. The dependencies between the
groups are resolved by a Gauss-Seidel iteration approach. A
similar approach was used in [BB08].

For the computation of contact forces we have unilat-
eral constraints in the simulated multibody system. Since
we have inequalities in this case, the unilateral constraints
cannot be solved by a linear solver. Therefore, the parallel
computation of contact forces was also a research topic of
interest in the last years.

Harada [Har08] used rigid bodies that are represented by
sets of particles. This representation makes a parallelization
of the collision detection and response very simple. For the
collision detection each particle is represented by a sphere
which results in an efficient detection due to a very simple
collision test. The accuracy and the performance of the col-
lision detection directly depend on the resolution of the par-
ticle representation. For the collision response Harada used
a discrete element method (DEM) where a repulsive force,
a damping force and a shear force are computed for each
colliding particle.

Tasora et al. [TNA08, TNA∗10] used a Cone Comple-
mentarity Problem (CCP) formulation instead of a classical
LCP solver with a polyhedral approximations of the fric-
tion cone in order to parallelize the contact problem. One

© The Eurographics Association 2012.

121

J. Bender et al. / Interactive Rigid Body Simulation

of the challenges when working on the GPU is to avoid con-
current updates of shared data. Due to the high latency on
GPU memory access global atomic operations can be com-
putational costly. Tasora et al. argued that the probability
for a concurrent velocity update of contacts associated with
the same body is very small for large scenarios with hun-
dreds of thousands of contacts. Harada showed how to effi-
ciently solve this problem by partitioning, synchronizing and
scheduling the operations using local atomics within each
compute unit [Har11]. An open source implementation as
shown in Figure 12 is available as part of a rigid body sim-
ulation pipeline running entirely on the GPU for the Bullet
physics engine [Cou12].

Courtecuisse and Allard [CA09] introduced a parallel
Gauss-Seidel iteration method for dense matrices. Their
method works on multi-core processors and GPUs. It main-
tains the invariant that in each block row, the diagonal el-
ement is the last to be updated. This is used to schedule
the block computations, eliminating the need for global syn-
chronization.

The research in the area of parallelization shows us that
the performance of simulations can be increased signifi-
cantly taking advantage of multi-core processors and GPUs.
But this performance gain is not achieved straightforward, it
demands a computational rethinking of the used algorithms.

6. Collision Detection for Rigid Body Dynamics

Collision detection provides important information used by
rigid body dynamics. We briefly discuss the most relevant
shape representations, collision detection queries and con-
tact generation methods. A more complete overview of the
field is available in the collision detection surveys [LG98,
JTT00] and books [Eri04, Ber04]

6.1. Shape Representations

The geometry type of simulated rigid bodies is important for
collision detection and contact point generation. It signifi-
cantly influences the performance and the complexity of the
simulation system. This section will discuss the role of ge-
ometry in simulations.

Structured polygonal models are very popular in the
graphics community. There exist many tools and efficient
algorithms for this type of geometry. These models are also
popular in the field of interactive rigid body simulations. The
mass properties of a polyhedral body can be determined fast
and accurately [Mir96a]. Furthermore, there exist different
very fast collision detection methods which only work for
closed convex polygonal meshes.

Since fast collision detection methods are essential for an
interactive simulation, the usage of convex polygonal models
is often required in this area. Therefore, non-convex shapes
have to be decomposed in convex parts in a precomputation

Figure 13: Illustration of a convex decomposition of the sur-
face of a polygonal model. The decomposition is used in
place of the real geometry in interactive simulation.

Figure 14: Collision Shape Taxonomy

step (see Figure 13) There are several ways to decompose a
closed non-convex polygonal mesh into a convex decompo-
sition. The decomposition can be generated either manually
or automatically [MG09].

Non-moving concave world geometry is often represented
as a concave triangle mesh, and collision queries are per-
formed on individual triangles. As mentioned before, mid
phase acceleration structures can be used to cull most trian-
gles.

6.2. Collision Queries

The exact collision queries between two objects are known
as narrow phase collision detection. The choice of algorithm
and complexity of the query depends on the collision shape
representation of the objects involved (see Figure 14). Aside
from the shape type, we can classify queries into discrete and
continuous queries. Discrete methods perform the collision
check at a specific time instant, while continuous collision
detection (CCD) methods take the motion of the objects into
account over a time interval.

Discrete Collision Detection Various discrete collision
queries exist, ranging from a simple intersection test to full

© The Eurographics Association 2012.

122

J. Bender et al. / Interactive Rigid Body Simulation

contact information generation. A discrete intersection test
produces a boolean result that determines whether collision
shapes overlap or not. When using a simulation loop with an
adaptive timestep, the intersection test can be used to search
for the time of impact using a technique called bisection.

When objects are separated by a positive distance, we can
compute this closest distance and the closest points, also
known as witnesses. The GJK algorithm [GJK88, Ber04] is
versatile and it has been used for different queries between
convex shapes. GJK can be used to perform an intersection
test, and when objects are separated by a positive distance,
it can compute the distance and the corresponding closest
points (one on each body).

If objects are overlapping, we can compute the penetra-
tion depth. A common way to define penetration depth is
the shortest relative translation of the objects to eliminate
the overlap. In addition to the penetration depth vector, we
can compute witness points on both objects where the object
will touch. The penetration depth between general convex
shapes can be computed using the expanding polytope al-
gorithm [Ber04], while the separating axis test (SAT) can
be used between convex polyhedra. Concave shapes can be
represented as a union of convex shapes (see Section 6.1).
Alternatively, a collision check is performed for each trian-
gle in a concave triangle mesh (or triangle soup).

A single contact point pair is often not sufficient for sta-
ble resting contact in rigid body dynamics. Section 6.3 will
provide more information about contact point generation.

Continuous Collision Detection Discrete collision check-
ing algorithms can fail to detect a collision due to tempo-
ral aliasing, which commonly occurs with fast moving or
small objects that can pass completely through an object in
one time step. To avoid this, we can take the motion into
account for a certain time interval and compute the time of
impact. This information can be used to subdivide the sim-
ulation timestep, or it can be used to formulate contact and
distance constraints to prevent penetration (see Section 3.1).

Mirtich [Mir96b] determined a lower bound for the time
of collision for each pair of bodies. These times are stored
in a heap which has to be updated after each collision since
the bodies then change their motion. The minimum collision
time of a pair of bodies describes how long a simulation can
run at least without a penetration occurring. The detection
is accelerated by bounding volumes which take the ballistic
motion of the bodies into account.

Continuous collision detection methods approximate the
motion of the bodies during a time step. The collision de-
tection is performed on the resulting trajectories. Different
methods were introduced to perform the motion approxima-
tion for unconstrained bodies, which are based on interpola-
tion [RKC00, RKC02, KR03]. In contrast, Redon presented
a continuous collision detection which is designed for ar-
ticulated bodies [RKLM04, ZRLK07]. Continuous collision

detection has the advantage that no collision is missed but at
the price of a higher computational complexity.

6.3. Contact Point Generation

The quality of the contact point information greatly influ-
ences the overall robustness and stability of an interactive
simulator. Since all subsequent contact force and stabiliza-
tion computations are affected by the quality of the contact
point information, the requirements of the method for con-
tact point generation are: high performance, robustness and
consistency.

Collision detection methods like the GJK algorithm often
return only one pair of points representing either the mini-
mum distance or the maximal overlap distance. For accurate
collision resolution and stable resting contact handling be-
tween rigid bodies, we need more than a single contact point
in general. In practice, post processing is often done to gen-
erate the complete contact region between objects. However,
having too many contact points between two rigid bodies can
cause performance and stability issues.

Feature based contact point generation was among the
first approaches [Bar90], it has since been extended to cover
continuous collision detection [SMT08]. Basically, contacts
are represented by either edge-edge or vertex-face feature
pairs. Since edge-face feature pairs correspond to penetra-
tions, these are used when objects are overlapping. Feature
based contacts are local definitions and might show incon-
sistencies on a global scale. Further, some methods have a
tendency to generate redundant feature pairs [CTM08]. Col-
lision envelopes are used to ward off numerical imprecision,
round-off and truncation errors in floating point arithmetic.
When using the feature based contact point generation, ones
method needs access to the actual features of the mesh rep-
resentation.

Another approach for generating a contact region is to
track contact points over time. In each time-step, new con-
tact points are added to a region while filtering out old
ones that no longer agree with the current contact plane.
Contacts can be tracked based on features between convex
polyhedra [Mir98]. Feature information is not always avail-
able, so to track contacts between general convex objects a
heuristic based on the distance between closest points can be
used [Cou05].

For convex polyhedra an approximation of the entire con-
tact region can be computed at once. In the case of two col-
liding bodies, first, a separating plane is determined. The col-
lision geometry can then be clipped and projected onto the
separating plane. The contact region is determined by inter-
secting the resulting convex polygon in the plane [BG10].

Signed distance fields have been popular for deformable
models [MAC04], cloth [BMF03] and rigid bodies [GBF03].
According to Erleben [Erl05], signed distance fields add a

© The Eurographics Association 2012.

123

J. Bender et al. / Interactive Rigid Body Simulation

certain smoothness to the contact point generation, which
avoids many of the difficulties in choosing contact normals
and computing penetration depths. On the other hand, the
smoothness is related to the resolution of the distance field
and can be troublesome for stacking configurations. The
memory footprint can make signed distance fields intractable
for interactive simulations. Other approaches using discrete
Voronoi diagrams also exist [SGG∗06], these tend to be sim-
ilar to signed distance fields methods, apart from using a
Voronoi diagram as the basic representation.

