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Abstract

Measuring the spectral power distribution of a light source, that is, the emission as a function of wavelength,
typically requires the use of spectrophotometers or multispectral cameras. Here, we propose a low-cost system
that enables the recovery of the visible light spectral signature of different types of light sources without requiring
highly complex or specialized equipment and using just off-the-shelf, widely available components. To do this, a
standard DSLR camera and a diffraction filter are used, sacrificing the spatial dimension for spectral resolution.
We present here the image formation model and the calibration process necessary to recover the spectrum, includ-
ing spectral calibration and amplitude recovery. We also show applications of the system in image processing and

rendering.

Categories and Subject Descriptors (according to ACM CCS): 1.4.1 [Image Processing and Computer Vision]: Dig-

itization and Image Capture—Radiometry

1. Introduction

Obtaining a multispectral image of a scene allows us to ex-
tract information of it that our eyes fail to capture. This has
wide applicability in a variety of disciplines, including com-
puter vision, medical imaging or computer graphics. Mul-
tispectral imaging enables characterization of light sources,
material recognition and inspection, industrial control, spec-
tral rendering, or tissue identification, among others. Be-
sides, with the proliferation of cameras—both DSLRs and
in mobile devices—, photographic hardware and software
filters and simple image processing algorithms are widely
used and available in a number of software programs and
apps. These apps can benefit from knowledge of the spec-
tral signature of the light source(s) illuminating a scene for
different purposes: to yield better renditions of the images,
for white balancing, for the application of certain artistic
filters or for insertion of synthetic objects into the image.
This spectral signature, also called spectral power distribu-
tion (SPD), is the power emitted by a light source as a func-
tion of wavelength, and can be measured with spectropho-
tometers. These devices, however, are specialized equipment
of relatively high complexity and cost, not available to the
wide public.

This gives rise to this paper, where we propose a system
to estimate the SPD of different light sources at a low cost
and requiring only off-the-shelf equipment. This equipment
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Figure 1: Left: Elements of our capture system, which em-
ploys a DSLR camera and a diffraction filter like the ones
shown. Right: Two images of light sources captured with our
camera using a 500 lines/mm diffraction filter, showing the
diffraction pattern (spectral signature) of the source.

comprises a camera and a diffraction filter, such as those
shown in Figure 1, left, and described in Section 3. Our main
focus is simplicity of use, availability, and low cost. Other
approaches in the literature have used prisms for a similar
purpose [DTCLO09], but require a larger setup, while we just
require a filter placed at the end of the lens. Further, we do
not aim at obtaining an emission spectrum as accurate as that
yielded by spectrophotometers, but to obtain a spectrum that
can be used for a number of commonplace everyday appli-
cations, such as white balancing or compositing of synthetic
objects into an image (Section 6).

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ceig.20141112

40 S. Alvarez, L. Presa, T. Kunkel, and B. Masia / Low Cost Recovery of Spectral Power Distributions

2. Related Work

In 1814 Joseph von Fraunhofer became known as the dis-
coverer of the missing dark absorption lines in the solar
spectrum [KB32], an indicative of the relationship between
the emission spectrum and the chemical composition of the
molecules of the emitter. Years later, in 1898, J. J. Thomson
would develop the first mass spectrometry method [Tho21],
which was later further developed and improved by F. W. As-
ton [Ast19] and A. J. Dempster [Dem18]. One of the main
goals of both mass spectrometers and spectrophotometers is
to measure the spectral power distribution of a signal, typ-
ically by splitting the ray into its wavelengths. To achieve
this, dispersive or diffractive elements must be placed in the
light path. These elements are usually gratings, where the
splitted rays are spatially shifted according to the grating
equation [Hec87].

This paper focuses on spectral measurement techniques
based on a spatial multiplexing of the spectrum. The reader
may refer to compilations such as [IWHI10] for a thor-
ough description of spectral acquisition methods; we sum-
marize here some of the main approaches. These tech-
niques usually use dispersive of diffractive elements to-
gether with optical elements to change the rays direction in
a scene that will impinge the camera sensor creating multi-
ple, spectrally sampled images which will be reconstructed
in post-processing. An example are methods based on com-
puted tomographic imaging spectrometry (CTIS) [DD95,
VMHDO7]; they were developed by Okamoto and Yam-
aguchi [OY91] using diffraction gratings, a field stop and
lenses to estimate a 3D distribution from a set of 2D images.

