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Abstract
Groupwise image alignment automatically provides non-rigid registration across a set of images. It has found applications in
facial image analysis and medical image analysis by automatically generating statistical models of shape and appearance. The
main approaches used previously include iterative and graph-based approaches. In iterative approaches, the registration of
each image is iteratively updated to minimise an error measure across the set. Various metrics and optimisation strategies have
been proposed to achieve this. Graph-based methods perform registration of each pair of images in the set, to form a weighted
graph of the “distance” between all the images, and then finds the optimal paths between the most central image and every
other image. In this paper, we use a graph-based approach to perform initialisation, which is then refined with an iterative
approach. Pairwise registration is performed using demons registration, then shortest paths identified in the resulting graph are
used to provide an initial warp for each image by concatenating warps along the path. The warps are refined using an iterative
Levenberg-Marquardt minimisation to the mean, based on updating the locations of a small number of points and incorporating
a stiffness constraint. This optimisation approach is efficient, has very few free parameters to tune and we show how to tune
the few remaining parameters. We compare the combined approach to both the iterative and graph-based approaches used
independently. Results demonstrate that the combined method improves the alignment of various datasets, including two face
datasets and a difficult medical dataset of prostate MRI images.

CCS Concepts
•Computing methodologies → Computer vision; Matching; Image processing;

1. Introduction

Non-rigid alignment of a group of images is required for many ap-
plications such as analysis of face images [CTV∗05] and construct-
ing anatomical atlases from medical images [TMT04]. Analysing
the structure of the alignment across groups of images can be used
for building statistical models of appearance and shape, such as
Active Appearance Models (AAMs) [CET01] [MB04] which can
then be used for interpreting those and other images. When build-
ing such models from large databases, automation is essential for
avoiding using manual annotation that is time consuming and prone
to error. Using the statistical model in training with a set of images
provides a set of deformation fields across this group without man-
ual intervention [CTV∗05]. Groupwise registration algorithms are
an optimisation problem that is solved by using a suitable minimi-
sation method. Therefore, they require selecting a good initializa-
tion algorithm [ZC12].

[JWW∗12] used graph-based groupwise image registration by
building a directed graph for all image pairs in a dataset and calcu-

lated a minimum spanning tree for groupwise registration using the
template and the directed paths.

In their work using medical and other images, [HYVD10] used
the manifold structure as a way to facilitate registration. The man-
ifold is modelled as a k Nearest Neighbour (kNN) graph based on
a pairwise measure between images. Transformation is estimated
by using the shortest path between pairs of images and each edge
in the path represents a transformation between a pair of (similar)
images. They assume a subset of pairwise registration good enough
and a single template sufficient. They exploit a manifold learning
technique which provides the requested information of neighbour-
hood for the database images for getting a good estimation of the
deformation fields. This estimation is exploited in this paper to do
the initialisation of groupwise registration.

In this paper, we combine the graph method of Hamm with a
groupwise optimisation which is described in [AYMZT18]. The
proposed combination (full method) is compared with the graph
only algorithm and the groupwise only algorithm. The groupwise
only method builds on the work of [CTP∗10] and [SRM09]. It is
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based on using a very small number of control points per iteration
and uses an AAM style optimisation [MB04]. More complex warps
can be built up over iterations [SRM09] by concatenation [TDR01].
Leave-one-out optimization and alignment to the mean [CTP∗10],
[SRM09] is used. The use of Levenberg-Marquardt optimisation
provides stability and automatic tuning of the damping term.

2. Method

This section describes the algorithmic details of the proposed
method that consists of two phases. The first phase is for initiali-
sation of groupwise registration. The initialisation is by construct-
ing a distance graph using pairwise registration of all images in the
dataset. The shortest paths between all pairs of images are calcu-
lated and used to select the “template” as the image having the
smallest sum of shortest paths to all other images. The shortest
paths from the template to all other images are calculated for get-
ting the warps from the template to each image along the shortest
path. This structure is taken from [HYVD10] with some changes
that we have used a different distance metric. In addition, we have
concatenated the warps of the images with template shape using
[TDR01].

The second phase uses the resulting images and their warps to
achieve a groupwise alignment algorithm to update these warps as
shown in [AYMZT18]. The following sections describe our method
in more detail.

