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Abstract
On the foundations of many rendering algorithm is the symmetry between the path traversed by light and its adjoint from
the camera. However, several effects, including polarization or fluorescence, break that symmetry and are defined only on the
direction of light. This complicates the applicability of bidirectional methods, that exploit the symmetry for effective rendering
light transport. In this work we focus on how to include polarization within a bidirectional rendering algorithm. For that, we
generalize the path integral to support the constraints imposed by non-symmetric light transport. Based on this theoretical
framework, we propose modifications on two bidirectional methods, namely bidirectional path tracing and photon mapping,
extending them to support polarization.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

For many years light transport simulation has exploited the sym-
metry of most common scattering operators for building efficient
methods for rendering. This symmetry involves that, independently
on whether the scattering is computed from the propagation di-
rection of the light, or from its adjoint (i.e. the direction from the
camera), the throughput of the light transport would be exactly the
same [Vea97].

Starting from ray tracing (as opposed to light tracing), these
methods have taken advantage of this symmetry to compute only
paths that contribute to the image. Bidirectional methods have gone
a step further, seamlessly combining paths from the camera and the
light, either by connecting vertices of both subpaths [LW93,VG94],
merging them via density estimation [Jen01], or a combination of
both [GKH∗13, HPJ12], for robustly and efficiently handle most
common light transport configurations.

Unfortunately, not all light transport operators can benefit from
this symmetry. Effects such as polarization and fluorescence are
defined with respect to the incoming radiance, and therefore their
adjoint (the importance) cannot be modeled symmetrically, or even
cannot be modeled at all, given the broken symmetry. While for
most common scenes these effects are negligible, there are many
examples where they play a crucial role on the final appear-
ance: Rendering birefringent crystals [WW08,LSG12], interreflec-
tions between conductors and dielectrics, phosphorescent materi-
als [Gla95], or scattering on turbid organic media [GSMA08] re-
quire modeling of these non-symmetrical operators on light trans-
port for accurate, predictive results.

Moreover, most of these effects exhibit a strong effect on the

temporal domain. Therefore, while for traditional light transport
they might be important, they become crucial when computing
light transport in transient-state [JMM∗14]. Including these effects
is however non-trivial in (steady- and transient-state) bidirectional
methods, due to the need of tracking the state of the subpath, and
because the operation order matters.

In this work, we focus on developing a non-symmetric, but
bidirectional rendering system, in particular focused on polariza-
tion. We first formalize non-symmetric polarized light transport
by generalizing the well-known path integral formulation [Vea97]
to this scenario. This allows us to discuss the needed changes
on bidirectional rendering algorithms modeled within this formu-
lation, in particular on bidirectional path tracing, and how these
changes are applicable to photon mapping, which leads us to de-
velop polarization-aware variants for both methods.

2. Background & Related Work

In computer graphics we commonly rely on geometric optics for
representing light; this allows us to consider light as a bunch of
rays transporting energy as a function of its frequency ω and in-
tensity I (amplitude). While this assumption is enough for most
applications, this is a severe simplification. It is well known the
duality of light as a particle and an electromagnetic wave, where
the latter is usually ignored in computer graphics applications. Of
course there are some attempts on rendering based on Maxwell
equations [Mor81, MMRO13], which include polarization of light,
but these works are in general difficult to implement and impracti-
cal when trying to render a complex scene.