To capture specific spectral components of a scene, sev-
eral methods based on placing band-pass filters in front of
the camera’s sensor have been designed. Examples include
tunable filters (ELTs) [Gat00], or a wheel of filters [WHO04].
Typically, these methods employ narrow-band filters which
give rise to a low light throughput; to avoid this, Toyooka
and Hayasaka [TH97] present a system based on broad-
band filters together with computational inversion and with-
out any scanning mechanism. A high number of approaches
to tunable filter systems have also been made: Liquid Crys-
tal Tunable Filters (LCTFs) [ChalO], based on a cascade
connection of Lyot filter stages; variable optoacoustic tun-
able filters, where a crystal was acoustically excited work-
ing as a diffraction grating; or an association of redirect-
ing mirrors [GKT09, GFHH10, HFHG"05] which achieves
images of up to 25 spectral bands in real-time. Bodkin et
al. [BSN*09] and Du et al. [DTCL09] exploit a similar con-
cept by using a set of pinholes to restrict the rays captured
by the sensor. Behind these pinholes a prism is located for
spreading the spectrum, which then impacts in the sensor, al-
lowing for the acquisition of multispectral videos. Other ap-
proaches to multispectral imaging include the use of coded
illumination [PLGNO7], or the use of one color channel to
increase the spectral resoluton [KNO7], trading off temporal

for spatial resolution. In comparison with the above, the sys-
tem we present in this paper minimizes the complexity of the
hardware setup and the calibration process.

3. Overview of the System

We adopt a computational photography approach, in which
we will trade off the spatial dimension for the spectral one.
Our system requires only a diffraction filter mounted on a
camera; this can be done simply using a filter mount, which
is screwed in at the end of the lens. This filter will sepa-
rate light emitted by the source into its spectral components,
producing a diffraction pattern (spectral signature) that we
will capture and process to obtain the spectral power dis-
tribution of the source. Figure 1, right, shows two exam-
ples of diffraction patterns captured with our Canon EOS
500D and a linear diffraction filter. Diffraction filters such
as the ones used in this work (see Figure 1, leff) are easily
found and common among photographers and amateur as-
tronomers, and they can be bought at a cost lower than five
US dollars. The image formation model of the system is de-
scribed in Section 4.

Obtaining the spectral power distribution of the source
from the diffraction pattern implies inverting a number of
processes that the signal undergoes in the camera. We refer
to this as the calibration of the system. Its first step is the so-
called spectral calibration (Section 5.1), where the mapping
between sensor pixels of the spectral signature and corre-
sponding wavelengths is found. The second step deals with
amplitude recovery (Section 5.2), since the camera has vary-
ing sensitivities for each wavelength and color channel that
need to be inverted to recover the original signal. While we
do provide a mathematical model for these different aspects
of the system, there are a number of issues which are diffi-
cult to take into account theoretically. These issues include
technical specifications of cameras (e. g., spectral sensitivity
curves) not being disclosed by manufacturers, or influencing
phenomena that need very complex modeling (e. g., glare or
sensor bleeding). We thus revert to a data-driven approach in
some cases to circumvent this.

4. Image Formation Model

Our capture system, described in Section 3, allows us to cap-
ture an image of the light source with an associated diffrac-
tion pattern (or spectral signature) such as the ones shown
in Figure 1, right. Next, a 1D intensity profile is obtained
from a scanline of this captured image; this scanline is taken
from the central line of the spectral signature, and although
it is currently done manually by simply selecting a line, au-
tomatization is straightforward. This section describes the
image formation model of the system, while the next delves
on how to transform the aforementioned 1D intensity profile
in an actual spectral power distribution. We describe here the
model for a 1D linear diffraction filter, but other filters could
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Figure 2: Ray diagram of the system. Light rays are
diffracted by the filter, stopped down by the aperture, and
impinge on the sensor. For simplicity, a pinhole aperture is
represented instead of the lens system. Note that here two
diffraction orders (m = —1 and m = 1) are shown; in prac-
tice, the position of the light source is offset in the sensor, so
that only one diffraction order (m = 1) is visible.

be used; a ray diagram of the setup can be seen in Figure 2.
For simplicity, in the following derivations we will assume a
thin lens model. As we will see later in Section 5.1 and Fig-
ure 4, right, this model proves to be enough for our purposes,
since we use this derivation mainly to support the validity of
our data-driven approach.