2.1. Graph method for initialization

This section describes the proposed graph method to initialize the
groupwise registration. A distance graph is constructed by pair-
wise registration between all image pairs using the demons algo-
rithm [KS09]. For getting the distance graph, a pixel error term and
a smoothness term are computed. The pixel error term measures
the error between an obtained image from the registration process
(Ii) and a target image (I j). The smoothness term measures the size
of the warp, ignoring the affine components, as shown by the equa-
tions 1 and 2:

pixel_error(i, j) =

√
(

1
N ∑

y
∑
x
(Ii(x,y)− I j(x,y))2) (1)

smoothness(i, j) =

√
(

1
N ∑

y
∑
x

u2
x +u2

y) (2)

Where x and y are pixel coordinates in an image, N is the number
of pixels, and ux, uy are the warp functions resulting from the re-
moval of the affine component of the warp. The affine components
(translate, scale, rotate and shear) are removed from the resulting
warps by finding the affine registration parameters (a, b, c, d, e, f )
that minimize the difference with the given warping function wx
and wy as shown in equation 3.

χ
2 = ∑

x
∑
y
(ax+by+ c−wx(x,y))2 +(dx+ ey+ f −wy(x,y))2

(3)

The distance graph D(i, j) is computed by adding the pixel error
term to the smoothness term multiplied by λ as shown in equation
4, where λ controls the contribution between the pixel error term
and the smoothness term.

D(i, j) = pixel_error(i, j)+λsmoothness(i, j) (4)

The Floyd-Warshall algorithm [Ros12], [Cha10] is used to get
the shortest paths S between all pairs of vertices in the graph. The
template T (geodesic mean) is computed automatically by finding
the image with the smallest sum of shortest paths [HYVD10] as
shown in equation 5.

T = argmini ∑
j

S(Ii, I j) (5)

Then Dijkstra’s algorithm [Dij59] is used to find the shortest
paths from the template to all the other images and vice-versa as
shown in Figure 1. So, we have the series of indices for the shortest
path for each image to the template. At this step, the warps from the
template to each image along that path are computed as shown in
Figure 2. The warps between the images are concatenated [TDR01]
along the path to make a single warp. The original images are in-
terpolated with their concatenated warp fields to obtain the new
warped images. These initial aligned training images and their warp
fields are used in the next section.

Figure 1: Finding the shortest paths (highlighted with blue ar-
rows) from the template (highlighted in green) to all other images.
Red lines indicate the edges that connect images on the graph.

2.2. Groupwise registration approach

The resulting images and their warp fields are then used with the
groupwise alignment algorithm. We do the whole process in a mul-
tiresolution way so that an image starts blurry and gradually gets
sharper. The mean of all the warped images is computed to get
an average image which is recomputed over iterations. The pro-
posed groupwise registration method proceeds as shown in the Al-
gorithm 1.

In each iteration we aim to minimise an objective function by
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Figure 2: Warps (highlighted with blue arrows) are computed from
the template (highlighted in green) to each image along the shortest
path for it. Red lines indicate the edges that connect images on the
graph.

input : Pairwise registered images and initial warp functions,
stiffness parameter for each resolution

output: Updated warps for each image
for resolution from lowest to highest do

for k iterations do
Compute average image;
Calculate new random control points;
Calculate derivatives of average image (A);
Calculate AT A+βDT KT KD;
for each image do

Warp the current image using the current warp;
Set up the control points on the average image and

warped image;
Find update to the control points using

Levenberg-Mardquart algorithm;
Warp using new control points;
Concatenate the previous and new warps;

end
end

end
Algorithm 1: Groupwise registration algorithm overview

updating the location of the control points on the target image. The
objective function we use is given in vector form by:

χ
2 = β(K(w(p+δp))+ c)2 +(S+Aδp−T )2 (6)

Where β is the stiffness parameter, K is the stiffness matrix that
calculates the vector difference between each control point’s move-
ment and the average of its neighbours, S is the average image, T is
the target image, w(p+ δp) is the vector of warped control points,
δp = δp j is the vector of control point location updates, p is the
current estimate of their movement, c is the offset vector which is
computed using −k ∗w(p) only of the first iteration, and we have
used a first order Taylor series approximation for S(p + δp) us-
ing the matrix of derivative images A. The stiffness parameter is

required to avoid large distortions that may not reduce the error
much, particularly in featureless parts of the image. We approx-
imate w(p+ δp) by its first order Taylor series per control point
and derivatives only need to be evaluated at that point. The error
function can then be approximated by:

χ
2 = β(K(w(p)+Dδp)+ c)2 +(S+Aδp−T )2 (7)

Where D is a block diagonal matrix, with each block a 2x2 ma-
trix of the derivatives of the warp from the previous iteration at the
corresponding point. Taking the derivative of the above with re-
spect to the update parameters and setting the result to zero gives
the update equation:

