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Abstract. We present an adaptive signed distance transform algorithm for curves
in the plane. A hierarchy of bounding boxes is required for the input curves. We
demonstrate the algorithm on the isocontours of a turbulence simulation. The al-
gorithm provides guaranteed error bounds with a selective refinement approach.
The domain over which the signed distance function is desired is adaptively
triangulated and piecewise discontinuous linear approximations are constructed
within each triangle. The resulting transform performs work only were requested
and does not rely on a preset sampling rate or other constraints.

1 Introduction

The distance function of a shape encodes the minimum distance to the shape at every
point in space. The encoded shape can be extracted by taking the isocontour of the
distance function with an isovalue of zero. Distance functions have proven useful in
modeling deformations of solid objects [11], representation of medical data [4], model-
ing swept surfaces and volumes [9], and increasing the performance of ray-casting via
space leaping [12]. A closed shape allows a signed distance function to be defined that
encodes inside/outside information and enables boolean operations and object morph-
ing. Signed distance representations vary smoothly across shape boundaries, enabling
accurate reconstruction of surface properties from the distance function. As an implicit
representation, distance functions have the potential to simplify the storage and visual-
ization of time varying surfaces with changing topology because they do not explicitly
store the topology.

Distance functions are usually represented as sampled scalar fields with values be-
tween samples generated by interpolation. A propagation algorithm such as that of
Breen [1] is the most commonly used method for obtaining an approximate distance
function of a shape. These algorithms initialize a sampled scalar field with closest point
information near the boundary of a shape and propagate this information throughout
the volume. For large problems it would be advantageous to limit the amount of com-
putation spent on areas with less detail. The adaptive sampling technique of Frisken [3]
provides many of the benefits of distance representations without the excessive mem-
ory requirements. However, adaptive sampling implies that a distance function exists
in closed form, or an approximate distance function exists at a high resolution. Our
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contribution is to provide adaptivity in the distance function itself through a distance
transform based on selective refinement.

In this paper we present an adaptive signed distance transform for curves in two
dimensions. We demonstrate the algorithm on isocontours of a turbulence simulation
[7]. We are investigating distance functions in the plane as a precursor to a full three di-
mensional method. In two dimensions, the error analysis is simplified, and the behavior
of the algorithm and data structures can be clearly visualized. Our algorithm utilizes a
selective refinement approach which concentrates computation where a more accurate
approximation is required.

The algorithm operates on an adaptive distance approximation represented by a
triangulation of the desired 2D domain. Figure 1a shows the adaptive triangulation of
the distance function for a small piece of isocontour from the test data. Figure 1b shows
the bounding boxes which contain curve dependency information for the highlighted
distance triangle. The dependency information reduces the work required to compute
distance approximations within each triangle. We require the input curve to provide a
bounding box hierarchy so that distance triangles can track potential contributing points
efficiently. Figure 1c shows a continuous reconstruction of the distance approximation
which satisfies the error bounds of every triangle.

cba

Fig. 1. A node in the distance hierarchy (a) contains a list of nodes in the curve hierarchy (b)

The adaptive distance approximation has the following properties:

1. Triangle bintree representation: The adaptive distance is defined over a triangle
bintree [2, 6]. The refinement rules for triangle bintrees insure that all adjacent
triangles meet at a common vertex or a common complete edge. This property
allows the construction of continuous functions on the triangle mesh.

2. Per-triangle linear approximations with guaranteed error bounds: Selective
refinement operations must be as local as possible. Our approach uses per-triangle
linear approximations which may be discontinuous with respect to the linear ap-
proximations in neighboring triangles. Each triangle also maintains an error bound
for the linear approximation which is guaranteed to be correct with respect to the



exact distance function. The per-triangle approach requires an extra step to con-
struct a continuous distance approximation, but this is always possible.

3. Per-triangle tracking of dependencies on the input curve: In general the distance
function within a triangle depends on a subset of the input curve. Each triangle
tracks the subset of the curve that contains every point which potentially contributes
to the distance function. Linear approximations are computed with respect to the
per-triangle dependency information. The selective refinement approach is based on
the observation that the curve dependencies are typically reduced when a triangle
is refined.