A light source imaged through the linear filter gives rise to
two symmetrical diffraction patterns at a distance from the
central maximum. Diffraction in the filter is governed by the
diffraction grating equation, such that the diffracted angle [3;
at which the peak occurs for a certain wavelength A ; is given
by the following equation:

Aj

Bi= arcsin(m— — s5inb)

] Jj={1,2,..,N}, (1)

where m is the diffraction order, d the separation between
grooves of the grating, 0 the angle of incidence to the grat-
ing, and N is the number of samples considered along the
spectrum. The light source is assumed to be far away from
the filter, such that © ~ 0. Details on the derivation of this
equation can be found, e.g., in Hecht’s book [Hec87]. We
work in the Fraunhofer regime, as given by the Fresnel num-
ber F = a®/(L)\), a being the width of the slit or groove
(50% of the separation between slits), and L the distance be-
tween the grating and the diffraction plane (the sensor). The
separation between lines or grooves (d) can be obtained from
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the specifications of the grating (in our case, 500 lines/mm).
We work with the first order of diffraction, i.e., m = 1, since
the second and higher orders are much lower in magnitude
and fall outside the sensor area for typical diffraction grat-
ings. Diffraction patterns for a point and a finite fluorescence
light source captured with a linear diffraction filter can be
seen in Figure 1, right.

We can compute the displacement in the sensor from the
central maximum (corresponding to m = 0) for each wave-
length A; as:

j:{laza"wN}? (2)

where the diffraction angle B; for each A; is given by Equa-
tion 1. Equations 1 and 2, together with the well-known
thin lens equation 1/f = 1/s 4 1/s’ (Gaussian Lens for-
mula [Hec87], where f is the lens’ focal length, s’ the virtual
distance of the image and s the distance between the aperture
plane and the light source), and knowing the effective pixel
size t, allows us to compute the relationship between dis-
tance in sensor pixels measured from the central maximum
(m = 0) p; and wavelength A; (Figure 2):

xj = s'tan(B;)

pi— t(ssff) tan(arcsin(mTM —sin®)) j=4{1,2,..,N}
3)

This relationship will be used for the spectral calibration de-
scribed in Section 5.1. Besides, we can compute the spectral
resolution (res, nm/ pixel) of our system by obtaining the po-
sition in the sensor for the extremes of the visible spectrum:

res — MM = b @)

where subindices M and m refer to the maximum and min-
imum wavelengths in the visible spectrum, and py; and p,
can be obtained from Equation 3. In our system, this yields
a resolution of 0.333 nm/pixel.

4.1. Finite light sources

With the exception of ideal finite light sources, the shape of
the light bulb modulates the emission spectrum, effectively
mixing different wavelengths of the spectral signature. This
modulation can be modeled as a 2D convolution between the
shape of the bulb and the image of the spectrum, since it acts
as part of the point spread function of the system [Goo0S5].
To cast aside the influence of the light bulb shape we apply a
Richardson-Lucy deconvolution [Ric72, Luc74]. The kernel
for this deconvolution is obtained by cropping and thresh-
olding the image. This operation can be done automatically
by detecting the maximum value of the image (which cor-
responds to the light source) and setting a relative thresh-
old around it. Figure 3 shows the image of a source and its
spectrum before and after deconvolution. We chose Lucy-
Richardson for deconvolution because it is ubiquitous, with
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Figure 3: Diffraction pattern from a white low-energy con-
sumption bulb after deconvolution using the Richardson-
Lucy algorithm.

plenty of implementations available in different program-
ming languages, and yields results which are good enough
for our applications (Section 6). Richardson-Lucy decon-
volution assumes a Poisson distribution of the noise of the
sought image; however, in our setup, our distribution would
be better approximated by a combination of Gaussian and
Poisson distributions, for which other more sophisticated
methods could be better suited [GRPMSM11].