2βDT KT (KD(w(p)+δp)+ c)+2AT (S+Aδp−T ) = 0 (8)

Rearranging gives:

(β(DT KT KD)+AT A)δp =−βDT KT (Kw(p)+ c)−AT (S−T )
(9)

In line with the usual Levenberg-Marquardt procedure, we mod-
ify the above equation to vary smoothly between the Gauss Newton
version (above) and the gradient descent method, via the inclusion
of a damping term:

(B+αdiagB)δp =−βDT KT (Kw(p)+ c)−AT (S−T ) (10)

Where B = (β(DT KT KD)+AT A) and α is the damping term. In
each iteration across the set, the (random) control points are fixed,
as is the average and its derivatives, and so only involve an update
of the matrix according to the damping parameter and inversion of
a small matrix. The damping term α is initialized with the value 10
and decreased by a factor of 10 for steps that improve the error. For
steps where the error worsens, the damping factor is increased by a
factor of 10 and the step is discarded.

The deformation fields are represented by a set of control points
that parameterize Thin Plate Splines (TPS) [Boo89]. The grid of
control points consists of 25 points. The locations of the control
points are changed in random order within 25 areas for the current
and average image per iteration across the set.

The partial derivatives of the average with respect to movement
of each control point are calculated using a finite difference ap-
proximation. For every control point on the average image, the x or
y value is modified by δp. The control points without change and
the control points with one point changed in x or y are input to a
TPS function to create a warp for the image. As a result, the deriva-
tive images will be obtained by subtracting the warped image from
the average image and the resulting value is divided by δp.

The derivative images (δS0, δS1, δS2, ... , δSN ) are saved as a ma-
trix A. Then, a matrix AT A is computed by applying the dot product
operator between all pairs of derivatives contained in matrix A. The
step size δp is varied with the resolution, going from 4, 3, 2 and
1 from lowest to highest respectively. The resolution parameter (r)
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controls a Gaussian blurring and its values are selected according
to values of the step size (s) by using the formula r = 2s−1. So,
values of the resolution parameter are with widths 8, 4, 2 and 1
respectively.

We present a simulation method that can be used to tune the
stiffness parameter β as described in [AYMZT18]. Our experiments
use the control points on three different datasets of face and prostate
images and each of them varies in terms of brightness and contrast,
and so requires a different value for β. The method we propose
creates synthetic images with known update as the ground truth,
which can be used to calculate an optimal value for β. In theory,
this approach could be used to estimate a unique value for each
image pair, but for efficiency we approximate a single value for
each dataset.

The synthetic training data is created by applying a small random
warp to each target image, according to a set of random control
points placed in the same way as for the main update algorithm. To
make the problem more closely match the real data, we also apply
a histogram equalisation step, based on matching the histogram of
the warped target image to another image in the set, selected at
random. We assume the previous warp to be the identity (I), so only
a small update is needed, hence D = I. So, the first term of equation
8 is replaced by 2β(KT K(p+ δp)) and the stiffness parameter is
estimated from this equation, solved for β in the least-squares sense
over a set of synthetic example training images i.e. the following
equation is minimised.

χ
2 = ∑

i∈Ω

(βai−bi)
2 (11)

Where ai = (KT K(δpi)) is the stiffness vector term given by the
stiffness matrix and known required update for the ith example, and
bi = (Ai)

T (Si+Aiδpi−Ti) is the vector corresponding to the image
error and derivatives from the ith example. The solution is given by:

β =
∑i∈Ω ai ·bi

∑i∈Ω ai ·ai
(12)

We estimate a different value of β for each image set and each
resolution. The random offset of each control point is limited to
twice the step size for that resolution. Example synthetic images
are shown in Figure 3.

2.3. Measuring quality of our model

Datasets: We have tested our model on a set of 100 frames (every
10th frame) of the FGNET ”franck” dataset [FgnF04], a set of 37
front-facing faces from the IMM database [NMLS04] and our set
of 38 prostate T2-Weighted MRI images from different patients,
where every image represents a slice from a patient.
Specificity: We use the specificity measure as described
in [CTV∗05] to assess our model. By using the aligned images
and warps obtained from the groupwise approach, we have used
the PCA method to build appearance and shape models. The affine
part is removed from the aligned warps before building the shape

Figure 3: Examples of the original prostate MRI, IMM, and
FGNET images with example synthetic images created using a ran-
dom warp and offset of each control point. From left to right, the
original target image, synthetic images at 4 different scales, with
their histograms mapped to a target image, the target image used
to provide the histogram.

