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Abstract

In this study, we combine computer vision and visualisation/data exploration to analyse magnetic resonance imaging (MRI)
data and detect garden peas inside the stomach. It is a preliminary objective of a larger project that aims to understand
the kinetics of gastric emptying. We propose to perform the image analysis task as a multi-objective optimisation. A set of 7
equally important objectives are proposed to characterise peas. We rely on a cooperation co-evolution algorithm called ‘Fly
Algorithm’ implemented using NSGA-II. The Fly Algorithm is a specific case of the ‘Parisian Approach’ where the solution of
an optimisation problem is represented as a set of individuals (e.g. the whole population) instead of a single individual (the best
one) as in typical evolutionary algorithms (EAs). NSGA-II is a popular EA used to solve multi-objective optimisation problems.
The output of the optimisation is a succession of datasets that progressively approximate the Pareto front, which needs to be
understood and explored by the end-user. Using interactive Information Visualisation (InfoVis) and clustering techniques, peas
are then semi-automatically segmented.

CCS Concepts

•Human-centered computing → Visualization application domains; •Computing methodologies → Search methodologies;

Graphics systems and interfaces; •Applied computing → Life and medical sciences;

1. Introduction

Digestion is known to be much more complex than simple
food decomposition and absorption of macro-nutrients, e.g.
carbohydrates, proteins and lipids, as well as micro-nutrients,
e.g. vitamins, minerals, and other food components. Two aspects
have been recognised as relevant: kinetics of digestion and food
structure [BMLG∗13, BBH∗13, MGG∗13, DCGRP∗14, ZHH13].

The work presented here is a contribution to a large
project focused on the understanding of the influence of food
structure on digestion. Our approach is based on advanced
imaging techniques to observe phenomena at different
scales. We rely on magnetic resonance imaging (MRI) of the
gastrointestinal tract (GIT) for capturing in vitro large scale
information, while smaller scale measurements are performed in
vitro on large facilities (small-angle neutron scattering (SANS),
small-angle X-ray scattering (SAXS), and X-ray
imaging) [FBT∗18, LTLF∗17]. The observation of in vivo
digestion using MRI is a recent challenge. Here the focus is on
the content of the GIT and not on the GIT itself as in clinical
routine [MG13, RAD∗06, SSF06].

Thanks to this multi-disciplinary collaboration, we recently

acquired experimental MRI data of the stomach and duodenum area
of healthy human volunteers. The aim is to analyse the content of
the stomach and its evolution. We focus here on the kinetics of
gastric emptying for two species of ingested food: i) progressively
and partially digested cooked pasta, and ii) frozen garden peas,
which keep their shape in early gastric stages (see Fig. 1).

Pasta Peas

Stomach

Figure 1: MRI slice of a human stomach containing peas and
pasta.
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Figure 2: Overall flowchart of our image analysis and information visualisation pipeline.

Manually processing this large amount of MRI data sets is not
practically feasible. Processing it in a fully-automatic manner is
not trivial as appropriate information need first to be collected
and analysed to provide suitable models. Here we show how a
“Fly Algorithm” [VLLR09] can be efficiently adapted to analyse
these MRI images. The Fly Algorithm, on the contrary to classical
image processing techniques, is able to provide a map of various
features (e.g. the location of components of the food bolus). In
this paper, we present early results on the tracking of peas (around
20 peas in one stomach for the current experimental data), which
reveals the motion of the stomach (the food bolus is stirred and
gently “triturated” for better action of the gastric juice). For this
purpose, the Fly Algorithm has been turned into a multi-objective
cooperative-coevolution algorithm, and expert knowledge has
been integrated through an interaction/visualisation interface. The
combination of visualisation and evolutionary computing is still
a relatively overlooked field. Two main approaches are currently
explored:

• visualisation to understand evolutionary algorithms (EAs)
behaviour [WJB∗99, Poh99, WSL04, KE05], or outputs
[BTT∗17];

• interactive artificial evolution to improve the
visualisation [BSLF13, LPT16, HM17].

We show how simple, but yet effective,
Information Visualisation (InfoVis) techniques can be used to
display the output of an evolutionary algorithm. In particular, the
multi-objective scheme provides complex time series of Pareto
front data, which needs to be understood and explored by the
end-user. Fig. 2 summarises our processing pipeline.

2. Problem definition

In Step 1 of Fig. 2, we selected a typical MRI image containing the
stomach full of pasta and peas. The MRI slice is manually cropped
to only focus on the stomach and its content (see Step 2). In Step 3,
we aim to describe what a pea looks like and how to mathematically
model it:

• Peas keep their shape and size in early gastric stages. A pea
appear as a circle of a fixed radius of about 4mm, which is
equivalent to R = 8 pixels.