5. Calibration of the System

This section covers the process to transform the 1D profile
extracted from the HDR image of the light source captured
with the diffraction filter into a spectral power distribution
(SPD) which can be used for different applications, such as
the ones shown in Section 6. This is what we refer to as
calibration of the system. Although not strictly necessary,
we work with HDR images; this offers us a higher dynamic
range and avoids the need to linearize the intensities in the
image. Further, HDR capture is commonplace and comes as
a preset mode in a large number of cameras today.

Several factors come into play when attempting to retrieve
the emission spectrum from an image. The diffraction un-
dergone in the filter (recall that diffraction is a non-linear
process), the presence of noise, dispersion and glare as light
propagates within the camera, human factors present during
capture, or lens aberrations are all responsible of modifica-
tions performed to the original emission spectrum. The lack
of detailed specifications of the camera’s hardware and soft-
ware due to manufacturers’ reticence to disclosure further
hinders the generation of a comprehensive forward model
and thus of a reliable inverse model. Here, we focus only on
the effects that the camera’s hardware plus the filter cause on
the captured signal. These effects must be reversed to obtain
the original emitted signal as accurately as possible.

The calibration consists of two parts: first, a spectral cal-
ibration, in which the objective is to find the mapping func-

tion between pixel values and light wavelength values; sec-
ond, amplitude recovery in which we model variations in the
amplitude of the SPDs due to the camera’s varying sensitiv-
ity to different wavelengths.

5.1. Spectral Calibration

The mapping between the displacement in pixels within the
sensor (from the central maximum) and the wavelength is
given, theoretically, by Equation 3. We are, however, making
a series of assumptions, such as the use of a thin lens model,
when deriving that equation. Therefore, we additionally take
a practical approach by imaging a light source with known
SPD, and obtaining the displacement (in image pixels) of a
series of characteristic peaks of the source (Figure 4, left) for
which the corresponding wavelength is known. These cor-
responding points (shown as black circumferences in Fig-
ure 4, right) allow us to fit an experimental mapping using
least squares. We consequently obtain the linear relation-
ship shown in Figure 4, right. Note that the theoretical curve
(Equation 3) already hinted this linear relationship (for inci-
dence angle 6 ~ 0). We use R? as a measure of the goodness
of fit of this mapping, which yields R> =0.99. We also plot
in Figure 4, right, the theoretical mapping for the parame-
ters of our system (f = 50mm, s = 1.97m, m =1, 6 = 0,
d =2.004 um, t = 9.38 um/ pixel). There is a slight differ-
ence between both mappings, probably due to the simplified
modeling of the lens system we perform. The fact that the
relationship very well approximates a linear function means
that two recognizable peaks of any light source will suffice
to calibrate such a system. This is very practical, since com-
mon fluorescent light sources have well-known peaks (546.5
and 611.6 nm for white fluorescent light sources [DTCL09])
which can be used for spectral calibration without the need
of knowing the whole SPD of the source used for calibra-
tion or the specific parameters of the system implementation.
Thus, we will use the experimental calibration.
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Figure 4: Left: Emission spectrum of a white fluores-
cent light source exhibiting several characteristic peaks at
known wavelengths, and used for the experimental calibra-
tion. Right: Mappings pixel-wavelength obtained via the
theoretical (red) (Equation 3) and the experimental (blue)
spectral calibration procedures. The points used for the ex-

perimental mapping are shown as black circumferences.

This spectral calibration is applied to 1D intensity profiles
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Figure 5: Blue curves correspond to the 1D profiles of
the diffracted intensities emitted by a fluorescent point light
source (left) and a white LED point light source (right) after
spectral calibration (see text for details). The correspond-
ing ground truth SPDs are shown in black for comparison
purposes.

obtained from the captured images. The spectral calibration
allows us to map the pixel positions of the profile into wave-
lengths, obtaining the profiles shown in Figure 5 for two dif-
ferent light sources. Once the system is spectrally calibrated,
the next step is the recovery of the correct amplitude values
of the SPD, described next.