model. The appearance and shape model distributions are used to
construct a set of random images - 1000 images were generated
for each dataset. We apply the estimate of the affine transformation
obtained from the aligned warps to the original training images to
produce the affine registered images. We use the random images
and the affine registered images for computing the specificity mea-
sure.
Pixels’ intensity error: We have calculated the error of the pixels’
intensity for evaluating the performance of our model. The errors
of the pixel intensities are calculated for the three datasets and three
methods by computing the error between the average image and a
groupwise registered image.
Feature shapes error: We have calculated the error of feature
shapes (either point locations or segmented areas) for evaluating
the performance of the model. The error on feature points is per-
formed for PGNET and IMM datasets by using the manual ground
truth points which are available publicly [FgnF04], [NMLS04]. The
evaluation metric of the errors on feature points used in this study is
similar to that described by [CTP∗10]. The feature points used for
each image are twenty points as shown in Figure 4. The warps fields
of the groupwise registered images are used for computing a mean
location for each point for all images on the final average image to
estimate the true position of the feature points. Then the warp fields
are used to project those mean reference points back to each group-
wise registered image for comparing them with the actual positions
of the ground truth points. For the prostate MRI images we have
the location of the prostate annotated by a clinical expert as a re-
gion segmentation rather than as feature points. Figure 4 shows an
example label image from a prostate image. It is important to note
that the prostate region is lacking in clear intensity variations, and
so is a particularly challenging region for automatic alignment. We
used the Dice overlap to evaluate the results of the prostate images
as described in [CTP∗10]. The deformation fields of the groupwise
registered images are used to warp each segmented prostate im-
age (label image). The resulting warped label images are averaged
and thresholded at 0.5, and this average is considered as the ground
truth segmentation of the average. This ground truth is used with
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each warped label image to compute the Dice overlap for a partic-
ular image. Then the mean Dice overlap of all images in T2-MRI
dataset is computed.
Statistical analysis: We have used Anova statistical test for analy-
sis the variance differences among the three experiments for each
dataset.

Figure 4: Left to right: example ground truth points used for eval-
uation of the PGNET dataset, ground truth points used for evalua-
tion of the IMM dataset, and ground truth region segmentation of
the prostate used to evaluate the T2-MRI dataset.

3. Results

3.1. Specificity

The results of the specificity for PGNET dataset are 0.027, 0.028
and 0.034 for the full method, graph only and groupwise only ex-
periments respectively. These results indicate that full method is
better than graph only and groupwise only methods. The results of
the specificity for IMM dataset are 0.082, 0.091 and 0.099 for full
method, graph only and groupwise only experiments respectively.
These results indicate a good performance of the full method. The
results of the specificity for T2-MRI dataset are 0.107, 0.109 and
0.112 for the full method, graph only and groupwise only exper-
iments respectively. These results indicate that the full method is
better than the graph or groupwise methods alone. The results are
shown in Figure 5.

Figure 5: Results of specificity comparison for full method, graph
only and groupwise only experiments according to PGNET, IMM
and T2-MRI datasets. The results show a good performance for
our method.

3.2. Pixels’ intensity error

For the PGNET dataset, the results of the mean and standard de-
viation of the intensity error for the three experiments are as fol-
low: full method is 0.0293 (0.0075), graph only is 0.0377 (0.0116)

and groupwise only is 0.0407 (0.0110). Figure 6 shows that the
full method is significantly different from graph only and group-
wise only methods. For the IMM dataset, the results of the mean
and standard deviation of the intensity error for the three experi-
ments are as follow: full method is 0.0738 (0.0291), graph only is
0.1030 (0.0372) and groupwise only is 0.0840 (0.0435). Figure 7
shows that the full method is significantly different from graph only
method and is better than groupwise only method. For the T2-MRI
dataset, the results of the mean and standard deviation of the in-
tensity error for the three experiments are as follow: full method is
0.1117 (0.0237), graph only is 0.1277 (0.0189) and groupwise only
is 0.1134 (0.0201). Figure 8 shows that the full method and group-
wise only are significantly different from the graph only method.

Figure 6: Shows normalized error of the pixels’ intensity of full,
graph only and groupwise only methods for the PGNET dataset. *
indicates significance at (p < 0.05, Anova). Grey filled circles indi-
cate individual values obtained from pairwise image comparisons.
Black filled circles and error bar point to the mean and standard
deviation, respectively.