A general issue in contact point generation, is choosing
between global and local solutions [KOLM02]. In theory,
contact point generation is a global issue, however, in prac-
tice the local solution is often used to satisfy performance
considerations. There is also some discussion on how a good
penetration depth measure is defined. For convex polytopes
the generalized penetration depth is same as the translational
penetration depth [ZKVM06].

7. Rigid body dynamics in practice

The literature on rigid body dynamics, robotics and contact
mechanics are vast, cross-disciplinary and have a long his-
tory. Thus, several attempts have been made in the past to
classify previous work in order to make differences more
clear to the communities. In this section, we shortly review
some of the terminology that has been used in the past.

Furthermore, we want to give an overview over existing
commercial and open source simulation software as well as a
classification for this software. We also want to give a survey
of benchmark papers in computer graphics and discuss the
common practice regarding benchmarking and validation of
simulators.

7.1. The Simulation Paradigms and Contact Models

In the terminology of Moreau [Mor99] one may classify
simulation methods as being event-driven, smoothing, or
contact dynamics approaches. Event-driven approaches are
classified by models where motion in between events are
assumed to be sufficiently smooth and not changing too
much. This can be understood in the sense that the con-
tact regions between objects are non-changing and reac-
tion forces do not change direction. Changes then only oc-
cur at specific single events in time and must be dealt with
specifically at these events. An example of such a method
could be one that assumes that interactions only consist of
instantaneous collisions. Like the impulse-based model of
Hahn [Hah88], and Mirtich and Canny [MC95, Mir96b].
Here it is assumed that objects are in free ballistic flight
in between collisions. Another example is the acceleration-
level based formulations like the ones in Baraff’s work
[Bar89, Bar90, Bar93a, Bar93b, Bar94, Bar95, Bar96]. Here,
the equation of motion is formed and treated as second order

ordinary differential equation – assuming the motion is con-
tinuous differentiable. Discontinuous instantaneous changes
in velocities and accelerations must then be treated at spe-
cific events. Smoothing approaches essentially apply some
kind of regularization, like replacing a nonsmooth non-
penetration law by a stiff repulsion law. The smoothing can
be applied both in time and space. For instance in the work
by Moore and Wilhelms [MW88] springs are cleverly used
to model both sustained contact as well as instantaneous
collisions. Contact dynamics approaches are described by
Moreau as time stepping algorithms that determine the evo-
lution of the velocity function by applying the principles
of dynamics and assumed force laws. This means that no
concept of acceleration is needed and the detailed dynamics
over a single time-step is treated and resolved in a one step
manner. The later work by Stewart and Trinkle, Moreu, and
Jean [ST96, Mor99, Jea99] are examples of velocity based
formulations that apply a fixed time-stepping procedure to
advance the simulation state. Recently, this type of methods
is simply referred to as time-stepping schemes [Stu08].

Event-driven approaches are often not the preferred
choice for interactive simulation. The reason being that it
can be highly unpredictable how many events need to be
processed before reaching the next frame in ones simulation.
Thus, sometimes ones simulator appears to be fast and at
other times it may even stagnate. For configurations with a
lot of dynamic and fast moving objects that bounce around
an event-driven approach can be very efficient. However, for
large piles or stacks of objects undergoing some transient
salient motion the rate of events can explode and stagnate
the simulation. This is one of the reasons why fixed time-
stepping schemes are preferred as they always take one step
ahead in time no matter what the interaction is. The compu-
tational cost of a time-stepping scheme often scales in the
number of constraints. However, with iterative methods this
scaling can be as fast as linear and often the number of itera-
tions can be bounded yielding a fast simulator with a highly
reliable predictable performance. The smoothing approach
bare some similarity to the penalty-based paradigms which
we cover later and suffers from the same difficulties.

Baraff [Bar93b] applies the terms Continuous methods
(originally Baraff termed this continuum methods but com-
munity seems to have converged on the term continuous col-
lision detection [vdB05,ZRLK07]) and discrete methods for
dealing with the numerical time aspect of collision detec-
tion and contact point generation methods. The discrete set-
ting can be thought of as taking a photograph and compute
all geometric and physical information from that time in-
stant. In such an approach one really does not know what
occurs between two consecutive discrete points in time. The
continuous methods on the other hand resolves what occurs
over time intervals. Baraff describes two groups of simu-
lation methods for dealing with constraints. One is termed
constraint-based methods and the other is termed the penalty
methods. In the first group constraint forces are solved for

© The Eurographics Association 2012.

124

J. Bender et al. / Interactive Rigid Body Simulation

analytically such that they exactly fulfill the constraints of
the system. In the second method constraints are rephrased
as penalty functions in an optimization sense [NW99]. Later
Baraff [Bar94] adopted the term analytical methods to de-
scribe methods that compute contact/constraint forces in an
analytical setting (like solving a linear system of equations
or an linear complementarity problem) that fulfills the im-
posed constraints. These terms are essentially a classification
of which type of numerical method that is used to find a solu-
tion for a system of constraints whether that is expressed as a
linear system of equations or a more complex mathematical
formulation like a complementarity problem formulation.
More recently people make the distinction between direct
methods and iterative methods [Stu08,KSJP08,BDCDA11].
Again, this is a classification of the numerical method ap-
plied.

Early work tended to use direct methods based on piv-
oting for solving complementarity problem formulations
[Bar94, ST96, AP97b]. For interactive simulations it was
quickly recognized that these type of numerical methods
scaled too poorly although they were accurate. To deliver a
fast performance that scales well iterative methods have been
employed. In particular Gauss–Seidel like methods [Mor99,
Jea99, Erl07, Stu08, CA09] have been investigated. Proper
exploitation of matrix factorizations allow these type of iter-
ative methods to scale linearly in the number of constraints.
The poor convergence of Gauss–Seidel type solvers have
been countered by Newton-type algorithms [AC91, Ort07,
EO08,SNE09,BDCDA11] that offer a theoretical second or-
der convergence rate over the linear rate of Gauss–Seidel
type solvers. Linear scaling can be obtained for Newton-
type methods resulting in Quasi-Newton methods this sac-
rifices the convergence rate though. A well-known Newton
type solver is the PATH solver [FM99,Pat05]. One downside
of PATH is that it needs a global coefficient matrix and for
that reason it scales quadratic in the number of constraints.

Other authors refer to models that are based on the dy-
namics and assumed force laws formulated as constraints
as constraint-based paradigms and make the distinction of
whether they are formulated on a position, velocity or ac-
celeration based level [ST96, AP97b, CR98, MS01, KEP05,
Erl05, TNA08, KSJP08, TNA∗10, BDCDA11]. This type of
paradigm shares some similarity traits with the contact
dynamics approaches of Moreau and the constraint-based
methods of Baraff. Constraint-based paradigms are often
further subdivided into being maximal or reduced coordi-
nate formulations. This refers to whether knowledge of joint
constraints are used to remove unneeded degrees of freedom
from ones system of equations. If such action is taken, a re-
duced formulation is created containing a smaller number
of variables, hence the term “reduced”. Maximal coordinate
formulations on the other hand do not reduce the number of
variables but rather keep joint constraints as an extra set of
equations that must be fulfilled. The work of Armstrong and
Green, and Featherstone [AG85,Fea87] are examples of nu-

merical methods that in a recursive manner very efficiently
finds solutions to a reduced coordinate formulation whereas
Baraff [Bar96] is an example that works with a maximal co-
ordinate formulation where sparsity pattern of the first-order
optimality conditions (known as the KKT-matrix [NW99]) is
exploited to find solutions for Lagrange multipliers in linear
time. The sparsity pattern arises from tree-like jointed mech-
anism. The term penalty-based paradigms seems to have
converged on the meaning that some type of repulsive force
is used to penalize violations of constraints or penetrations.
Recent work tend to compute penalty forces based on vol-
ume violation, i.e. the actual overlapping volume [AFC∗10].
In the same spirit impulse-based paradigms refers to models
that approximate continuous contact with a series of instan-
taneous contacts [Mir96b, Mir00, GBF03]. Thus, the above
simulation paradigms each classify the underlying model of
the physical interaction as being based on penalty forces,
collision impulses (i.e. instantaneous impacts) or some si-
multaneous mathematical formulation of the whole system.

Penalty-based paradigms are notoriously hard to work
with, since it requires extensive parameter tweaking to per-
form optimally. Physical plausibility is hard to achieve with
this paradigm, in part because collisions are never solved
exactly, making stable stacking nearly impossible to simu-
late. The impulse-based paradigms is simple to implement,
however, stable stacking is often difficult to achieve. This
has been improved upon in later work with a technique of
shock-propagation [GBF03]. The constraint-based paradigm
has become the paradigm of choice in many interactive rigid
body simulators [Smi00, Cou05] as it offers both great con-
trol and stability.