4. Easy reconstruction of a continuous per-vertex distance approximation: The
per-triangle error bounds are guaranteed to overlap at the vertices and edges. A
simple algorithm is presented which produces distance values at the vertices of the
triangle bintree that satisfy the error bounds of the per-triangle approximations. The
triangle bintree automatically insures that no cracks are present in the continuous
distance approximation.

The remainder of the paper first presents related work in distance transforms. We
then describe the curves on which the algorithm was tested, including our method of
obtaining a bounding box hierarchy. Finally, we detail the distance transform algorithm
itself and characterize the behavior of the algorithm on the test data.

2 Related Work

The closest point propagation technique of Breen [1] is based on the fast marching
method of Sethian [10]. The main advantages of propagation algorithms are speed and
simplicity which offsets the fact that they are usually applied to sampled volumes for
which only a subset of the samples will be used. An exception to this is object morphing
which requires operations on the entire volume. One disadvantage is that propagation
methods rely on the user to set the appropriate sampling rate for a given object. In
addition, the distance computation is sometimes sampled on a much finer lattice and
then sub-sampled to the desired resolution of the distance approximation.

Perhaps closer in spirit to the approach of this paper is the surface reconstruction
algorithm of Hoppe [5]. They define a signed distance function for scattered point data
and reconstruct a plausible surface by taking the zero isosurface of the distance function.
At the heart of the algorithm is a distance transform which relies on local best fit planes
computed for each surface sample and its neighborhood. The reconstructed surface is
extracted as the zero set of the approximate distance function. The approach in the
present work requires normal vector information which is not usually present in data
from range scanners and was not required by the method of [5].

3 The Curve Hierarchy

For this paper we have chosen to test the algorithm on isocontours of a regularly sam-
pled scalar field [7]. In this section we describe the the curve hierarchy required as input



to the distance transform. We begin by stating the properties of the input curve hierar-
chy for the general case, then describe in detail the isocontour hierarchy used in this
paper.

3.1 Curve Hierarchy Requirements

Let
�

denote the set of points on the input curve(s) and � denote the domain in � �
for which an approximate distance function is desired. The input curve must have the
following properties:

1. Continuity: The curve(s) must be
���

continuous everywhere and
� �

continuous
everywhere except at a finite number of points.

2. Partitions the domain: The curve(s) must partition the domain � into an inside
and outside labeled by negative and positive distances. This also implies that the
curve end points may only occur on or outside the boundary of � .

3. Bounding Boxes: The curve must allow a hierarchy of bounding boxes to be spec-
ified. In the remainder of the paper we will index these bounding boxes by � . Each
node in the hierarchy must define a bounding box ��� in � � which contains a subset
of the curve.

4. Normal Wedges: Each curve hierarchy node � must define a bound on the direc-
tions of all unit normals of the curve contained in ��� . The bound is represented
by a normal wedge 	�
��������� with central unit normal 
�� and opening half angle��� ��� ���

. A unit vector � is contained in a normal wedge for node � if the
following condition is met: ����
����! #"%$�	����&� .
Any number of data structures and curve definitions could be used to construct a

curve hierarchy. We have chosen a hierarchy based on scalar field data generated by
scientific simulation. The next subsection describes this isocontour hierarchy.

3.2 Constructing An Isocontour Hierarchy

Isocontours of a sampled scalar field with bilinear interpolation satisfy the first two re-
quirements listed above as long as the domain � is the same as the scalar field domain
or a subset of it. Two strategies for satisfying items 3 and 4 are possible: (1) Extract the
isocontour and build a bounding box hierarchy from the geometry, or (2) Construct a
spatial hierarchy on the scalar field and use it to generate bounding box hierarchies for
all isocontours. The first strategy will result in the tightest bounding boxes because the
geometry is exactly specified. We adopt the second strategy because spatial data struc-
tures such as min-max octrees are already commonly used to accelerate isocontouring
operations and adding normal wedge information to them is straightforward.