5.2. Amplitude Recovery

A digital camera’s sensor is overlaid with a color filter ar-
ray that causes the impinging light to be weighted by differ-
ent wavelength-dependent response curves corresponding to
the spectral sensitivities of the three color channels (see Fig-
ure 6, left).
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Figure 6: Left: Canon EOS 500D normalized spectral sen-
sitivities c(i,A) for i € {R,G,B} [BCC*09]. Right: Weight-
ing values ® as a function of v(i,\), the normalized dis-
tance to the median of the three color channels for quotient
ri_’;L/c,;;L for a certain A (see text and Equation 8 for details).

In an ideal case, Equation 5 would be fulfilled for each
color channel i = {R, G, B} for each pixel in the 1D profile.
‘We will denote each pixel p by its corresponding wavelength
A obtained by means of the spectral calibration.

r(i;A) = c(i,A)s (), )
where r(i,A) is the relative intensity extracted from the im-
age for that wavelength and color channel, s(A) the emission

of the light source for a certain wavelength, and c¢(i,A) the
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spectral sensitivity of the camera for each color channel i
and wavelength A.

Following Equation 5, recovering the light source’s emit-
ted spectrum would imply a simple division for each pixel
and color channel, the three color channels yielding the same
s(A) value for a certain pixel. This ideal situation is however
not the case in our real scenario, where bleeding among pix-
els and other factors introduce inaccuracies. We therefore
solve the overdetermined problem that Equation 5 consti-
tutes via a least squares optimization. Besides the values of
¢(i,\) that fall below a certain threshold (c(i,1)<0.02) have
been ignored in the optimization because of their very low
signal-to-noise ratio. We look for the estimation of the emit-
ted spectrum, §(A), that minimizes the following energy term
E:

E = Ejata + WsEsmooth (6)

The first term, E,4,,,, corresponds to the error with respect
to the observed data, while the second term, Eg,; o, 1S @
regularization term that strives for smoothness and continu-
ity. Both are detailed below. Finally, wy controls the relative
weight of each term; ws = 50 works well across sources and
is used for all the results shown in the paper.

The term E;,, is constructed from Equation 5 as follows
(note that we use c; , for ¢(i,A), and equivalently for r and §,
for clarity of the notation):

funo = YT (0a(n- 7)) @

where, again, i corresponds to the color channel. The data
term thus tries to minimize the error with respect to the ob-
served data, looking for the §) that best approximate the
rin/cin, but this error is weighted by values ®; ). This
weighting function ® penalizes the errors of data points that
yield values of the quotient r;3 /c; very far away from its
median for the three color channels for that A, assuming they
are more unreliable. The function, shown in Figure 6, right,
is given by the following expression:

-1 1

v(i7k)2+a> - exp(%) '

o) =1 —exp( ®)
where values v(i,A) are the normalized distances of the data
point to the median of the corresponding three color chan-
nels, given by:

. 3
v(i,A) = lrl—"k—median({rézk—’}"} ) )
i, k €k ) p—1

.

P = max {ﬂ} Vi={R,G,B}  (10)
400<1<700 L iy,

Parameter o controls the slope of the function ®, and it takes

a value of oo =0.09 for point light sources and of o0 =2 for

finite light sources.
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The smoothness term for the obtention of § is given by:

A N\2
Egnoorn = Y (A8, (1)
A

where the discrete Laplacian is implemented as a circular
convolution with the 1D kernel [I —2 1].

The minimization of E as given by Equations 6 to 11 al-
lows us to recover the original amplitude of the spectrally
calibrated signal, as shown in Figure 7, right. Note that A
in Equations 7 to 11 is in practice a discrete signal A; with
J=1{1,2,...,N}, as in Section 4; the subindex j has been
dropped here for clarity. More results of recovery are shown
in Section 6.
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Figure 7: The red curve corresponds to the 1D profile of the
diffracted intensity emitted by a halogen point light source
after spectral calibration (left). The blue curve shows the
estimated SPD of this light source after recovering the am-
plitude through the algorithm we have exposed (right). The
corresponding ground truth SPD is shown in black for com-
parison purposes.