• The interior of a pea is homogeneous; the outside is not.

(a) Manual
segmentation in
colour.

(b) Objective 1. (c) Objective 2. (d) Objective 3.

(e) Objective 4. (f) Objective 5. (g) Objective 6. (h) Objective 7.

Figure 3: Objectives. For visibility objective functions are
displayed in negative (low intensities appear bright; high
intensities appear dark).

• The interior of a pea is darker than the outside.

We propose to implement this knowledge into 7 equally important
objectives to minimise as a multi-objective optimisation problem
(see Step 2. in figure 2).

For each pixel (x,y) of the MRI image, Objective 1 measures
the local pixel intensity standard deviation (σ) within a circular
region of interest (ROI):

ob j1(x,y, I,R) = σ(ROIC(I,x,y,R)) (1)

where ROIC(I,x,y,R) is a circular region of interest in Image I. It
is centred on Pixel (x,y), and its radius is R. Fig. 3b is an image
representation of Objective 1.

Objective 2 measures how homogeneous the interior of the circle
is and how heterogeneous the outside is (see Fig. 3c). It compares
Objective 1 with the local pixel intensity standard deviation within
a ring region of interest (ROIR) whose inner radius is R and outer
radius R+5:

ob j2(x,y, I,R) = ob j1(x,y, I,R)−σ(ROIR(x,y, I,R,R+5)) (2)
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Objective 3 combines Objectives 1 and 2 (see Fig. 3d):

ob j3(x,y, I,R) = ob j1(x,y, I,R)×ob j2(x,y, I,R) (3)

When a pea is considered in Objectives 1, 2 and 3, the
corresponding pattern in Figures 3b, 3c and 3d is isotropic. Each
pea corresponds to a small bright dot onto a dark background in
these images. Objectives 4, 5 and 6 exploit this property. We model
an intensity profile (de f P) of 30 pixels using a triangular function.
It mimics an intensity profile perfectly centred on a pea:

de f P(i) =

{

1− |i−(2R−1)|
R−1 , ∀i ∈

[

30
2 −R, 30

2 +R
]

0, otherwise
(4)

For each pixel in Figures 3b, 3c and 3d, we extract 89 intensity
profiles (pro fk) every 2◦ around that pixel:

ob jiso(x,y, I) =−max

(

i<30

∑
i=0

(de f P(i)− pro fk(I,x,y, i))
2

)

∀k ∈ [0,89) (5)

where pro fk(I,x,y, i) is i-th value of the intensity profile in Image I,
centred of Pixel x,y at the k-th angle.

ob j4(x,y) = ob jiso(x,y,ob j1) (6)

ob j5(x,y) = ob jiso(x,y,ob j2) (7)

ob j6(x,y) = ob jiso(x,y,ob j3) (8)

Objective 7 assesses that the interior of the circle is darker than
the ring around it:

f (x,y) = ROIC(x,y, I,R−1)−ROIR(x,y, I,R−1,R+5)

ob j7(x,y) =

{

f (x,y), ∀ f (x,y)≤ T
0, otherwise

(9)

where ROIC is the average pixel value of a given circular ROI,
ROIR is the average pixel value of a given ring ROI, and T is a
user defined threshold. ob j7(x,y) is expected to be negative or null,
which is suitable for a minimisation algorithm. T is also negative.
It restricts non-null values in ob j7 to areas where the difference
in pixel intensities of the two corresponding ROIs are significantly
different, which correspond to the location of peas and stomach
wall.

3. Multi-objective optimisation problem

Pea detection is actually a non-trivial optimisation problem, as it
involves multiple objectives that cannot be merged into a single
one using simple rules (example: a circular uniform area & a
defined colour & and an irregular background ...) and/or subjective
preference weights. Multi-objective optimisation considers all
objectives as equally important and non comparable. It provides
a set of trade-off between objectives, the Pareto front. The Pareto
front is the set of non-dominated solutions, i.e. points of the search
space for which one objective function cannot be improved in
value without degrading some of the other objectives [Mie98].

(a) Scatterplot of the
iInitial population.

(b) Parallel coordinate
plot corresponding to (a).

(c) Scatterplot of the 6th

generation.
(d) Parallel coordinate
plot corresponding to (c).

(e) Scatterplot of the 16th

generation.
(f) Parallel coordinate
plot corresponding to (e).

Figure 4: Scatterplots and parallel coordinates plots of successive
generations. All solutions (flies) are plotted in red by default. When
the user selects an area in the scatterplot, a specific colour is
assigned to this area and linked to the corresponding lines in the
parallel coordinate plot.