We compute a min-max quadtree on the scalar field and compute bounds on the
directions of the isocontour normals using the scalar field gradient. Figure 2 shows an
example scalar field and three levels of the quadtree hierarchy. The normal wedges are
defined by the scalar field gradients and are drawn inside each node with the opening
angles denoted by dotted arcs.

The scalar field hierarchy has loose bounds on the normal direction because the
direction bounds are valid for all isocontours within a particular node. This forces the



Fig. 2. (Left) A sampled scalar field rendered with one pixel/sample. A single quadtree node is
highlighted. (Right) Three levels of the isocontour bounding box hierarchy.

distance transform algorithm to subdivide more often in areas where the original scalar
field gradients are widely varying. This hierarchy is similar to the data structure used in
[8] in that it involves minimal preprocessing and grants access to all of the isocontours
in the scalar field.

4 The Distance Hierarchy

We begin this section by formally defining the signed distance function of a curve or
set of curves

�
as follows:

d 	 � ����� sign 	 � ����� 	�
������� 	�� ����� ��� (1)

where
�

is the set of points on the input curve(s), � and � are points in � � , ��� � , and
sign 	 � � returns negative if � inside the curve, and positive if outside.

We will use ��� to refer to the triangle associated with a distance node � . All other
quantities associated with a node shall be denoted by subscripting them with � .

4.1 Triangle Bintrees

The triangle bintree begins with a right isosceles triangle. Each level of the triangle
bintree is created by edge bisection operations. A triangle is split by inserting a vertex
at the midpoint of the hypotenuse and connecting it to the opposite vertex of the triangle.
This operation is then applied recursively to the children. A new vertex is created when a
triangle is split. This creates a crack problem because the triangle sharing the edge may
not be split. The crack problem is solved by forcing splits until there are no vertices on
any edges. In this paper we begin with a rectangular domain and relax the constraint
that each triangle must be right isosceles.

4.2 Linear Approximation

A distance node maintains a list of curve bounding boxes which we will refer to as its
active list. The bounding boxes in the active list contain all curve points which poten-
tially contribute to the distance function in the node. In the remainder of the paper we
will denote the active list of a distance node by � � and define it as a list of indices of



curve nodes as follows: � � � � � �  � �  �����  � � . We will define the linear approximation
for a node � as: �� � 	 � � ���	� � ��
� � (2)

where the gradient ��� � � ��� . In addition, the error bound on the distance function
within a distance node � must satisfy:

� ����� �������� 	 d 	 � � �
�� � 	 � � ��� �� � (3)

In general, we want
� ��� uerror 	 ��� , where uerror 	 � � is a user defined error which de-

pends on � and may depend on other parameters as well. When the distance function is
too complicated to be linearly approximated, we fall back on a constant approximation
(� � � �

).

5 The Distance Transform

Given a distance node � , the transform algorithm recursively subdivides � until a user
defined error criterion is met over the original triangle � � . The subdivision may cause
forced splittings of some triangles outside of � � as mentioned in section 4.1. We assume
that � contains an active list � � of all curve nodes which may contribute to the distance
function within ��� . The algorithm proceeds as follows:

1. Establish Bounds: For each curve node in � � compute conservative lower and
upper distance bounds. These bounds are computed with respect to the bounding
regions � � and the distance triangle � � . These bounds are used to compute lower
and upper bounds on the distance within � � .

2. Refine and Cull: Place the curve nodes in � � in a priority queue. Let the pri-
ority � 	 � �����! $ 	�
 	���� � be a bound on the error of a linear approximation of
a node, where  the length of the node diagonal. This error bound stems from
the fact that once a point on the curve is known the normal wedge constrains
the possible directions of the curve. In priority order refine the nodes in � � until
p 	 � �"� uerror 	 � � �$# � � � � . For each child node added to � � compute con-
servative bounds as in step 1 and update the overall bounds on � � . As the overall
bounds tighten, Bound Cull any curve node in � � that is unable to contribute to the
distance function within � � . When a curve node is bound culled label all adjacent
curve nodes as gap nodes.