As all electromagnetic waves, the electric field of light E os-
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Figure 1: Examples of polarization states (left): (a,b) linear polar-
ized light aligned to 0 and φ degrees respectively, (c) circular po-
larization, and (d) elliptical polarization. The graphs on the sides
represent the electric field in the two phasors Ex and Ey, as shown
in the geometry of a ray-surface intersection depicted on the right,
where the parallel plane y is the same for both the incoming and
outgoing frames. Note that neither elliptical nor circular polarized
light rotate physically. (Figure after Shumaker [Shu77] and Wilkie
and Weidlich [WW12]).

cillates along a plane parallel to its ray direction w with a given
frequency ω. By choosing a plane perpendicular to w, defined by
the orthogonal axis x and y (themselves orthogonal to w), we can
define the oscillation of E as the combination of two harmonic os-
cillations on each reference plane x,y:

Exy(r) = 〈Is sin(ωr+φs), Ip sin(ωr+φp)〉, (1)

with r the optical depth traversed by the light, Is and Ip the wave
amplitude, such that I = I2

s + I2
p, and φs and φp the phase shift of

the wave in each plane of reference. Note that we use the subindex
s and p for the axis x and y respectively, following the typical nota-
tion in optics, where s stands for the German terms senkrecht (per-
pendicular) and parallel, respectively.

The difference in amplitude and phases between each axis (or
phasor, see [BW02]) is responsible of the state of polarization of the
light: if φs−φp =

π

2 n, with n ∈ Z, then it is linearly polarized, on a
plane defined by the amplitude on each phasor, while if φs−φp =
π

4 n and Is = Ip then light is circularly polarized. In all other cases
light is elliptically polarized. Note that a particular light wavefront
can be the superposition of light in several polarization states; if
there is no correlation between these states, then the polarization
state is considered random, and therefore light gets unpolarized up
to certain extend. Figure 1 illustrates different types of polarization.

It is important to realize that in order to sum up polarized light it
needs to be defined in the same reference frame. This imposes that
we can only sum light with the same propagation direction w, and
that the reference frames x,y of each light bundle need to be aligned
(i.e. the perpendicular and parallel planes need to be defined in the
same reference frame). This is also important when interacting with
matter, given that e.g. the Frensel equations are defined on a fixed
reference frame.

Stokes Vectors & Müller Calculus Several models exist for mod-
eling polarization of light: the most straightforward would be to
directly track the electromagnetic phasors as light traverses the me-
dia. This is very convenient when accounting for a single polar-
ization state in the light beam, and allows modeling complex ef-
fects related with the phase occurring in e.g. water drops in rain-

bows [SML∗12] or when modeling thin-layer interference [Hac07].
Additionally, it can be compactly represented as a tuple of com-
plex numbers, known as Jones vector. However, this formulation
is pretty inconvenient when dealing with aggregates of randomly
polarized light (e.g. partially polarized light or unpolarized light),
since we need to track each polarization state.

Coherency Matrices [BW02, Gla95] is another formalism to de-
scribe polarized light. In essence encode the same information as
Equation (1) in a single matrix, with the advantage of being able to
model the polarization state for a mixture of polarization states, as
a function of their correlation. Thus, for unpolarized light the corre-
lation will be 0, while for perfectly polarized light this correlation
is one. This formulation was used in the first works in computer
graphics dealing with polarization [WK90], and its extension for
anisotropic crystals [TTW94].

The last form for representing polarization are the so-called
Stokes vectors, which is the formulation used in this paper. These
were introduced in graphics by Sankararayanan [San97], and were
adopted by other authors for efficient and practical polarization
rendering [FGH99, WTP01, WW12]. They model polarized light
(for each wavelength λ) as a 4-vector Sλ = 〈S0,S1,S2,S3〉 defined
as [WTP01]:

S0 = I2
s + I2

p

S1 = I2
s − I2

p

S2 = 2 I2
s I2

p cos(φs−φp)

S3 = 2 I2
s I2

p sin(φs−φp). (2)

Intuitively, each component of this model represents a type of po-
larization: S0 describe the total intensity of the light wave, which is
the typical value used in rendering. The second and third compo-
nent S1 and S2 model the linear polarization at zero and 45 degrees.
Finally, S3 represents the circular polarization. The components in

the Stokes vector must hold that S0 ≥
√

S2
1 +S2

2 +S2
3, imposing

that S j ∈ [−S0,S0] for j = 1..3. This formulation has several prop-
erties that are interesting for rendering: first, it shares with the co-
herency matrix that it compactly encodes statistically an aggregate
of different polarization states, which allows to represent all possi-
ble degrees of polarization. Additionally, it explicitly encodes the
intensity of the light wave typically used in rendering, which allows
an easier integration into current rendering systems. It is important
to note that since Stokes vectors represent polarized light, they are
only additive under the condition of lying on the same reference
frame. As we will see later (Section 3), this has an important impli-
cation when integrating polarized light in the pixel.