Maximal coordinate formulations are in computer ani-
mation dominated by complementarity formulations. There
exist alternatives on kinetic energy [MS01] and motion
space [RKC03]. However, the former solves a more gen-
eral problem but is not attractive for performance reasons,
and the latter is of limited use for realistic animation since it
does not include friction. Recently Kaufman et al. [KEP05]
presented a velocity-based method using projections onto
convex subspaces of feasible velocities. The authors used a
contact model, which is based on limit surfaces and prin-
ciple of maximum dissipation [GRP89] , together with an
ad-hoc model for bounciness and an approximation of mo-
mentum conservation. Kaufman et al. [KSJP08] also ex-
plored an iterative staggered approach for solving a velocity-
level linear complementarity problem for contact problems
by splitting the solver iterating into a normal force only
solve followed by a friction only solve phase. Neither the
2005 nor the 2008 work was for interactive simulation.
Recently, Newton type methods have been explored [BD-
CDA11] which apply a blocking strategy for solving the
Newton system. The model is very similar to original work
by Alart and Curnier [AC91]. The focus in this work is
contact problem for hair and not rigid bodies, in fact the
solver has problems dealing with the often overdetermancy

© The Eurographics Association 2012.

125

J. Bender et al. / Interactive Rigid Body Simulation

and large mass ratio properties encountered in rigid body
dynamics. Complementarity formulations come in two fla-
vors: acceleration-based formulations [Bar94, Bar95] and
velocity-based formulations [ST96]. Acceleration-based for-
mulations cannot handle collisions, and one must stop at
the point of collision and switch to a impulse-momentum
law [BWAK03,PW96,AP97b,Cha99]. Further, acceleration-
based formulations suffer from indeterminacy and incon-
sistency [Ste00]. Although mostly overlooked in the com-
puter graphics literature, the velocity-based formulation suf-
fers from none of these drawbacks.

One other way to classify methods is by examining the un-
derlying assumptions applied in their models of contact. For
instance many impulse-based simulators apply a sequential
(or propagating) contact model. Here, a local contact model
of what happens during an instantaneous collision at a single
point of contact between two rigid bodies is applied in a one-
by-one sequential manner. Whereas many complementarity-
based formulations take a more global view and use a si-
multaneous contact model that describe how the dynamics is
coupled through multiple contacts between multiple objects
[PG96,CR98,Mos07]. Impulse-based methods are examples
of sequential models whereas complementarity problem for-
mulations are simultaneous models of contact. One can fur-
ther distinguish a contact model as being a hard (also called
nonsmooth) or smooth contact model. The complementar-
ity constraints used for non-penetration constraints are ex-
amples where a hard contact model is applied whereas the
penalty force formulation is an example of an application of
a smooth model. Of course one may add compliance or regu-
larization to a hard contact model making it more smooth. It
is often easier to model propagation/wave effects using local
contact models or soft contact models whereas nonsmooth
constraints often rely on simultaneous contact models and
disregard any kind of propagation/wave effect.

A real-life working rigid body simulator is often not lim-
ited solely to one type of paradigm or contact model. Of-
ten things are combined in an ingenious and careful man-
ner. Each piece of a simulator combats different artifacts and
helps ensuring robustness and stability of the simulator. For
instance position-level constraint-based formulation may be
used to compute projections of rigid bodies in order to re-
move penetration errors or a penalty-based paradigm may
be used to stabilize discretization errors of the ordinary dif-
ferential equations as they evolve the system state in time.
For example joint drifting in maximal coordinate formula-
tions are countered through stabilization terms acting much
like penalty forces. Compliance is added to nonsmooth con-
tact models by adding a penalty force term making pure rigid
bodies behave as quasi-rigid bodies.

For interactive simulators some common trends appear
to be velocity-based constraint-based paradigms using fixed
time-stepping methods. Reduced coordinate formulations
are also widely popular for character animation as these by

“design” do not visually appear to suffer from discretization
errors and usually can deal with high speed moving limbs of
a character.

7.2. Commercial and Open Source Software Solutions

There exist many open source alternatives like Bullet,
Open Dynamics Engine (ODE), Newton Game Dynam-
ics, daVinci code (dVC3d), Dynamo, dynamY, LMGC90,
Jingine, Box2D, OpenTissue, IBDS as well as more com-
mercial alternatives such as Vortex from CMLabs, PhysX
from NVIDIA, Havok or Algoryx.

Most of these are multi-purpose physics engines and
usually implement several methods: several different con-
straint solvers, friction models, collision detection method
etc. ODE for example has both a pivoting/direct method and
iterative methods such as blocked projected Gauss–Seidel
(PGS). Bullet have similar iterative methods and is exploring
nonsmooth nonlinear conjugate gradient methods as well.
Recently many has focused on using GPUs in their simu-
lators such as ChronoEngine, SOFA, PhysX and Bullet. The
algorithmic choices are still based on iterative methods in
these works.

Most game physics engines use a constraint solver based
on iterative methods like the ones known from ODE and
Bullet. The methods are confusingly named “sequential im-
pulses” by the computer gaming community but the mod-
els are based on the constraint based paradigm and are
solved using an iterative method such as PGS or similar.
Although the constraint based paradigm has rooted itself as
a very dominant method there are examples of other types
of rigid body simulators. SIMPACK is such an example us-
ing a penalty based paradigm based on computing contact
forces from volume overlaps. One difficulty of the penalty
based approaches is often that they have many parameters
and stability can be hard to come by at times this makes
one abandon using physical meaningful parameter values.
Examples of the impulse based paradigm and reduced coor-
dinate method may be found in DynaMech.

The robotics community have made good use of rigid
body simulators and large open source simulation frame-
works such as Gazebo or Weebots are build on top of the
ODE simulator. Commercial alternatives also exist like Mi-
crosofts Robot Simulator that utilities the PhysX engine. The
frameworks offer a large library of existing joint and motor
models as well as different kinds of controllers. Thus, allow-
ing robot designers to test ideas and do off line programming
of their control algorithms. Very detailed contact simulations
can be done with simulators such as Adams from MSC soft-
ware. These are often based on finite element methods and
penalty based paradigms and are often not even near to in-
teractive simulation.

Many authoring tools like Blender, Maya, Cinema 4D,
LightWave, Houdini, 3ds Max, Autocad etc. offer rigid body

© The Eurographics Association 2012.

126

J. Bender et al. / Interactive Rigid Body Simulation

simulation as their features. Most of such tools even offer a
variety of plug ins allowing users to pick and choose be-
tween which rigid body simulator they wish to use. Ren-
der engines like Ogre3D provides plug-ins for most of the
popular rigid body simulators. The need for being able to
switch one simulator for another has motivated initiatives
such as COLLADA which is an XML scheme for describing
rigid body physics in digital content and open PAL (Physics
Abstraction Layer) which offers a common application pro-
gramming interface for many rigid body simulators.

7.3. Benchmarking and Validation of Simulators

Few examples of benchmark tests and simulator compari-
son tests exist in the computer graphics literature [LH00a,
LH00b, AS06, BB07, WM09, WSM∗10]. These limit them-
selves to case-by-case studies comparing simulated results
against analytical results or by feature list comparisons. No
benchmark databases exist with both simulation setups and
ground truth data. Looking at experiments and results from
research papers several tendencies about common practice
can be extracted. In summary, computer graphics rarely per-
form temporal convergence studies, rather focus is on cre-
ating stable and robust simulators that work with large time
steps. Thus, there is little point in examining what happens
if the time-step size goes to zero. In a similar fashion con-
straint errors are rarely examined in detail. From animation
viewpoint this can be justified as a simulation may appear
plausible as long as any constraint error is less than the size
of a pixel and thus can not be seen by the naked eye. Com-
puter graphics tends to care more about generality and ro-
bustness of a simulator than whether it can accurately re-
produce a contact force to some given numerical precision.
This is often exemplified by showing several simulation re-
sults from production environment like scenarios taking ro-
bustness and generality to the extreme. These are of course
over-simplifying statements that would not be valid in all ap-
plication areas of interactive rigid body simulation but holds
for many cases of entertainment where focus is more on cre-
ating interesting motions than correct motions.

Statistics Many works settle with reporting the number of
bodies, constraints, contact points and the frame time for se-
lected test cases [Bar94, GBF03, WTF06, WGF08, SSF09].
Some work report more detailed wall-clock times as a func-
tion of frames [KEP05]. Others investigate convergence
rates of iterative solvers [Lac03, Erl07]. Often single test
cases are constructed showing how a simulator can deal
robustly with different types of simulation [Mir96b, AS06,
BB07]. In our view for interactive simulation it is often of
interest not only to know average numbers, but also mini-
mum, maximum and variance are important to figure out the
range of applications a simulator can be used for.

Accuracy and Error Correction Piles of objects are
very popular, and stable stacking like towers or card

Figure 15: Test-cases often used to test accuracy and error
correction in interactive rigid body simulation.

Figure 16: The model of Newton’s cradle is a test-case for
a correct impulse propagation.

houses [GBF03, KEP05, WTF06, Erl07, KSJP08, AFC∗10].
Examples are shown in Figure 15. Some works address scal-
ing by increasing the number of objects or joints and report-
ing how computation time is affected by this [MS04,Ben07].
Some papers introduce test cases like a block sliding on a in-
clined plane which allows one to validate the friction law or
visually identify creeping problems [Mir96b,SSF09]. Dense
structured stacks are very good for verifying the accuracy
of contact force computations and to determine if error cor-
rection is working properly [Erl07]. Dense stacks usually
severely suffer from constraint overdetermancy (i.e. redun-
dancy in contact point information) and therefore stress the
numerical methods. Iterative methods often deal very well
with overdetermancy whereas other methods suffer from the
singularity that appears in the coefficient matrix due to the
overdetermancy. Static structures like the card house or dry
stone masonry structures like a stone arch are excellent for
testing a simulator’s ability to accurately reproduce static
friction. In real-life it is basically static friction that holds
these kind of structures in place [Erl07,KSJP08]. Dominoes
falling down is also often used to test if friction makes the
dominoes come to rest [Mir96b].