3. Linear Approximation: Compute a linear approximation of the distance function
over ��� based on the refined active list nodes � � . A point on the curve is sampled
and the opening half angles of the curve normal wedges are used to compute a
linear approximation with an error bound. A test is then made on � � to insure that
the bound is correct.

4. Constant Approximation: If no linear approximation with guaranteed error was
computed, or the error of the linear approximation violates the user supplied error
criterion, then compute a constant approximation as follows: Use the conservative
bounds on the distance over � � to compute a � � and

� � for equations 2 and 3.
5. Recurse or End: If the resulting approximation error does not satisfy the user

defined error criterion, split distance node � and copy the active list � � to both
children. Repeat with step 1 for each child of � .



5.1 Bound Culling And Constant Approximations

In this section we describe how conservative guaranteed error bounds are established
between a distance triangle � � and the curve nodes in its active list � � . We begin by
defining when a point on the curve contributes to the distance function:

Definition 1. A point ��� � contributes to the distance function within the triangle � �
of a distance node � if there exists at least one point � � � � for which � is the point of
closest approach of the curve

�
.

Furthermore, we say a curve hierarchy node � contributes to the distance function
within ��� if at least one point ��� � � ��� contributes. We define unsigned conservative
lower and upper bounds on the distance function with respect to a single curve hierarchy
node as �������� �	� � � � 	 
 	�� ��� � � � and 
 �����  �	� � � ������	�� ��� � � � for all � � � �
and all � � � � . The lower and upper distance bounds are are conservative because
they rely only on the bounding box � � , and not on the actual curve contained within
� � . These bounds can be expensive to compute and become more expensive in three
dimensions. We use bounding circles for the distance computations for simplicity.

The next step is to bound the distance function due to all curve nodes in the active list
� � . These bounds are given by

���������� � � 	�
 	��������  �	� � � and
���������� � � 	�
 	�
 ������ �	� � �

for each � � � � . Thus, we have the following condition on the distance function within
distance node � : � ������� � �

d 	 � � � � ���!�����#" # � � � � (4)

A curve hierarchy node does not contribute to the distance function if the follow-
ing condition holds: �������  �	� �%$ � ���������

. Finally, the lower and upper bounds may
be used to construct a piecewise discontinuous constant approximation as

�� � 	 � � ��� sign 	 � � 	 �&������� � 
 �&���!����� � and
� � �(' �&���!����� �

�� � 	 � ��' .

5.2 Computing Linear Approximations

The processes of computing a linear approximation and obtaining a guaranteed error
bound are decoupled from one another. This is due to the fact that curves with complex
foldings, disconnected components, and gaps created during bound culling produce dis-
tance fields which are difficult to bound correctly. In this section we describe how to
compute linear approximations and error bounds. In the next section we describe how
to guarantee that a bound is correct.

Equation (2) implies that the zero set of a linear approximation is the equation of a
line with normal � � . We set � � to the normalized average of all central normals of the
normal wedges in � � and compute an opening half angle ��� with respect to the merged
normal wedges in � � . The constant � � is obtained by sampling a point ) on the curve
contained in the active list � � and solving for the zero set: � ����) 
 � � � �

. The point
) is computed by choosing an isocontour node in the active list and finding a contour
intersection with one of its edges using linear interpolation. We bound the error of the
approximation using the normal wedge information of the active list nodes. The extent
 of � � is computed as the maximum distance from ) to the boundaries of the nodes
in � � . We compute the error bound as

� � �  $ 	 
 	 � � � . In practice, this simple method



works quite well near the curve. It is dependent on the variation of the normal directions
of the curve hierarchy and tends to do less well for distance triangles farther from the
isocontour.