In order to model the interaction between light modeled using
Stokes vectors and matter, a matrix structure called Müller matrix
is used. It encodes the effect of the BRDF as a 4× 4 matrix, rep-
resenting the linear transformation occurring to the polarized light
encoded in S. The form and values of this matrix depends on the
type of interactions, and similarly to the Stokes vector it is defined
in a particular incoming and outgoing reference frame. Thus, for
each interaction we need to fulfill the requirement valid light di-
rection with respect to the Müller ’s incoming frame, and that both
frames are aligned. Additionally, this matrix form is defined for in-
coming light, and therefore not for its adjoint (more common in
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rendering). This is crucial, since it breaks the symmetry, and there-
fore imposes a single directionality on the tracer. Previous work
has solved this by implementing these effects on single-directional
methods, such as recursive path tracing, or light tracing, where it
is relatively easy to incorporate each of them [WW12], since there
are not multiple cases to consider. In this work, we focus on extend-
ing the applicability of fully bidirectional methods for polarization-
based rendering. In the following section we go deeper on that.

Effects Requiring Polarization As discussed earlier, there are
several effects that require polarization for accurate render-
ing [WW12]. The canonical example is specular reflection: the
Fresnel equations, specially for dielectrics, are strongly polarizing.
As such, when concatenating the reflection from different specu-
lar surfaces polarization might have a subtle but noticeable effect
on the look of the reflection, specially when illuminated from po-
larized area lights such as common flat-screen displays. Unfortu-
nately, these effects are in general restricted to perfectly smooth
surfaces, with the notable exception in graphics to the work of He
et al. [HTSG91], which is able to account for polarization off glossy
surfaces. More recently, a model based on Müller matrices was pro-
posed on the optics community [LMNS12] which, as opposed to
He’s work, has been validated against measured data.

Glowing specular surfaces [WW11], such as reflecting (i.e. no
black bodies) incandescent objects, also emit polarized light, and
therefore the appearance of their reflection on specular surfaces (or
even with themselves) can suffer from changes when including po-
larization into the computations. The atmosphere is also affected
by polarization, and is in fact the main polarized light source in
outdoor scenes: for example, polarization needs to be taken into
account when accurately modeling the complex light-matter in-
teractions occurring in waterdrops, which are responsible for e.g.
rainbows [SML∗12]. In the context of atmospheric light, Wilkie et
al. [WZP04] proposed a parametric sky model accounting for po-
larization, mainly due to Rayleigh scattering.

Finally, some crystals present birefringence: this effect is the re-
sult of the internal structure of the crystal, which lead to different
index of refraction and optical axis for the two phasors of light
(parallel and perpendicular). This in the end produces two differ-
ent refraction images due to ordinary and extraordinary refractions
(note that for bi-axial crystals both refractions are extraordinary).
Several works have dealt with this effect: including solutions for
uniaxial [GS04, Hac07, WW08] and biaxial [LSG12, DK13] crys-
tals and gems.