Proper Event Handling Dynamic examples include the
see-saw which is great for stressing event-driven approaches
and showing impulse propagation [Mir96b]. The Newton

© The Eurographics Association 2012.

127

J. Bender et al. / Interactive Rigid Body Simulation

Figure 17: Test-cases that can reveal problems with freezing
(sleeping policies). If too aggressive bricks will hang unnat-
urally in the air.

cradle (see Figure 16) can be used to determine whether
a simulator’s underlying model is a simultaneous contact
model or a sequential contact model. Falling dominoes are
often used as a test case for event-driven schemes [Mir96b].
Destruction of buildings as shown in Figure 17 can be help-
ful to test if sleeping policies (freezing) is too aggressive or
even if it is present [Erl05]. Configurations with an in-build
designed jamm (like billard balls in a racket) can be used to
test whether simulators terminate in case they use a sequen-
tial contact model or if they can deal gracefully with errors
and symmetries.

Numerical Methods Examples of objects being wedged
have a tendency to stress the numerics. In particular if the
setup is created in an illegal state. These types of tests mimic
the effect of a real-life user doing “bad” things. The tests are
thus helpful in determining if an interactive simulator is ro-
bust and stable. Large mass ratio tests are extremely good at
stressing the numerical properties of simulators like a heavy
box placed on top of a light box [SNE09]. Structured stacks
exhibit some of these mass-ratio problems as the bottom-
most objects feel the weight of all objects lying on top of
them. Most iterative methods have difficulties dealing accu-
rately with large mass ratios within a limited time budget
or they converge so badly that even infinite amount of iter-
ations won’t help. Thus, large mass ratios are well suited as
worst-case scenarios for the numerical methods.

Joints Vehicles or spinning wheels during a turning mo-
tion are stressful for most maximal coordinate formulations
as turning the high speed wheel axis can make wheels nu-
merically fly off. This is caused by discretization errors that
are enhanced by applying large-time steps and using infinite
orientations. Most engines have special fixes for this well-
known problem. To stress joint drifting errors in maximal
coordinate formulations large mass objects can be connected
through joints to an articulated figure that is pinned down.
Much like a prisoner in a jail with a ball and chain attached
to the legs.

Gyroscopic Forces The tippe top and rattleback (see Fig-
ure 18) are famous test cases for testing if gyroscopic forces
are working as expected in a simulator. Many game engines
have a tendency to simplify the gyroscopic forces as they
are a major cause to numerical stability problems prohibit-

ing large time-steps. Thus, a case such as the tippe top can
be used for identifying these problems.

Figure 18: Rattleback (left) and tippe top (right) are good
test cases for correct handling of gyroscopic forces.

Interactivity Performance is critical to achieve interactive
interaction. Thus, scalability testing is very interesting to see
how large problems one can deal with at interactive rates.
Robustness in interactive applications is more difficult to
verify. Goal oriented tasks like stacking objects and tipping
the stack without making it fall down have been used for
simulators running under extreme conditions to test robust-
ness towards user interaction as shown in Figure 19 and Fig-
ure 20.

Generality and Robustness Often simulations of complex
scenes or interactions like interlocked gears or moving belt
tracks are used to demonstrate generality and robustness of
a simulation method [WGF08,SNE10a]. Complex geometry
is often of interest in particular from a production viewpoint
where concave surfaces and/or sharp features of the geome-
tries may be encountered. However, from a contact mechan-
ics viewpoint most contact laws being used are planar thus
computing any contact forces at any given discrete instant in
time is completely independent of the curvature of the sur-
face. It is only when time-stepping comes in play that things
may go wrong as surfaces may have higher “order” than the
contact laws and time-integration methods being used. For
fixed-time-stepping methods it is often not meaningful to
use higher order integration schemes due to the fact that the
contact laws are planar. Letting a box slide down a curved
slope can be a good test case for illustrating these kind of
problems. Some illustrations of complex scenes are shown
in Figure 21.

Figure 19: Test-cases for interactive testing. Bricks are
pulled rapidly out of a wall without making the wall col-
lapse.

© The Eurographics Association 2012.

128

J. Bender et al. / Interactive Rigid Body Simulation

Figure 20: Goal oriented task based testing for interactivity.
Stacks of objects are to be created and tipped over without
falling down.

Figure 21: More complex interacting geometry showing ro-
bustness.

Physical Correctness Time plotting mechanical energy as
well as kinetic and potential energy can help analyze physi-
cal correctness of ones simulator. Time plots of linear and
angular momentum can be useful in this manner [AS06].
This allows one to validate if the physical conservation laws
are fulfilled. One may test physical laws from simple phys-
ical test systems. For instance for impact laws one may test
the proper effect of setting the coefficient of restitution. Slid-
ing friction can be validated using for instance a box slid-
ing down a plane. Inertia can be tested by spinning objects
and verify if the proper axis of rotation is reached. In many
cases one can from sufficient simple tests derive analytical
results to compare against simulated results. For interactive
simulators it can be quite useful to compare against a non-
interactive but very high-fidelity simulator to confirm that
similar simulation results are obtained.

Performance and Numerical Properties Many works
list performance measurements as average frame times or
frames per second achieved for a small portfolio of test
cases [Bar94, GBF03, WTF06, WGF08, SSF09]. There are
examples of papers doing complexity analysis and compar-
ing against scalability studies, i.e. plotting computing time
as a function of problem size [RGL05, PNE10, SNE10b].
For multi-core approaches speedup factors and floating point

operations per second are plotted [CA09]. It is however not
always clear what is the base reference that is compared
against. In our view best practice should be an optimal tuned
state-of-the-art solution. Detailed time-measurements of
each sub-part of a simulator can be very helpful in analyzing
performance bottlenecks too [KEP05]. Convergence plots of
iterative methods are very helpful for determining a solvers
ability to converge fast or slow [Lac03, Erl07]. Investigating
how convergence error changes as a function of parameter
choices (parameter studies) is a very methodical approach to
find values suitable for robust interactive applications [BD-
CDA11]. Others compare against state-of-the-art competing
methods [KSJP08, SNE10b].

Perception The saying that in computer graphics if it looks
good then it is good is often stated by simulation people.
The question is how one can quantify and measure if this is
true. Although the literature is sparse, perception and user
sensitivity studies have been performed [OD01, ODGK03,
RP03, NLB∗07, RO09]. Among other things these studies
have shown that users find it hard to detect abnormalities in
spinning objects and more difficult to detect abnormalities
in collisions between complex objects than between simpler
objects such as spheres. From these studies perception er-
ror metrics are developed. In principle such metrics could
be used to validate if ones simulation results looks “good”.
However, simulation papers rarely do so.

8. Conclusion and Future Work

Interactive rigid body simulations have become an important
part in different application areas. Such a simulation requires
efficient and accurate methods for handling joint and contact
constraints as well as a fast collision detection.

The simulation of more complex scenes and improve-
ments of accuracy are current goals in this field. To reach
these goals massively parallel GPUs and multi-core proces-
sors are taken into account. This parallelization trend re-
quires a computational rethinking and provides the possibil-
ity to develop new efficient algorithms.

In the last years much research has been done on cou-
pling of rigid body simulations with other animation and
simulation techniques. One topic in this area is the combina-
tion of techniques like inverse kinematics with rigid bodies.
Another important one is the coupling of rigid bodies with
fluids [CMT04,RMSG∗08,RMEF09], cloth and deformable
bodies [SSIF07, SSF08]. Coupling allows the usage of dif-
ferent kinds of bodies in the same simulation environment
by simulating the interaction between these bodies.

Simulation is a good way to generate realistic looking an-
imations. But compared to keyframe techniques there is one
big drawback. The results of a simulation can only be con-
trolled indirectly by manipulating simulation parameters or
adding forces to the system. Many physical parameters have

© The Eurographics Association 2012.

129

J. Bender et al. / Interactive Rigid Body Simulation

to be defined for a simulation. It is hard to reach certain
predefined goals just by tweaking these parameters. There-
fore, more control over the simulation is required. In order
to solve this problem different methods have been developed
which give a high-level control to the user. Some works pro-
pose inverse dynamics methods [PSE03, TJ08], others per-
form multiple simulations and discard unfitting ones [TJ07].
These methods let the user sketch a desired motion or de-
fine specific goals which must be reached by the simulation.
But controlling the simulation is still a problem where much
work has to be done.