Evolutionary optimisation methods can be adapted to deal with
multiple objectives, and various efficient algorithms are now
available. NSGA-II [DPAM02] is a very popular implementation,
that is able to produce an efficient sampling of the Pareto front in a
single run of the algorithm.

Here, we implement a multi-objective version of the
Fly Algorithm based on NSGA-II so that the population
of flies stabilises onto a Pareto front (see Step 4 in
Fig. 2). 1000 individuals are used over 25 generations.
For up-to-date details on the Fly Algorithm, see
https://en.wikipedia.org/wiki/Fly_algorithm.
Once a Pareto front (i.e. a set of possible best solutions) is
produced, the decision may be put in the hand of an expert.

4. Visualisation

The output of Step 4 of the flowchart (Fig. 2) is a dataset of
1000 × 25 samples, i.e. (x,y) positions with 7 associated fitness
values. In typical multi-objective evolutionary algorithms (EAs),
one of the individual on the Pareto front is a possible answer to
the optimisation problem. The Fly Algorithm approach provides a
set of points as a solution, each point corresponding not only to
a possible pea location, but also to a different objective priority
assessment. Several flies of the population may co-exist on the
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(a) Clusters. (b) Cluster centres. (c) Parallel coordinate plot.

Figure 5: Candidate solution clusters.

Figure 6: Final result.

same pea with different objective weights. Automatically extracting
the points that really correspond to peas is not trivial. Extracting
only one point per pea, the point the closest to the centre of the
corresponding pea, is even more complicated. This can be done
efficiently through an interactive visualisation interface.

In Step 5 of Fig. 2, each generation is subsequently displayed
twice at a time. A scatterplot is used to display the position of
the individuals over the MRI image (see left-hand side column of
Fig. 4). A parallel coordinate plot is used to display the values of the
multiple objective functions corresponding to each individual (see
right-hand side column of Fig. 4). This plot represents a point in a
n-dimensional space as a broken line with n− 1 segments, joining
its n coordinates located on n vertical axes. The user can easily and
interactively select areas of points in the scatterplot that correspond
to peas. Each new manually selected area is assigned a new
unique colour, which is the same in both plots. With this tool, the
behaviour of individuals toward a global optimal solution in each
generation can be visually detected. It also helped us understand
the relationship between positions in peas and objective functions.
The result is used to define 7 validity ranges (two thresholds per
objective) that filter out the 25,000 individuals generated during
the evolutionary process. Only the individuals meeting all 7 validity
ranges are considered in the following steps, others are discarded.

In Step 6 of Fig. 2, groups of points in the 2-D
space are identified using clustering based on a
Gaussian Mixture Model (GMM) (see Fig. 5a). Clusters that
are close to each other (e.g. within a pea diameter) are then
merged into a single cluster. All the cluster centres are extracted

and presented to the user (see Fig. 5b). Using another parallel
coordinate plot a new set of thresholds is extracted (see Fig. 5c).
It is used in the following step to further refine the results and
limit the number of false positive (i.e. points that do not actually
correspond to peas).

Step 7 of Fig. 2 outputs the final result. In total, 19 points
were selected. The last set of thresholds is used so that stronger
candidates are highlighted using a purple dot in Fig. 6; weaker
candidates using a red dot. 9 peas were manually selected in Fig 3a.
Note that the selection is depended on a personal vision. It is
unclear if some points near the wall of the stomach correspond to
peas or not. 7 peas were highlighted in purple; 2 in red.

5. Conclusions

In this short paper, we presented some preliminary results of our
semi-automatic evolutionary segmentation of garden peas in MRI
images. To our knowledge, we proposed the first multi-objective
implementation of the Fly Algorithm. An interactive visualisation,
combining image display, scatter plot and parallel coordinate plot,
is used to analyse the output of the evolutionary algorithm. It helps
us understanding the complex relationship between the objectives
and extracting individuals of the Pareto front that correspond to
peas. This research can be extended to segment other structures
which cannot be identify by a single equation.

In future work, a more robust and comprehensive evaluation
will be performed. this tool will be integrated into a
machine learning (ML) framework to assist domain experts
in the provision of training data for a deep neural network. This
way, it is possible to address some issues related to sparse data
that can prevent the use of ML methods. The latter require a lot
of manually labelled medical images. This is a time consuming
task for domain experts, but mandatory to provide enough data for
learning process. A comparison with other algorithms and a robust
validation study will be provided in future developments of the
method.
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Acronyms

EA evolutionary algorithm.
EAs evolutionary algorithms.
GIT gastrointestinal tract.
GMM Gaussian Mixture Model.
InfoVis Information Visualisation.
ML machine learning.
MRI magnetic resonance imaging.
ROI region of interest.
SANS small-angle neutron scattering.
SAXS small-angle X-ray scattering.
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