Other Non-Symmetric Effects Polarization is not the only effect
that breaks simmetry on light transport: quantum effects such as
fluorescence and phosphorescence are also defined as a function
of the incoming light, and therefore we cannot model them based
on their adjoint. In particular Glassner [Gla95] proposed a model
for these two effects, based on re-radiation functions. Gutierrez et
al. [GSMA08] focused on fluorescence, including its effect as part
of the russian roulette-based termination on photon mapping and
a re-radiation term on the density estimation pass. Finally, Wilkie
et al. [WTP01] used bi-spectral re-radiation BRDFs within a for-
ward path tracing, but do not describe how to extend this work to
bidirectional methods.

x1 x2

Light3subpath3vertex
Light3subpath3segment

x0 x3
BPT
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Eye3subpath3vertex
Eye3subpath3segment

Shadow3connection
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Figure 2: Schematic description of bidirectional path tracing (BPT,
top) and photon mapping (PM, bottom). In both algorithms, a sen-
sor and a light subpath are traced from the eye and the light source
respectively; these two subpaths are then connected to form a full
path, via deterministic shadow connection in the case of bidirec-
tional path tracing, and via an additional random segment and
density estimation in photon mapping (Figure after Georgiev et
al. [GKDS12]).

3. Vector Path Integral

Here we describe a generalization of the path integral for includ-
ing polarization. We use the term vector as an analogy of the vec-
tor radiative transfer equation used to model polarized radiative
transfer [Cha60]. The path integral [Vea97] is a theoretic frame-
work where the pixel intensity I is computed as an integral over the
space of light transport paths Ω contributing in the pixel:

I =
∫

Ω

f (x)dµ(x), (3)

where x = x0 . . .xk are the k + 1 vertices of a length-k path with
k ≥ 1 segments. Vertex x0 and xk lies on a light source and cam-
era sensor respectively, while x1 . . .xk−1 are intermediate scattering
vertices. The differential measure dµ(x) denotes area integration.
The path contribution function f (x) is the product of the emitted
radiance Le, path throughput T, and sensor importance We:

f (x) = Le(x0→x1)T(x)We(xk−1→xk). (4)

The path throughput is itself the product of the scattering function
ρ for the inner path vertices and the geometry G and visibility V
terms for path segments:

T(x)=

[
k−1

∏
i=1

ρ(xi)

][
k−1

∏
i=0

G(xi,xi+1)V (xi,xi+1)

]
. (5)

We assume a fractional visibility to account for transmittance
within media, as well as opaque objects. The scattering kernel at
each vertex is defined as:

ρ(xi) =

{
ρs(xi−1→xi→xi+1) xi on surface,
ρp(xi−1→xi→xi+1)σs(xi) xi in medium,

(6)

where σs is the scattering coefficient in the medium, and ρs and ρp
are the surface BSDF and phase function respectively.

Given that in general there is no analytic solution for Equa-
tion (3), Monte Carlo solutions are used to approximate the path
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integral as a Monte Carlo estimator:

〈I〉= 1
n

n

∑
j=1

f (x j)

p(x j)
, (7)

that averages the contribution of n random paths x j, sampled with
a probability distribution function (pdf) p(x j) = p(x0...xk) the
combined probability density of each path’s vertex. The probabil-
ity density of the path is determined by the sampling technique
used to obtain the path: for example, bidirectional path tracing
(BPT) [LW93, VG94] independently generates a subpath xw from
the eye with pdf p(xw) and a subpath xl from the light with pdf
p(xl). These are then (optionally) connected using a shadow ray to
build the full path x with pdf p(x) = p(xl)p(xw) (see Figure 2, top).

Vector Path Integral The vector path integral takes a similar form
as Equation (3), with important differences on the path contribution
function f (x) (Equation (11)), in particular in the path throughput
T(x) and in the sensor importance We(xk−1→xk). In the following
we will assume monochromatic light (i.e. singe wavelength).

In its vector-form, the scattering kernel at xi is no longer a scalar
term ρ(xi), but a Müller matrix M(xi) modeling the scattering inter-
action with the Stokes vector representing light. This imposes two
constraints: the first one is that, as discussed earlier, the product
between the incoming radiance and M(xi), as well as the outgo-
ing radiance, has to be in valid reference systems. Therefore, we
need to rotate the frames of the incoming and outgoing lights to
match the frame on which M(xi) is defined, such that the y of both
frames lay in the plane defined by the incoming and outgoing di-
rections (see Figure 1). Therefore, the scattering kernel becomes
S = R(−αo)M(xi)R(αi), where R(α) is the rotation matrix de-
fined by an angle α defining the rotation along the ray direction,
and αi and αo are the rotation angles for the incoming and outgo-
ing frames respectively.