6. Results and Applications

The technique presented allows us to recover the spectral
signature of both point and finite light sources from high dy-
namic range images captured with the camera and diffraction
filter setup. To quantify the accuracy of our estimations, we
captured ground truth SPDs of the recovered light sources
with an Ocean Optics USB4000-UV-VIS photospectrome-
ter, which has a spectral resolution of 1.5 nm in the range
200-850 nm. The sensitivity of the Canon 500D is limited to
the range between 400 and ca. 700 nm (see spectral sensi-
tivity curves in Figure 6, left), and thus so is our recovered
spectrum. This range, however, covers the majority of the
visible spectrum and suffices for a large number of applica-
tions.

Figure 8 shows results obtained with our acquisition
system for finite sources (blue curves), and corresponding
ground truths (black curves) for comparison. The main fea-
tures of the light sources are captured, even if there are inac-
curacies in the recovered spectrum. These recovered curves
are enough to allow for light source recognition, which is
used, as explained next, to enable a number of applications.

6.1. Light Source Recognition

Spectral emission of commercial light sources are available
in a number of databases [KGH* 14, Sed09]. In our case, we
have built up our own database by capturing sixteen com-
mon light sources, including e.g., LEDs, a laser, fluores-
cent sources, low-energy consumption bulbs, or incandes-
cent bulbs.

Given a recovered SPD, which can be seen as a vec-
tor ), it is compared to the distributions in the database
by simply computing the Euclidean distance (L2-norm) be-
tween both vectors, once they are appropriately re-sampled
for equal dimensionality. Other distances such as the Fréchet
distance [CCAVE™ 10] were tested but yielded worse results.
This recognition step has been used in the two following ap-
plications shown in this section.

6.2. White Balancing

There is a large number of white balancing algo-
rithms [Lam05, HCWWO06,BGS07]. In most cases, however,
they rely on obtaining information of the illuminant either
from the image once captured [HMP*08, CFB02], or from
very simple calculations done by the camera at the time of
capture [Shi06, 1102]. We show here how to perform white
balancing via recovery of the SPD of the illuminant, yielding
appealing results in scenarios where other existing methods
would fail.

We first compute the CIE 1931 XYZ color space val-
ues [RKAJOS8] from the SPD of the light source under con-
sideration. This XYZ values are computed for the spectral
emission stored in the database for the light source identified
via the recognition system (Section 6.1) getting as input the
spectrum recovered as explained in Section 5. This is done to
increase the accuracy of the XYZ values computation, since
the recovered spectrum accumulates error when integrating
over the spectrum to obtain the XYZ values.

Once the XYZ values are calculated from the SPD, a
white balancing algorithm is used, based on finding out the
correlated color temperature CCT of the light source which
illuminates the scene [McC92, HALR99]. To compute the
CCT, first the x and y chromaticity coordinates are calcu-
lated from the XYZ values [RKAJ08], and then McCamy’s

polynomial equation for CCT is used [McC92], as follows:
x—0,3320

S bt 12

"= 370,1858 a2

CCT = —449n° +3525n% — 6823,31+5520,33  (13)

The CCT is measured in Kelvin and gives good results
within the range (2000 — 12500K). This value shall be con-
verted to SRGB values, for which the Dgs illuminant’s white
point ey, is used. To this end, we use a conversion ta-
ble [Cha01] which gives us the SRGB values ¢; (i= {R,G,B})
for the CCT of the light source. These values e; are used to

(© The Eurographics Association 2014.
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Figure 8: Spectral power distributions (SPDs) of finite light sources (blue) recovered with our system and their ground truths
(black). From left to right: white, red and green low-energy consumption and red incandescent sources.
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Figure 9: Four scenarios processed with four white balancing algorithms. From left to right: original images, white balanced
images using the light source’s correlated color temperature algorithm (our method), the Gray World algorithm, the Max-RGB
algorithm, and the Shades-of-Gray algorithm. These scenarios are illuminated by different kind of sources; from top to bottom:
filament incandescent, opaline incandescent, both mentioned lights together and a yellow incandescent.

compute a weighting value g; per color channel i of the im-
age we want to white balance (/), such that the white bal-
anced image JUERT given by I,-W B _ gil;. The weighting val-
ues g; are given by:
ew;

8i=— Vl:{R7G7B}7

€

14)

where e is the vector defined by the three SRGB values of the
light source under consideration. Note that the weighting of
image pixel values by g needs to be done in the linearized
image.