Figure 7: Shows normalized error of the pixels’ intensity of full,
graph only and groupwise only methods for the IMM dataset. *
indicates significance at (p < 0.05, Anova). Grey filled circles indi-
cate individual values obtained from pairwise image comparisons.
Black filled circles and error bar point to the mean and standard
deviation, respectively.
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Figure 8: Shows normalized error of the pixels’ intensity of full,
graph only and groupwise only methods for the T2-MRI dataset. *
indicates significance at (p < 0.05, Anova). Grey filled circles indi-
cate individual values obtained from pairwise image comparisons.
Black filled circles and error bar point to the mean and standard
deviation, respectively.

Table 1: The results of the mean Dice overlap for the three experi-
ments on the T2-MRI prostate dataset.

Experiment name Mean of Dice overlap
Full method 48.4%
Graph only 47.3%
Groupwise only 40%

3.3. Feature shapes error

We show firstly the results of the error of feature shapes (point
locations). For the PGNET dataset, the results of the mean and
standard deviation of the point error for the three experiments are
as follow: full method is 0.1030 (0.0885), graph only is 0.1037
(0.0919) and groupwise only is 0.1028 (0.0872). Figure 9 shows
that groupwise only method is a little bit better than the full
method and that both are better than graph only method. For the
IMM dataset, the results of the mean and standard deviation of the
point error for the three experiments are as follow: full method
is 0.3295 (0.2368), graph only is 0.2833 (0.2125) and groupwise
only is 0.4089 (0.3327). Figure 10 shows that graph only method
is significantly different from the groupwise only method and the
full method is better than the groupwise only method.
We show secondly the results of the error of feature shapes
(segmented areas). For T2-MRI dataset, the results of the mean
Dice overlap for the three experiments are as follow: full method
is 0.4843, graph only is 0.4727 and groupwise only is 0.4009. The
results demonstrate our model performs better than the others as
shown in the Table 1.

Figure 11 shows the evolution of the mean of the full method,
graph only and groupwise only methods for PGNET, IMM, and
T2-MRI datasets.

Figure 9: Shows normalized error of the feature point of full,
graph only and groupwise only methods for the PGNET dataset.
Grey filled circles indicate individual values obtained from pair-
wise image comparisons. Black filled circles and error bar point to
the mean and standard deviation, respectively.

Figure 10: Shows normalized error of the feature point of full,
graph only and groupwise only methods for the IMM dataset. *
indicates significance at (p < 0.05, Anova). Grey filled circles indi-
cate individual values obtained from pairwise image comparisons.
Black filled circles and error bar point to the mean and standard
deviation, respectively.

4. Discussion

The proposed graph-based initialisation is based on the work of
Hamm et al. [HYVD10], which is borrowed from the Isomap al-
gorithm. It can approximate the group of images using the shortest
path inside a kNN graph that connects this group of images.
The pros of the proposed graph-based initialisation are as follows.
We can compute the template automatically rather than select one
image at random. As our proposed method is based on the struc-
ture of the Isomap algorithm, the dataset of images is assumed to
be distributed on a low dimensional space that is produced from
the manifold learning algorithm. Although some our datasets have
small number of images, the results has been shown to demonstrate
improved registration compared to the other methods in this paper.
Whilst the cons of the proposed method are as follows. Our method
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Figure 11: Evolution of the mean of the three methods and
datasets. From left to right: full method, graph only method and
groupwise only method. From top to bottom: PGNET, IMM, and
T2- MRI datasets.

has the same limitations as the Isomap algorithm. i.e. the number
of samples needed increases exponentially with the intrinsic dimen-
sion of the data. Although our algorithm is less dependent on hav-
ing a very large dataset, due to the use of refinement of the non-
rigid registration. We use pairwise registration between every pair
of images and that is computationally expensive.

5. Conclusion

In this paper, we combine a graph-based groupwise registration
method, based on the work of Hamm et al. [HYVD10] with a
groupwise optimisation method ( [AYMZT18]) based on the work
of Cootes et al. [CTP∗10] and Sidorov et al. [SRM09] . The
proposed combination (full method) is compared with the graph
only algorithm and the groupwise only method. Our model has
been tested on three different datasets of faces and medical im-
ages and indicates good results, in most cases better than the other
two methods. Of the nine evaluations, comprising 3 measurements
(specificity, pixel intensity error, and feature based error) on the 3
datasets, the combined method showed an improved performance
in 7 of them (all the specificity and intensity measures and the re-
gion segmentation feature measure). The two where it performed
worse than the other method (in both cases the graph only method)
it was not significantly worse at the p = 0.05 level. This shows
that the combination of a graph-based initialisation approach with
a groupwise update of the alignment shows promise for improved
unsupervised non-rigid image alignment.
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