In addition to the rotation, working with Müller matrices im-
poses the need of defining how the operations are concatenated: as
opposed to the traditional path integral, here the order on which the
operations are concatenated is important. For that, let us define the
concatenation operation as:

k−1

∏
i=1

S(xi) = S(xk−1)S(xk−2) ...S(x2)S(x1), (8)

where S(xi) is the scattering operator in matrix form. Interestingly,
this formulation would be also valid for other matrix-based for-
mulation of the path integral e.g. re-radiation matrices for fluores-
cence. The order imposed in Equation (8) needs to be applied also
to the contribution function.

This leaves the vector path throughput Tv(x) as:

Tv(x)=

[
k−1

∏
i=1

S(xi)

][
k−1

∏
i=0

G(xi,xi+1)V (xi,xi+1)

]
, (9)

where the result of the second product serie is a scalar value, and
therefore does not require to be included in the vector form of the
scattering kernels.

The second important change of the vector contribution function

fv(x) with respect to the standard one occurs in the sensor impor-
tance We(xk−1→ xk): as described in Section 2, we cannot sum
two polarized beams of light incoming a single point if they have
different ray direction w. Therefore, the sensor importance needs
to: a) rotate the incoming radiance to the same reference frame as
the sensor, and b) transform the light to the same output reference
frame, so it can be added. Thus, the vector sensor importance be-
comes We(xk−1→xk) =R(αe)We(xk−1→xk)R(αi), where R(αe)
is the transformation applied to the captured light so that is in the
same reference frame as the sensor.

By applying Equation (9) to Equations (3) and (11) we get the
path integral formulation in vector form:

I =
∫

Ω

fv(x)dµ(x), (10)

fv(x) = We(xk−1→xk)Tv(x) Le(x0→x1). (11)

This equation can be computed in the same manner as the tra-
ditional path integral, following Equation (7), and can be straight-
forwardly extended to support the transient path integral proposed
by Jarabo et al. [JMM∗14]. In the following, we explain how this
generalized formulation changes the computations in bidirectional
path tracing.

4. Bidirectional Rendering of Polarization

In Section 3 we have described the mathematical framework within
which we will work, making explicit the differences between tra-
ditional scalar rendering and the vector formulation needed when
adding polarization. Here we describe the algorithmic and imple-
mentation details for developing a bidirectional rendering within
this framework.

Bidirectional methods [VG94,Jen01,GKH∗13,HPJ12] compute
the path integral by sampling several light paths joining the light
and the sensor. This is done by sampling two different random
walks (subpaths), each starting from the initial and final vertices of
the path, which are then joined by means of a deterministic shadow
connection, creating a full contributing path. These two random
walks have different probabilities, depending on the sampling strat-
egy used to create the subpath.

When extending these methods to our framework, we detect that
the random walk from the light source (the light subpath xl) fits
naturally in the vector path integral formulation, since it follows
the sequence of events occurring to light since it is emitted. For
each new scattering event in point xi, we would compute its scat-
tering kernel S(xi), and apply it to the accumulated throughput of
the path following Equation (8). Generating the random walk from
the sensor, as well as performing the shadow connection, is a bit
trickier. In the following, we explain them on more details.