References

[AC91] ALART P., CURNIER A.: A mixed formulation for fric-
tional contact problems prone to newton like solution methods.
Comput. Methods Appl. Mech. Eng. 92 (November 1991), 353–
375. 31

[ACPR95] ASCHER U. M., CHIN H., PETZOLD L. R., REICH
S.: Stabilization of constrained mechanical systems with daes
and invariant manifolds. Journal of Mechanics of Structures and
Machines 23 (1995), 135–158. 18

[AFC∗10] ALLARD J., FAURE F., COURTECUISSE H., FALIPOU
F., DURIEZ C., KRY P. G.: Volume contact constraints at arbi-
trary resolution. ACM Trans. Graph. 29 (July 2010), 82:1–82:10.
31, 33

[AG85] ARMSTRONG W. W., GREEN M. W.: The dynamics of
articulated rigid bodies for purposes of animation. The Visual
Computer 1, 4 (1985), 231–240. 2, 31

[Alg11] Algoryx. http://www.algoryx.se, 2011. 4

[AP97a] ANITESCU M., POTRA F.: Formulating multi-rigid-
body contact problems with friction as solvable linear comple-
mentarity problems. ASME Journal of Nonlinear Dynamics 14
(1997), 231–247. 16

[AP97b] ANITESCU M., POTRA F. A.: Formulating dynamic
multi-rigid-body contact problems with friction as solvable lin-
ear complementarity problems. Nonlinear Dynamics. An Inter-
national Journal of Nonlinear Dynamics and Chaos in Engineer-
ing Systems (1997). 31, 32

[AS06] AXEL SEUGLING M. R.: Evaluation of Physics Engines
and Implementation of a Physics Module in a 3d-Authoring Tool.
Master’s thesis, Department of Computing Science, Umeå Uni-
versity, Sweden., March 2006. 33, 35

[Bar89] BARAFF D.: Analytical methods for dynamic simulation
of non-penetrating rigid bodies. SIGGRAPH Comput. Graph. 23,
3 (1989), 223–232. 2, 30

[Bar90] BARAFF D.: Curved surfaces and coherence for non-
penetrating rigid body simulation. In SIGGRAPH ’90: Proceed-
ings of the 17th annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1990), ACM, pp. 19–
28. 29, 30

[Bar93a] BARAFF D.: Issues in computing contact forces for non-
penetrating rigid bodies. Algorithmica. An International Jour-
nal in Computer Science 10, 2-4 (1993), 292–352. Computa-
tional robotics: the geometric theory of manipulation, planning,
and control. 30

[Bar93b] BARAFF D.: Non-penetrating rigid body simulation. In
in State of the Art Reports, Eurographics ’93. Eurographics As-
sociation, Barcelona, Spain, September 1993. 1, 2, 30

[Bar94] BARAFF D.: Fast contact force computation for nonpen-
etrating rigid bodies. In SIGGRAPH ’94: Proceedings of the 21st
annual conference on Computer graphics and interactive tech-
niques (1994). 3, 21, 22, 30, 31, 32, 33, 35

[Bar95] BARAFF D.: Interactive simulation of solid rigid bodies.
IEEE Comput. Graph. Appl. 15, 3 (1995), 63–75. 30, 32

[Bar96] BARAFF D.: Linear-time dynamics using lagrange mul-
tipliers. In SIGGRAPH ’96: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1996), ACM Press, pp. 137–146. 17, 30, 31

[Bau72] BAUMGARTE J. W.: Stabilization of constraints and in-
tegrals of motion in dynamical systems. Computer Methods in
Applied Mechanics and Engineering 1 (1972), 1–16. 18

[BB88] BARZEL R., BARR A. H.: A modeling system based
on dynamic constraints. In SIGGRAPH ’88: Proceedings of the
15th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1988), ACM, pp. 179–188. 17

[BB07] BOEING A., BRÄUNL T.: Evaluation of real-time physics
simulation systems. In Proceedings of the 5th international
conference on Computer graphics and interactive techniques
in Australia and Southeast Asia (New York, NY, USA, 2007),
GRAPHITE ’07, ACM, pp. 281–288. 33

[BB08] BENDER J., BAYER D.: Parallel simulation of inexten-
sible cloth. In Virtual Reality Interactions and Physical Simula-
tions (VRIPhys) (Grenoble (France), Nov. 2008), pp. 47–56. 27

[BBD09] BAYER D., BENDER J., DIZIOL R.: Impulse-based dy-
namic simulation on the GPU. In Computer Graphics and Vi-
sualization (CGV 2009) - IADIS Multi Conference on Computer
Science and Information Systems (Algarve (Portugal), 2009). 27

[BBZ91] BADLER N., BARSKY B., ZELTZER D.: Making them
move: mechanics, control, and animation of articulated figures.
Morgan Kaufmann series in computer graphics and geometric
modeling. Morgan Kaufmann Publishers, 1991. 2

[BCL09] BUATOIS L., CAUMON G., LEVY B.: Concurrent num-
ber cruncher: a GPU implementation of a general sparse linear
solver. Int. J. Parallel Emerg. Distrib. Syst. 24 (June 2009), 205–
223. 27

[BDB09] BAYER D., DIZIOL R., BENDER J.: Optimized
impulse-based dynamic simulation. In Virtual Reality Interac-
tions and Physical Simulations (VRIPhys) (Karlsruhe (Germany),
Nov. 2009), pp. 125–133. 19

[BDCDA11] BERTAILS-DESCOUBES F., CADOUX F., DAVIET
G., ACARY V.: A nonsmooth newton solver for capturing ex-
act coulomb friction in fiber assemblies. ACM Trans. Graph. 30
(February 2011), 6:1–6:14. 31, 35

[Ben07] BENDER J.: Impulse-based dynamic simulation in linear
time. Computer Animation and Virtual Worlds 18, 4-5 (2007),
225–233. 18, 19, 20, 33

[Ber04] BERGEN G.: Collision detection in interactive 3D envi-
ronments. The Morgan Kaufmann series in interactive 3D tech-
nology. Morgan Kaufman Publishers, 2004. 28, 29

[Ber09] BERARD S.: Using Simulation for Planning and Design
of Robotic Systems with Intermittent Contact. PhD thesis, Rens-
selaer Polytechnic Institute, Department of Computer Science,
2009. 11

[BFGS03] BOLZ J., FARMER I., GRINSPUN E., SCHRÖDER P.:
Sparse matrix solvers on the GPU: conjugate gradients and multi-
grid. ACM Trans. Graph 22 (2003), 917–924. 27

[BFS05] BENDER J., FINKENZELLER D., SCHMITT A.: An
impulse-based dynamic simulation system for VR applications.
In Proceedings of Virtual Concept 2005 (Biarritz, France, 2005),
Springer. 18

© The Eurographics Association 2012.

130

http://www.algoryx.se

J. Bender et al. / Interactive Rigid Body Simulation

[BG09] BELL N., GARLAND M.: Implementing sparse matrix-
vector multiplication on throughput-oriented processors. In Pro-
ceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (New York, NY, USA, 2009),
SC ’09, ACM, pp. 18:1–18:11. 27

[BG10] BERGEN G., GREGORIUS D.: Game Physics Pearls.
A.K. Peters, 2010. 29

[BHW96] BARZEL R., HUGHES J. F., WOOD D. N.: Plausible
motion simulation for computer graphics animation. In Proceed-
ings of the Eurographics workshop on Computer animation and
simulation ’96 (1996), Springer-Verlag New York, Inc., pp. 183–
197. 4

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simulation of
clothing with folds and wrinkles. In SCA ’03: Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation (Aire-la-Ville, Switzerland, Switzerland, 2003), Euro-
graphics Association, pp. 28–36. 29

[Bra91] BRACH R. M.: Mechanical Impact Dynamics: Rigid
Body Collisions. John Wiley and Sons, New York, 1991. 9

[BS06a] BENDER J., SCHMITT A.: Constraint-based collision
and contact handling using impulses. In Proceedings of the
19th international conference on computer animation and social
agents (Geneva (Switzerland), July 2006), pp. 3–11. 19

[BS06b] BENDER J., SCHMITT A.: Fast dynamic simulation of
multi-body systems using impulses. In Virtual Reality Interac-
tions and Physical Simulations (VRIPhys) (Madrid (Spain), Nov.
2006), pp. 81–90. 18, 19, 20

[BWAK03] BARAFF D., WITKIN A., ANDERSON J., KASS M.:
Physically based modeling. Siggraph Course Notes, 2003. 20,
32

[CA09] COURTECUISSE H., ALLARD J.: Parallel Dense Gauss-
Seidel Algorithm on Many-Core Processors. In High Perfor-
mance Computation Conference (HPCC) (jun 2009), IEEE CS
Press. 4, 28, 31, 35

[CEA11] CEA LIST. http://www-list.cea.fr, 2011. 4

[Cha99] CHATTERJEE A.: On the realism of complementarity
conditions in rigid body collisions. Nonlinear Dynamics 20, 2
(October 1999), 159–168. 32

[CK90] CASH J. R., KARP A. H.: A variable order runge-kutta
method for initial value problems with rapidly varying right-hand
sides. ACM Transactions on Mathematical Software 16, 3 (1990),
201–222. 21

[Cla90] CLARKE F.: Optimization and Nonsmooth Analysis. So-
ciety for Industrial Mathematics, 1990. 26

[CM 11] CM LABS: Vortex - behaviour in motion. http://
www.vxsim.com, 2011. 4

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid fluid:
animating the interplay between rigid bodies and fluid. ACM
Trans. Graph. 23 (August 2004), 377–384. 35

[Con93] CONTENSOU P.: Kreiselprobleme und Gyrodynamics,
IUTAM Symposium Celerina, 1962. Springer-Verlag, Berlin,
1993, ch. Couplage entre frottement de glissement et frottement
de pivotement dans la thÃl’orie de la toupie, pp. 201–216. 8