Some results of our white balancing algorithm in four dif-
ferent scenarios can be seen in Figure 9. We also show a
comparison against three widely used white balancing al-
gorithms, described in [Coh11]. These three algorithms are

(© The Eurographics Association 2014.

based on image post-processing, estimating the illuminant
from image pixel values and modifying the pixel values of
each RGB channel accordingly. Some current digital cam-
eras perform white balancing via some calculations at the
time of capture [Shi06, I102]; we do not compare against
them, however, because the algorithms are typically pro-
prietary information, not disclosed by manufacturers, and
they operate at intermediate stages performed in the camera
firmware which we do not have access to.

The fact that our white balancing algorithm does not de-
pend on the spatial distribution of the pixels in the scene
yields an overall better performance than the others, which
may fail in specific cases, as shown in Figure 9. The image
may not satisfy the Gray World Assumption (which states
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that given an image with enough variety of RGB colors, the
average values of these three color channels should average
out to a common gray value), as is the case in Figure 9, first
row; or be illuminated with a skewed SPD that would disrupt
the behaviour of the Shades-of-Gray algorithm (Figure 9,
fourth row). A common example of images in which image-
based white balancing algorithms such as the above will fail
is that of images with a clearly dominant color or range of
colors. Finally, Figure 9, third row, also shows that our al-
gorithm can be applied when there is more than one light
source illuminating a scene, yielding compelling results.

6.3. Compositing of Synthetic Objects

Integrating synthetic objects in a convincing way within a
captured image of a real scene is always a challenging task,
requiring manual work to painstakingly adjust the lighting.
If, however, the spectral emission of the light source illumi-
nating the scene is available, which can easily be done with
our system, compositing becomes easier and offers more
compelling results in less time.

The SPD obtained with our system is once more used for
identification of a light source, whose spectrum is input to
a spectral rendering engine to render an image of the ob-
ject which we want to integrate in an image (in this case,
the Stanford bunny). During rendering, rays will be char-
acterized by a certain frequency (wavelength); in our case,
the implementation utilizes 20 nm steps for the sampling in
wavelength. Once the object is rendered, it is introduced in
the captured image by using as a mask an alpha channel cre-
ated when rendering the 3D model. Figure 10 shows some
results for the same scene illuminated under two dramati-
cally different light sources; note that the bunny’s reflectance
is white and purely diffuse.

E
1=
=
=
=
=

Figure 10: Spectrally-rendered Stanford bunny inserted in
a scene illuminated with a green low-energy consumption
light (top row) and a yellow incandescent (bottom row).

7. Discussion and Limitations

An error in the estimation of the SPD will always exist, since
part of the hardware of the camera is not known. It is not our
goal here to surpass the accuracy of a spectrophotometer,
but to offer a simple approach to obtain an estimation of the
SPD of a light source that is good enough for applications
in imaging that can benefit from having this spectral infor-
mation. In addition to unknown hardware specifications (in-
cluding the camera’s spectral sensitivities, which are not pro-
vided by the manufacturer but obtained from other sources
instead), there are a number of more complex phenomena,
such as bleeding of pixels into neighboring pixels in the sen-
sor, glare, or noise, which are very hard to model theoreti-
cally; this is one more reason for our experimental approach
to calibration.