Sensor Subpath When computing the sensor subpath xw, we need
to take into account that we are starting the sequence of events on
the reverse order. This is key, since if affects on how the scattering
kernels at each vertex of the subpath are defined. Thus, the main
difficulty is to keep track on whether the incoming or outgoing di-
rections are real (i.e. in the direction of the light, ωi and ωo re-
spectively) or are a result on how the subpath is being constructed
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(which we denote ω̂i and ω̂o). For each new scattering event in the
random walk, we sample the subpath new direction ω̂o based on the
previous direction ω̂i. We use the same sampling routine for light
and importance tracing, since we sample proportionally with the in-
tensity (i.e. S0), which thanks to Helmholtz reciprocity is symmet-
ric in both the light subpath and its adjoint (sensor subpath). Then,
we create the scattering kernel S(xi) in the frame defined by the
light incoming and outgoing directions, ωi = −ω̂o and ωo = −ω̂i
respectively.

With that in place, and taking into account that for the sen-
sor’s subpath we decrement the indices of the subpath vertices (i.e.
the subpath vertices are generated in the reverse order, starting by
vertex k to vertex 0), we then apply to the subpath accumulated
throughput using Equation (8). Therefore, as opposed to multiply-
ing S(xi) to the left to the accumulated throughput as in the light
random walk, we need to apply each new scattering kernel on the
right.

Shadow Connection In order to join the light and sensor subpaths,
we again need to be careful on the reference frame we are using,
and on the order at which the events are computed. In this case, for
a light subpath xl with length m and partial throughput Tv(xl), and
sensor subpath xw with length k−m and partial throughput Tv(xw),
we obtain the final throughput as:

Tv(x)=Tv(xw)S(xk−m)G(xk−m,xm)V (xk−m,xm)S(xm)Tv(xl).
(12)

Sampling Vector Scattering Kernels Given that the maximum
value on the Stokes vector S is always its first component S0 (light
intensity), we opt for sampling the scattering outgoing direction
with pdf p(ωo|ωi) proportional to the variation on S0. In essence,
we use traditional non-polarized scattering sampling procedures to
sample ωo. The immediate consequence of this choice is that we
can use the sampling techniques when generating both the light
and sensor subpaths, given that for this component there is sym-
metry according to Helmholtz reciprocity. Of course, this choice is
only valid for polarization rendering, and might be suboptimal for
strongly polarized light, as well as for other non-symmetric light
transport. These cases would require specialized sampling routines
aware of e.g. the polarization state of incoming light.

4.1. Photon Mapping

As shown by Georgiev et al. [GKH∗13] and Hachisuka et
al. [HPJ12], photon mapping (PM) [Jen01] can be understood as
a variant of bidirectional path tracing, which differs from the stan-
dard formulation on how the sensor and light subpaths are con-
nected. While in bidirectional path tracing we connect the last two
vertices by means of a deterministic shadow connection, in photon
mapping we merge together the last two vertices by using a density
estimation kernel. While this introduces bias, it has been shown that
in the limit the algorithm is consistent (i.e. converges to the correct
solution, we refer to a recent course [HJG∗13] for details).

Both Georgiev et al. [GKH∗13] and Hachisuka et al. [HPJ12]
shown that this means that we can define PM under the path integral
framework, with some small variants, which means that we can

introduce photon mapping in our vector formulation of the path
integral. In fact, the main difference arises on how to merge the eye
and light subpaths. While for bidirectional path tracing we make
use of Equation (12), here we define the throughput of the path
resulting from merging the sensor xw and light xl subpaths as:

T′v(x)=Tv(xw)KR(‖xk−m−xm‖)S(xk−m)Tv(xl), (13)

where KR is the spatial smoothing kernel with bandwidth R. Note
that given that we are merging vertices xk−m and xm (see Figure 2)
we do only have to apply one scattering kernel S(xk−m), since oth-
erwise we would be applying it twice. Additionally, note that the
scattering kernel S(xk−m) is defined with incoming direction the
one from the light subpath (the incoming direction of xm), while
the outgoing direction is the inverse of the (virtual) incoming di-
rection for the sensor subpath’s last vertex xk−m.

4.2. Implementation

We implemented our polarized rendering on top of an in-house
physically-based rendering witten in C++, which was limited to
spectral radiance values. To avoid inherent costs of supporting po-
larization when not needed, we fully templatize the light in our light
transport, allowing to select the spectral or polarized version of the
code in compiler time.