[Cou05] COUMANS E.: The bullet physics library. http://
www.bulletphysics.org, 2005. 2, 29, 31

[Cou12] COUMANS E.: Coumans experiments. Published online
at https://github.com/erwincoumans/experiments, January 2012.
Open source experiments and research for the Bullet physics en-
gine. 28

[CPN11] CPNET: Complementarity problem net. http://
www.cs.wisc.edu/cpnet, 2011. 13

[CPS92a] COTTLE R., PANG J.-S., STONE R. E.: The Linear
Complementarity Problem. Academic Press, 1992. 21

[CPS92b] COTTLE R. W., PANG J., STONE R. E.: The Linear
Complementarity Problem. Academic Press, 1992. 11, 13

[CR98] CHATTERJEE A., RUINA A.: A new algebraic rigid body
collision law based on impulse space considerations. Journal of
Applied Mechanics 65, 4 (1998), 939–951. 9, 31, 32

[CTM08] CURTIS S., TAMSTORF R., MANOCHA D.: Fast
collision detection for deformable models using representative-
triangles. In I3D ’08: Proceedings of the 2008 symposium on In-
teractive 3D graphics and games (New York, NY, USA, 2008),
ACM, pp. 61–69. 29

[Cyb09] CYBERBOTICS: Webots 6. http://www.
cyberbotics.com/products/webots, 2009. 4

[dJB94] DE JALON J. G., BAYO E.: Kinematic and Dynamic
Simulation of Multibody Systems: the Real Time Challenge.
Springer-Verlag, New York, 1994. 17

[EO08] ERLEBEN K., ORTIZ R.: A non-smooth newton method
for multibody dynamics. In ICNAAM 2008. International con-
ference on numerical analysis and applied mathematics 2008
(2008). 31

[Eri04] ERICSON C.: Real-Time Collision Detection. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004. 28

[Erl05] ERLEBEN K.: Stable, Robust, and Versatile Multibody
Dynamics Animation. PhD thesis, Department of Computer Sci-
ence, University of Copenhagen (DIKU), 2005. 29, 31, 34

[Erl07] ERLEBEN K.: Velocity-based shock propagation for
multibody dynamics animation. ACM Transactions on Graph-
ics (TOG) 26, 2 (2007), 12. 31, 33, 35

[Erl11] ERLEBEN K.: num4lcp. Published online at
code.google.com/p/num4lcp/, October 2011. Open source
project for numerical methods for linear complementarity prob-
lems in physics-based animation. 25

[ESHD05] ERLEBEN K., SPORRING J., HENRIKSEN K.,
DOHLMANN H.: Physics-based Animation. Charles River Me-
dia, Aug. 2005. 5

[Fea87] FEATHERSTONE R.: Robot dynamics algorithms.
Kluwer international series in engineering and computer science:
Robotics. Kluwer Academic Publishers, 1987. 20, 31

[Fea07] FEATHERSTONE R.: Rigid Body Dynamics Algorithms.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007. 19,
20

[FM99] FERRIS M. C., MUNSON T. S.: Interfaces to path 3.0:
Design, implementation and usage. Comput. Optim. Appl. 12
(January 1999), 207–227. 16, 31

[FO00] FEATHERSTONE R., ORIN D.: Robot dynamics: Equa-
tions and algorithms. International Conference on Robotics and
Automation (2000), 826–834. 20

[GBF03] GUENDELMAN E., BRIDSON R., FEDKIW R.: Non-
convex rigid bodies with stacking. ACM Trans. Graph. (2003).
3, 20, 29, 31, 33, 35

[GJK88] GILBERT E. G., JOHNSON D. W., KEERTHI S. S.: A
fast procedure for computing the distance between complex ob-
jects in three-dimensional space. Robotics and Automation, IEEE
Journal of 4, 2 (1988), 193–203. 29

[Goy89] GOYAL S.: Planar Sliding of a Rigid Body with Dry
Friction: Limit Surfaces and Dynamics of Motion. PhD thesis,
Department of Mechanical Engineering, Cornell University, Jan-
uary 1989. 9, 11

© The Eurographics Association 2012.

131

http://www-list.cea.fr
http://www.vxsim.com
http://www.vxsim.com
http://www.bulletphysics.org
http://www.bulletphysics.org
http://www.cs.wisc.edu/cpnet
http://www.cs.wisc.edu/cpnet
http://www.cyberbotics.com/products/webots
http://www.cyberbotics.com/products/webots

J. Bender et al. / Interactive Rigid Body Simulation

[GPS02] GOLDSTEIN H., POOLE C., SAFKO J.: Classical me-
chanics. Addison Wesley, 2002. 5, 17, 19

[GRP89] GOYAL S., RUINA A., PAPADOPOULOS J.: Limit sur-
face and moment funktion descriptions of planar sliding. In Proc.
of the 1989 IEEE International Conference on Robotics and Au-
tomation (Vol. 2) (Scottsdale, AZ, 1989), pp. 794–799. 31

[Had06] HADAP S.: Oriented strands: dynamics of stiff multi-
body system. In Proceedings of the 2006 ACM SIGGRAPH/Eu-
rographics symposium on Computer animation (Aire-la-Ville,
Switzerland, Switzerland, 2006), SCA ’06, Eurographics Asso-
ciation, pp. 91–100. 20

[Hah88] HAHN J. K.: Realistic animation of rigid bodies. In
SIGGRAPH ’88: Proceedings of the 15th annual conference on
Computer graphics and interactive techniques (1988). 2, 30

[Har08] HARADA T.: Real-time rigid body simulation on GPUs.
In GPU Gems 3, Nguyen H., (Ed.). Addison-Wesley, 2008,
pp. 611–632. 27

[Har11] HARADA T.: A parallel constraint solver for a rigid body
simulation. In SIGGRAPH Asia 2011 Sketches (New York, NY,
USA, 2011), SA ’11, ACM, pp. 22:1–22:2. 28

[INR11] INRETS: Driving simulator links. http://www.
inrets.fr/ur/sara/Pg_simus_e.html, 2011. 4

[Jea99] JEAN M.: The non-smooth contact dynamics method.
Computer Methods in Applied Mechanics and Engineering 177,
3–4 (July 1999), 235–257. 24, 30, 31

[JTT00] JIMÉNEZ P., THOMAS F., TORRAS C.: 3D collision de-
tection: A survey. Computers and Graphics 25 (2000), 269–285.
28

[KEP05] KAUFMAN D. M., EDMUNDS T., PAI D. K.: Fast
frictional dynamics for rigid bodies. ACM Trans. Graph. 24, 3
(2005), 946–956. 31, 33, 35

[Khr11] KHRONOS: The OpenCL Specification, 2011. Version
1.2, http://www.khronos.org/opencl. 27

[KK11] K. KAPELLOS L. J.: Planetary exploration missions sim-
ulation using 3drov. Euromech colloquium on "Nonsmooth con-
tact and impact laws in mechanics", Grenoble, France, July 6th-
8th 2011. 4

[Kok04] KOKKEVIS E.: Practical physics for articulated charac-
ters. In Proc. of Game Developers Conference (GDC) (2004).
20

[KOLM02] KIM Y. J., OTADUY M. A., LIN M. C., MANOCHA
D.: Fast penetration depth computation for physically-based
animation. In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (New
York, NY, USA, 2002), ACM, pp. 23–31. 30

[KP09] KOENG N., POLO J.: Gazebo, 3d multiple robot
simulator with dynamics. http://playerstage.
sourceforge.net/index.php?src=gazebo, 2009. 4

[KR03] KIM B., ROSSIGNAC J.: Collision prediction for poly-
hedra under screw motions. In Proceedings of the eighth ACM
symposium on Solid modeling and applications (New York, NY,
USA, 2003), SM ’03, ACM, pp. 4–10. 29

[KSJP08] KAUFMAN D. M., SUEDA S., JAMES D. L., PAI
D. K.: Staggered projections for frictional contact in multibody
systems. ACM Trans. Graph. 27, 5 (2008). 3, 25, 31, 33, 35

[KW03] KRÜGER J., WESTERMANN R.: Linear algebra oper-
ators for GPU implementation of numerical algorithms. ACM
Transactions on Graphics (TOG) 22, 3 (2003), 908–916. 27

[Lac03] LACOURSIERE C.: Splitting methods for dry frictional
contact problems in rigid multibody systems: Preliminary perfor-
mance results. In The Annual SIGRAD Conference (November

2003), Ollila M., (Ed.), no. 10 in Linkøping Electronic Confer-
ence Proceedings. 21, 33, 35

[Lan86] LANCZOS C.: The Variational Principles of Mechanics.
University of Toronto Press, 1986. 9, 10

[LG98] LIN M. C., GOTTSCHALK S.: Collision detection be-
tween geometric models: A survey. In In Proc. of IMA Confer-
ence on Mathematics of Surfaces (1998), pp. 37–56. 28

[LH00a] LANDER J., HECKER C.: Product review of physics
engines, part one: The stress tests. Gamasutra (Septem-
ber 2000). http://www.gamasutra.com/features/
20000913/lander_01.htm. 33

[LH00b] LANDER J., HECKER C.: Product review of physics
engines, part two: The rest of the story. Gamasutra (Septem-
ber 2000). http://www.gamasutra.com/features/
20000920/lander_01.htm. 33