5.3 Guaranteed Error Bounds

We assume a linear approximation has been computed and an error bound
� � must be

produced. We desire a tighter error bound than that presented in equation (4) . We
can achieve this by utilizing information about the shape of the curve contained in � � .
Figure 3 illustrates how an error bound

� � constrains the location of the contributing
curve points. A constant approximation has no estimate of the gradient and only con-
strains contributing curve points to the annulus centered at � denoted by the dashed
circles. A linear approximation with a guaranteed error

� � further restricts the possible
locations of contributing points to the shaded area between the isocontours of the linear
approximation at

� � � .
Given a possible

� � , the distribution of curve points in the active list must be ana-
lyzed to insure that at least one curve point falls in the shaded area of Fig. 3 for each
point in � � . Gaps or folds in the curve must be accounted for to insure that the bound
on the distance is correct. The general procedure is as follows:

1. Compute a possible error bound
� � .

2. Insure that the curve does not have folds or loops by requiring that the curve bend
no more than � � degrees from the estimated gradient � � and is entirely front facing
or entirely back facing with respect to � � .

3. Insure that no gaps exist in the curve by requiring that no curve nodes in the active
list � � labeled as gaps exist in the shaded area of figure 3.

4. If both 2 and 3 are satisfied, then the
� � computed in item 1 is a guaranteed bound.
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Fig. 3. Points of closest approach must fall inside the shaded area for a linear approximation with
guaranteed error.



5.4 Producing a Continuous Approximation

The linear approximation within each triangle defines a range of distance values for
each vertex of that triangle. The procedure for constructing a continuous distance func-
tion is the following. For each vertex the range of distance values is computed as the
intersection of the distance ranges for each incident linear approximation. The midpoint
of this range is chosen as the distance value of the vertex. This doubles the error bound
on the approximation because the midpoint might occur at a lower or upper bound of
one of the incident ranges. It is possible to use a more aggressive algorithm that uses
the ranges of neighboring vertices to improve the accuracy of the continuous distance
approximation.

6 Results

We tested our algorithm on scalar entropy data from a turbulent mixing simulation [7].
Figure 4 shows a � ����� � ��� slice from one sub-domain of this computation with the
isocontour at

� ���
of the maximum entropy. The error criterion we used in the examples

was computed as follows: uerror 	 �  ���
	�� �&� ��� ������	 ���
	�� � � � ������� � . where
� ���������

is
computed for each distance node � as defined in section 5.1. This error criterion allows
less accurate approximations farther away from the curve and clamps approximations
near the curve to a user defined minimum. We found that on average each distance
triangle tracked � � � ��� curve nodes in its active list. This value was not dependent on
the values of  and

� �
	��
. Our experiments indicate that the execution time and number

of triangles varies approximately linearly with ��� � �
	�� . That is, reducing the error by
a factor of two increases the number of triangles and execution by approximately the
same factor.

Figure 5 shows an adaptive distance function and the corresponding triangulation
of the isocontour in Fig. 4. The transform took ��� seconds to compute and required ap-
proximately

� �
megabytes of memory. The final distance triangulation contains � � � � �

triangles. The implementation was not optimized for memory usage and uses pointer
based hierarchies. In figure 6 the same distance approximation is shown.

7 Conclusion

We have implemented a fully adaptive distance transform algorithm that produces piece-
wise discontinuous linear approximations in a top down fashion. Although the imple-
mentation was not coded for speed, it is clear that a three dimensional version of the
transform would require more efficient data structures. The algorithm is tuned for ap-
proximations near the input curve and tends to rely on constant approximations farther
away. This could be improved by using a different approximation strategy for boxes
farther from the curve.

The algorithm does not handle discontinuities in the gradient of the distance func-
tion in an efficient manner. Gradient discontinuities violate the observation that the
curve dependencies are reduced when a distance triangle is refined. An extreme ex-
ample of this is a triangle which contains the center of a circle. The distance function



within the triangle depends on the entire circle. At least one child triangle will contain
the center regardless of the number of refinement operations.
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Fig. 4. A slice of the entropy field showing the isocontour
used in the color figures.

Fig. 5. An adaptive distance transform with
�����

and ���	��
 ���� � . The adaptive
distance triangulation is shown.

Fig. 6. An adaptive distance transform with
�����

and ���	��
 ����� � .