In many cases, working with the full Müller matrices was not
needed, given that e.g. light was unpolarized or the scattering kernel
itself was a depolarizer. We add a flag to both the Stokes vectors and
Müller matrices to discard computations depending on the type of
light and interaction being computed. This significantly increases
performance while not affecting the accuracy of results.

While our renderer supports spectral rendering, our tests have
been performed using RGB; this results into scattering kernels
of size 3 × 4 × 4 In case of using a large number of wave-
lengths the costs of the multiplication of scattering kernels might
be prohibitive. However, even considering their small size (4× 4)
Müller matrices are relatively sparse for most common operations,
which can be exploited to increase performance.

We have included four types of scattering kernels, which are the
standard when rendering with polarization: a Lambertian BRDF
acting as a depolarizer [WW12], a smooth conductor BRDF with
complex index of refraction modeled with the Fresnel equations
for conductors [WW12], a Fresnel smooth dielectric BSDF with
support to both transmission and reflection [Azz04], and a weakly
polarizing Mie phase function obtained using MiePlot [Lav15].

Finally, there is no standard file format for Stokes images. In or-
der to store the resulting images, we opt for compressing them into
Radiance HDR (.hdr), although any other HDR format (e.g. EXR)
would work. However, we need to take into account that S1..3 might
be negative. We instead store a normalized value S′1..3, imposing
that S′1..3 ≥ 0, as:

S′1..3 =
S1..3
S0

+1. (14)

Given this normalization, other linear image formats could be used
instead.
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Figure Scene # Photons Unpolarized Polarized
3 mirror 527K 8 14
4 bunny 300K 17 33

Table 1: Comparison of the average cost (in seconds) per itera-
tion between rendering with and without polarization, for the ren-
der examples shown in the paper. The number of photons in the
scene show the average number of photons per iteration (1M pho-
ton shots).

5. Results

We demonstrate our implementation by rendering two scenes with
complex light interactions, including dielectric, conductors and
participating media. One of the scenes (Figure 3) consists of a scene
reflected on a metallic (aluminum) spherical mirror, which is what
the camera looks at. The scene includes several diffuse surfaces,
as well as another planar conductor mirror, and a dielectric non-
absorbing sphere made of glass. The second scene (Figure 4) is a
dielectric tank (glass) filled with milk diluted in water, containing
two diffuse planes, and a bunny, also diffuse. Most light transport
suffers polarization given that light has to pass through a dielec-
tric, which is highly polarizing. The medium itself slightly polar-
izes light, although after multiple scattering this polarization is lost.

In both cases our scenes are illuminated by a point, unpolar-
ized light. Given that the the caustic paths due to smooth dielectric
and conductors are dominant (in the case of the tank all transport
is caustic), we use a stochastic progressive [HJ09, KZ11] version
of our polarized photon mapping (Section 4.1) in both scenes, al-
though we also account for multiple bounces on the sensor subpath,
and perform deterministic shadow connections with the light. We
computed 500 iterations, with 16 samples per pixel and shooting
1000000 photon random walks on each iteration. We compute the
initial kernel radius using the 25 nearest photons. Note that without
bidirectional methods such as photon mapping these scenes, where
specular light paths dominate, could be very hard, or even impossi-
ble, to render.

For visualizing the polarization in the scene, we use the tech-
niques described by Wilkie and Weidlich [WW10], in particular
the degree of polarization (from blue –unpolarized– to yellow –
strongly polarized) and the relative degree of linear polarization
(from blue –circularly polarized – to yellow –linearly polarized).
In Figure 3 we can observe how the two mirrors (conductors) are
bad polarizers, and polarize light only slightly. However, the dielec-
tric is a very good polarizer. Moreover, we can see how when the
frames of the spherical mirror and both the dielectric sphere and
the planar mirror coincide then the linear polarization is preserved.
However, when the frame of reference has to change (e.g. in poles
of the dielectric sphere or in the top of the planar mirror) the linear
polarization switches to circular polarization.