[LL11] LACOURSIERE C., LINDE M.: Spook: a variational time-
stepping scheme for rigid multibody systems subject to dry fric-
tional contact. Tech. Rep. UMINF 11.09, Department of Com-
puter Science, Umeå University, 2011. 25

[Lot84] LOTSTEDT P.: Numerical simulation of time-dependent
contact and friction problems in rigid body mechanics. SIAM
Journal on Scientific and Statistical Computing 5, 2 (1984), 370–
393. 25

[MAC04] MARCHAL D., AUBERT F., CHAILLOU C.: Colli-
sion between deformable objects using fast-marching on tetra-
hedral models. In SCA ’04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation
(Aire-la-Ville, Switzerland, Switzerland, 2004), Eurographics
Association, pp. 121–129. 29

[Man84] MANDEL J.: A multilevel iterative method for symmet-
ric, positive definite linear complementarity problems. Applied
Mathematics and Optimization 11, 1 (February 1984), 77–95. 23

[MC95] MIRTICH B., CANNY J.: Impulse-based simulation of
rigid bodies. In Proceedings of the 1995 symposium on Interac-
tive 3D graphics (New York, NY, USA, 1995), I3D ’95, ACM,
pp. 181–ff. 30

[Mei70] MEIROVITCH L.: Methods of Analytical Dynamics.
McGraw-Hill, 1970. 5

[MF67] MANGASARIAN O., FROMOVITZ S.: The fritz-john nec-
essary optimality conditions in the presence of equality and in-
equality constraints. Journal of Mathematical Analysis and Ap-
plications 17 (1967), 37–47. 11

[MG09] MAMOU K., GHORBEL F.: A simple and efficient ap-
proach for 3D mesh approximate convex decomposition. In Pro-
ceedings of the 16th IEEE international conference on Image
processing (2009), ICIP’09, pp. 3465–3468. 28

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M.,
RATCLIFF J.: Position based dynamics. J. Vis. Comun. Image
Represent. 18, 2 (2007), 109–118. 20

[Mic09] MICROSOFT: Microsoft robotics. http://www.
microsoft.com/robotics, 2009. 4

[Mir96a] MIRTICH B.: Fast and accurate computation of polyhe-
dral mass properties. J. Graph. Tools 1 (February 1996), 31–50.
28

[Mir96b] MIRTICH B. V.: Impulse-based dynamic simulation of
rigid body systems. PhD thesis, University of California, Berke-
ley, 1996. 2, 20, 21, 29, 30, 31, 33, 34

[Mir98] MIRTICH B.: Rigid Body Contact: Collision Detection to
Force Computation. Tech. Rep. TR98-01, MITSUBISHI ELEC-
TRIC RESEARCH LABORATORIES, December 1998. 29

© The Eurographics Association 2012.

132

http://www.inrets.fr/ur/sara/Pg_simus_e.html
http://www.inrets.fr/ur/sara/Pg_simus_e.html
http://playerstage.sourceforge.net/index.php?src=gazebo
http://playerstage.sourceforge.net/index.php?src=gazebo
http://www.gamasutra.com/features/20000913/lander_01.htm
http://www.gamasutra.com/features/20000913/lander_01.htm
http://www.gamasutra.com/features/20000920/lander_01.htm
http://www.gamasutra.com/features/20000920/lander_01.htm
http://www.microsoft.com/robotics
http://www.microsoft.com/robotics

J. Bender et al. / Interactive Rigid Body Simulation

[Mir00] MIRTICH B.: Timewarp rigid body simulation. In Pro-
ceedings of the 27th annual conference on Computer graph-
ics and interactive techniques (New York, NY, USA, 2000),
SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co.,
pp. 193–200. 31

[Mor99] MOREAU J. J.: Numerical aspects of the sweeping pro-
cess. Computer Methods in Applied Mechanics and Engineering
177, 3–4 (July 1999), 329–349. 24, 30, 31

[Mos07] MOSTERMAN P. J.: On the normal component of cen-
tralized frictionless collision sequences. Journal of Applied Me-
chanics 74, 5 (2007), 908–915. 32

[MS01] MILENKOVIC V. J., SCHMIDL H.: Optimization-based
animation. In SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques
(2001). 31

[MS04] MILENKOVIC V. J., SCHMIDL H.: A fast impulsive con-
tact suite for rigid body simulation. IEEE Transactions on Visu-
alization and Computer Graphics 10, 2 (2004). 33

[MW88] MOORE M., WILHELMS J.: Collision detection and re-
sponse for computer animation. In SIGGRAPH ’88: Proceedings
of the 15th annual conference on Computer graphics and inter-
active techniques (1988). 2, 30

[MZS09] MACCHIETTO A., ZORDAN V., SHELTON C. R.: Mo-
mentum control for balance. ACM Trans. Graph. 28 (July 2009),
80:1–80:8. 20

[NLB∗07] NUSSECK M., LAGARDE J., BARDY B., FLEMING
R., BÜLTHOFF H. H.: Perception and prediction of simple object
interactions. In Proceedings of the 4th symposium on Applied
perception in graphics and visualization (New York, NY, USA,
2007), APGV ’07, ACM, pp. 27–34. 35

[NSE10] NIEBE S., SILCOWITZ M., ERLEBEN K.: Projected
gauss-seidel subspace minimization method for interactive rigid
body dynamics. In Proceedings of the Fifth International Con-
ference on Computer Graphics Theory and Applications (Angers,
France, May 2010), INSTICC Press, pp. X–Y. 23

[NVI11] NVIDIA: NVIDIA CUDA Compute Unified De-
vice Architecture - Programming Guide, 2011. Version 4.0,
http://nvidia.com/cuda. 27

[NW99] NOCEDAL J., WRIGHT S. J.: Numerical optimization.
Springer Series in Operations Research. Springer-Verlag, New
York, 1999. 18, 23, 26, 31

[OD01] O’SULLIVAN C., DINGLIANA J.: Collisions and percep-
tion. ACM Trans. Graph. 20 (July 2001), 151–168. 35

[ODGK03] O’SULLIVAN C., DINGLIANA J., GIANG T.,
KAISER M. K.: Evaluating the visual fidelity of physically based
animations. ACM Trans. Graph. 22, 3 (2003). 35

[Ort07] ORTIZ R.: Newton/AMG algorithm for solving comple-
mentarity problems arising in rigid body dynamics with frictional
impacts. PhD thesis, University of Iowa, July 2007. 31

[PAGT05] POTRA F., ANITESCU M., GAVREA B., TRINKLE
J.: Linearly implicit trapezoidal method for integrating stiff
multibody dynamics with contact, joints, and friction. Interna-
tional Journal for Numerical Methods in Engineering 66, 7 (Dec.
2005), 1079–1124. 14

[Pat05] PATH: Path cpnet software, 2005. www.cs.wisc.
edu/cpnet/cpnetsoftware/. 25, 31

[PFTV92] PRESS W. H., FLANNERY B. P., TEUKOLSKY S. A.,
VETTERLING W. T.: Numerical Recipes: The Art of Scientific
Computing, 2. ed. Cambridge University Press, Cambridge (UK)
and New York, 1992. 21

[PG96] PFEIFFER F., GLOCKER C.: Multibody dynamics with
unilateral contacts. Wiley series in nonlinear science. John Wiley
& Sons, inc., 1996. 32

[PNE10] POULSEN M., NIEBE S., ERLEBEN K.: Heuristic con-
vergence rate improvements of the projected gauss-seidel method
for frictional contact problems. In Proceedings of WSCG (2010).
23, 35

[PSE03] POPOVIĆ J., SEITZ S. M., ERDMANN M.: Motion
sketching for control of rigid-body simulations. ACM Trans.
Graph. 22 (October 2003), 1034–1054. 36

[PT96] PANG J., TRINKLE J.: Complementarity formulations
and existence of solutions of dynamic multi-rigid-body contact
problems with coulomb friction. Mathematical Programming 73
(1996), 199–226. 13

[PW96] PFEIFFER F., WÖSLE M.: Dynamics of multibody sys-
tems containing dependent unilateral constraints with friction.
Journal of Vibration and Control 2, 2 (1996), 161–192. 32

[RGL05] REDON S., GALOPPO N., LIN M. C.: Adaptive dy-
namics of articulated bodies. ACM Trans. Graph. 24 (July 2005),
936–945. 20, 35

[RKC00] REDON S., KHEDDAR A., COQUILLART S.: An al-
gebraic solution to the problem of collision detection for rigid
polyhedral objects. In Proc. of IEEE Conference on Robotics
and Automation (2000). 29

[RKC02] REDON S., KHEDDAR A., COQUILLART S.: Fast con-
tinuous collision detection between rigid bodies. In Proc. of Eu-
rographics (Computer Graphics Forum) (2002). 29

[RKC03] REDON S., KHEDDAR A., COQUILLART S.: Gauss
least constraints principle and rigid body simulations. In In pro-
ceedings of IEEE International Conference on Robotics and Au-
tomation (2003). 31

[RKLM04] REDON S., KIM Y. J., LIN M. C., MANOCHA D.:
Fast continuous collision detection for articulated models. In
Proceedings of ACM Symposium on Solid Modeling and Appli-
cations (2004). 29

[RMEF09] ROBINSON-MOSHER A., ENGLISH R. E., FEDKIW
R.: Accurate tangential velocities for solid fluid coupling. In
Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (New York, NY, USA, 2009),
SCA ’09, ACM, pp. 227–236. 35