We use for recovery an HDR image of the light source,
since this allows us to avoid possible saturation in the sensor,
and yields a linear relationship between impinging radiance
and intensities recorded in the image. This, together with the
fact that HDR creation software and capture capabilities are
becoming commonplace, makes them a better choice than
LDR images. While we have captured the light sources in a
dark environment for easier extraction of the spectrum, the
same approach can be used in non-dark scenarios. In this
case, the principle of superposition would apply, and simply
subtracting an image of the scene without a filter would suf-
fice to obtain an input such as the ones shown in this paper
(Figures 1, right, and 3).

Similarly, if there are multiple light sources in the scene,
they could be individually recovered using this procedure.
There would be a limitation to recovery, if the spectral pat-
terns are not isolated and those of two or more light sources
interfere. While modeling and inverting this interference
could be possible, it could also result in an ill-posed prob-
lem, and the accuracy is compromised.

Other diffraction filters, such as cross filters, could also
be used. The use of these filters introduces redundancy in
the data, since a number of diffraction patterns appear in the
image, and this can make the estimation more robust. The
downside, however, is the presence of interference which
needs to be computed and inverted, and as before, could re-
sult in an ill-posed problem. Further, the spectral calibration
curve (Figure 4, right) will no longer yield a linear relation-
ship, which significantly eases calibration allowing to per-
form it with any common white fluorescent source.

As mentioned before, in terms of wavelength range we are
limited to the part of the spectrum that our sensor is sensitive
to, that is, from 400 to 700 nm. Additionally, the different
sensitivities to different wavelengths (Figure 6, leff) cause
the signal-to-noise ratio to be different at different wave-
lengths, and thus not all wavelengths are recovered with the
same accuracy. An option would be to introduce this factor
into the optimization described in Section 5.2. The effect of
these possible inaccuracies is variable with the light source

(© The Eurographics Association 2014.



S. Alvarez, L. Presa, T. Kunkel, and B. Masia / Low Cost Recovery of Spectral Power Distributions 47

under consideration (e.g., underestimating the main peak of
a fluorescent has a larger effect that underestimating that
same wavelength in an incandescent source); this can have
an important effect in applications such as white balancing,
and is the reason why we now include an identification and
ground truth retrieval step prior to the actual white balanc-
ing. It should also be noted that proper amplitude recovery
depends on an accurate spectral calibration, since otherwise
the spectral sensitivity curves are not adequately matched to
their corresponding wavelengths.

Finally, light sources often have an anisotropic emission,
that is, their emitted spectrum is different for different an-
gles, since the emitted intensity varies. While we do not mea-
sure angular variation here, nothing prevents the usage of the
system taking images from different directions to character-
ize angular variation. In any case, the SPD would typically
vary very slightly with the angle, if at all.

8. Conclusions and Future Work

We have proposed a low-cost system for acquisition of
spectral power distributions of light sources using off-the-
shelf equipment consisting of a photographic camera and a
diffraction filter. We present a calibration method so that a
1D intensity profile extracted from an HDR image of the
light source is transformed into the SPD emitted by the light
source. This calibration implies obtaining the mapping be-
tween pixels and wavelengths, which as we show can be
done by imaging a common white fluorescent, whose two
main peaks are well-known. The second step recovers the
original amplitude of the emitted spectrum, and requires
knowing the spectral sensitivity curves of the camera. We
further show a number of applications in image processing
which can benefit of knowing the SPDs of light sources illu-
minating a scene.

Here we show recovery results obtained from images in
dark scenarios, and with one light source per image. Al-
though extension to multiple light sources is trivial if spec-
tral signatures do not overlap, attempting recovery for mul-
tiple overlapping patterns remains to be explored. Similarly,
recovery with more complex diffraction filters is an avenue
of future work. Also, as hinted in Section 7, information
from the camera’s spectral sensitivities could be employed
when recovering the amplitude of the emitted spectrum as an
indication of the reliability of the estimation obtained from
the data for a particular color channel and wavelength.

Potentially, obtaining the spectral signature can be done
not from direct imaging of light sources, but of other objects.
This, which could be challenging for a diffuse object, may
be worth looking into for specular or glossy objects. Fur-
ther, this approach could be extended to obtaining spectral
information from materials, aimed at, for instance, material
recognition [DTCL09].

(© The Eurographics Association 2014.
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