These observations also hold for Figure 4, where we can see how
as the optical depth increases (more scattering), then the polariza-
tion is lost. This is because the multiple scattering tends to weaken
the effect of polarization. We can also see how, since the dielectric
surfaces are planes, then most of the polarization is linear, and only

when multiple scattering dominates the circular polarization starts
to be visible.

In terms of performance, adding polarization increases the cost
with respect to scalar rendering (Table 1), due to the vector-to-
matrix and the matrix-to-matrix products. However, we avoid these
costly computations unless they are strictly needed, although with
multiple scattering these operations are common. The need of
tracking the reference frame also introduces additional costs. Note,
however, that the vector and matrix operations are not optimized;
using vectorial code could reduce the costs significantly. Addition-
ally, while the representation of polarization is compact, the mem-
ory cost is much higher than traditional rendering: for example, for
photons we need to store four floats for a single wavelength, in con-
trast to the single float per wavelength in scalar rendering, plus the
need of storing the full frame, not only the photon’s direction.

6. Conclusions & Future Work

In this work we aimed for two things: first of all, formalizing the no-
tion of polarization by generalizing the path integral including the
constraints of this type of illumination. Interestingly, these mod-
ifications do not reduce generality, but extends its range of ap-
plicability to transport effects where the Helmholtz reciprocity is
broken. Based on this theoretical framework, we have described
the required changes to well-known (scalar) bidirectional rendering
methods that can be defined within the traditional and its extended
unified path integral framework. In particular, we have shown how
to include polarization in both bidirectional path tracing and photon
mapping.

An additional goal was to provide links to the references needed
to implement a physically-accurate rendering with polarization,
and in particular to the Müller matrices used to define light-matter
interactions, as well as details on how to implement bidirectional
methods, so that it complements the excellent tutorial on rendering
polarization by Wilkie and Weidlich [WW12].

There is of course several future work ahead. First of all, on a
theoretical level our proposed vector path integral can be straight-
forwardly extended to other non-symmetric effects. Adding these
new effects is an obvious and interesting first step for demonstrat-
ing the generality of the approach. Showing how our formulation
fits into the transient path integral [JMM∗14], and analyzing the
time-resolved effects of polarization is a very interesting avenue for
future work. While some of them have been already demonstrated
in a single-directional basis (e.g. birefringence, flourescence), sev-
eral questions at very small temporal resolution (i.e. femtosecond
resolution) still remain, including how to model the retardance of
phase shifts when using a super-short impulse illumination within
a Stokes vector formulation. Finally, there is still a lack of BRDF
models supporting polarization in graphics, beyond the boundary
cases of perfect Lambertian or smooth surfaces. Adding polariza-
tion to microfacet models [HHdD16], probably with support for
multi-layered materials [JdJM14] is a very interesting avenue of
future work.
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Figure 3: Mirror scene, depicting a scene with a dielectric sphere and a conductor mirror reflected on a spherical conductor mirror (left).
The image in the center shows the degree of polarization (yellow is higher), while on the right we represent the ratio of linear polarization vs
circular polarization (yellow is more linearly polarized). While the conductors only polarize light weakly, the dielectric specular reflection is
highly polarized. In addition, the concatenation of multiple reflections on curved surfaces cause that the linear polarized light from specular
reflection shifts towards circular polarization.

Figure 4: Tank scene, depicting a scene with a set of Lambertian (depolarizers) objects within a tank filled with milk diluted in water. The
tank surfaces are dielectric surfaces (glass) (left). The image in the center shows the degree of polarization (yellow is higher), while on the
right we represent the ratio of linear polarization vs circular polarization (yellow is more linearly polarized). The boundaries of the tank
strongly linearly polarize light, which as the optical depth increases, and therefore the amount of scattering suffered by light, it becomes
more unpolarized.
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