[RMSG∗08] ROBINSON-MOSHER A., SHINAR T., GRETARS-
SON J., SU J., FEDKIW R.: Two-way coupling of fluids to rigid
and deformable solids and shells. ACM Trans. Graph. 27 (August
2008), 46:1–46:9. 35

[RO09] REITSMA P. S. A., O’SULLIVAN C.: Effect of scenario
on perceptual sensitivity to errors in animation. ACM Trans.
Appl. Percept. 6 (September 2009), 15:1–15:16. 35

[RP03] REITSMA P. S. A., POLLARD N. S.: Perceptual metrics
for character animation: sensitivity to errors in ballistic motion.
ACM Trans. Graph. 22 (July 2003), 537–542. 35

[SB05] SCHMITT A., BENDER J.: Impulse-based dynamic sim-
ulation of multibody systems: Numerical comparison with stan-
dard methods. In Proc. Automation of Discrete Production Engi-
neering (2005), pp. 324–329. 19

[SBP05] SCHMITT A., BENDER J., PRAUTZSCH H.: On the
Convergence and Correctness of Impulse-Based Dynamic Sim-
ulation. Internal Report 17, Institut für Betriebs- und Dialogsys-
teme, 2005. 19

[SG04] SCHENK O., GÄRTNER K.: Solving unsymmetric sparse
systems of linear equations with PARDISO. Future Generation
Computer Systems 20, 3 (2004), 475–487. 27

© The Eurographics Association 2012.

133

www.cs.wisc.edu/cpnet/cpnetsoftware/
www.cs.wisc.edu/cpnet/cpnetsoftware/

J. Bender et al. / Interactive Rigid Body Simulation

[SGG∗06] SUD A., GOVINDARAJU N., GAYLE R., KABUL I.,
MANOCHA D.: Fast proximity computation among deformable
models using discrete voronoi diagrams. ACM Trans. Graph. 25,
3 (2006), 1144–1153. 30

[SL08] SERVIN M., LACOURSIÈRE C.: Rigid body cable for vir-
tual environments. IEEE Transactions on Visualization and Com-
puter Graphics 14 (July 2008), 783–796. 4

[Smi00] SMITH R.: Open dynamics engine. http://www.
ode.org, 2000. 2, 31

[SMT08] SIFAKIS E., MARINO S., TERAN J.: Globally coupled
collision handling using volume preserving impulses. In SCA
’08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Aire-la-Ville, Switzerland,
Switzerland, 2008), Eurographics Association, pp. 147–153. 29

[SNE09] SILCOWITZ M., NIEBE S., ERLEBEN K.: Nonsmooth
newton method for fischer function reformulation of contact
force problems for interactive rigid body simulation. In Pro-
ceedings of Virtual Reality Interaction and Physical Simulation
(VRIPHYS) (November 2009). 31, 34

[SNE10a] SILCOWITZ M., NIEBE S., ERLEBEN K.: Contact
point generation for convex polytopes in interactive rigid body
dynamics. Poster at SCA 10’, 2010. 34

[SNE10b] SILCOWITZ M., NIEBE S., ERLEBEN K.: A nons-
mooth nonlinear conjugate gradient method for interactive con-
tact force problems. The Visual Computer (2010). 23, 35

[SSF08] SHINAR T., SCHROEDER C., FEDKIW R.: Two-way
coupling of rigid and deformable bodies. In SCA ’08: Proceed-
ings of the 2008 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Aire-la-Ville, Switzerland, Switzerland,
2008), Eurographics Association, pp. 95–103. 35

[SSF09] SU J., SCHROEDER C., FEDKIW R.: Energy stability
and fracture for frame rate rigid body simulations. In Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (New York, NY, USA, 2009), SCA ’09, ACM,
pp. 155–164. 33, 35

[SSIF07] SIFAKIS E., SHINAR T., IRVING G., FEDKIW R.: Hy-
brid simulation of deformable solids. In Proceedings of the 2007
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation (Aire-la-Ville, Switzerland, Switzerland, 2007), SCA ’07,
Eurographics Association, pp. 81–90. 35

[ST96] STEWART D. E., TRINKLE J. C.: An implicit time-
stepping scheme for rigid body dynamics with inelastic collisions
and coulomb friction. International Journal of Numerical Meth-
ods in Engineering (1996). 30, 31, 32

[Ste00] STEWART D. E.: Rigid-body dynamics with friction and
impact. SIAM Review (2000). 32

[Stu08] STUDER C. W.: Augmented time-stepping integration
of non-smooth dynamical systems. PhD thesis, ETH Zürich,
2008. Diss., Technische Wissenschaften, Eidgenössische Tech-
nische Hochschule ETH Zürich, Nr. 17597. 4, 30, 31

[TJ07] TWIGG C. D., JAMES D. L.: Many-worlds browsing for
control of multibody dynamics. ACM Trans. Graph. 26 (July
2007). 36

[TJ08] TWIGG C. D., JAMES D. L.: Backward steps in rigid body
simulation. ACM Trans. Graph. 27 (August 2008), 25:1–25:10.
36

[TNA08] TASORA A., NEGRUT D., ANITESCU M.: Large–scale
Parallel Multi-body Dynamics with Frictional Contact on the
Graphical Processing Unit. In Proceedings of the Institution of
Mechanical Engineers, Part K: Journal of Multi-body Dynamics
(2008), Professional Engineering Publishing, pp. 315–326. 4, 27,
31

[TNA∗10] TASORA A., NEGRUT D., ANITESCU M., MAZHAR
H., HEYN T. D.: Simulation of Massive Multibody Systems
using GPU Parallel Computation. In 18th International Confer-
ence on Computer Graphics, Visualization and Computer Vision,
WSCG 2010 (2010), University of West Bohemia, Czech Repub-
lic, pp. 1–1. 4, 27, 31

[TP97] TRINKLE J., PANG J.: Dynamic multi-rigid-body systems
with concurrent distributed contacts. In Proceedings, IEEE In-
ternational Conference on Robots and Automation (April 1997),
pp. 2276–2281. 11

[TPSL97] TRINKLE J., PANG J., SUDARSKY S., LO G.: On
dynamic multi-rigid-body contact problems with coulomb fric-
tion. Zeitschrift für Angewandte Mathematik und Mechanik 77, 4
(1997), 267–279. 11, 13

[TTP01] TRINKLE J., TZITZOURIS J., PANG J.: Dynamic multi-
rigid-body systems with concurrent distributed contacts: The-
ory and examples. Philosophical Transactions: Mathematical,
Physical, and Engineering Sciences 359, 1789 (December 2001),
2575–2593. 8, 11

[Uni11] UNIVERSITY OF IOWA: The national advanced driving
simulator. http://www.nads-sc.uiowa.edu, 2011. 4

[vdB05] VAN DEN BERGEN G.: Ray casting against general con-
vex objects with application to continuous collision detection.
Slides from Game Developer Conference, Accessed online 2011
http://www.dtecta.com/, 2005. 30

[WGF08] WEINSTEIN R., GUENDELMAN E., FEDKIW R.:
Impulse-based control of joints and muscles. IEEE Transactions
on Visualization and Computer Graphics 14, 1 (2008), 37–46.
33, 34, 35

[WGW90] WITKIN A., GLEICHER M., WELCH W.: Interactive
dynamics. In SI3D ’90: Proceedings of the 1990 symposium
on Interactive 3D graphics (New York, NY, USA, 1990), ACM
Press, pp. 11–21. 18

[Wit77] WITTENBURG J.: Dynamics of systems of rigid bodies,
1. ed. Teubner, 1977. 20

[WM09] WOULFE M., MANZKE M.: A framework for bench-
marking interactive collision detection. In Proceedings of the
2009 Spring Conference on Computer Graphics (New York, NY,
USA, 2009), SCCG ’09, ACM, pp. 205–212. 33

[WSM∗10] WELLER R., SAGARDIA M., MAINZER D., HULIN
T., ZACHMANN G., PREUSCHE C.: A benchmarking suite for 6-
dof real time collision response algorithms. In Proceedings of the
17th ACM Symposium on Virtual Reality Software and Technol-
ogy (New York, NY, USA, 2010), VRST ’10, ACM, pp. 63–70.
33

[WTF06] WEINSTEIN R., TERAN J., FEDKIW R.: Dynamic
simulation of articulated rigid bodies with contact and collision.
IEEE Transactions on Visualization and Computer Graphics 12,
3 (2006), 365–374. 18, 19, 33, 35

[WW90] WITKIN A., WELCH W.: Fast animation and control
of nonrigid structures. In SIGGRAPH ’90: Proceedings of the
17th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1990), ACM Press, pp. 243–
252. 18

[ZKVM06] ZHANG L., KIM Y. J., VARADHAN G., MANOCHA
D.: Generalized penetration depth computation. In SPM ’06:
Proceedings of the 2006 ACM symposium on Solid and physical
modeling (New York, NY, USA, 2006), ACM, pp. 173–184. 30

[ZRLK07] ZHANG X., REDON S., LEE M., KIM Y. J.: Continu-
ous collision detection for articulated models using taylor models
and temporal culling. ACM Trans. Graph. 26 (July 2007). 29, 30

© The Eurographics Association 2012.

134

http://www.ode.org
http://www.ode.org
http://www.nads-sc.uiowa.edu
http://www.dtecta.com/

