
Case Study: Resource Steering in a Visualization System

Ed H. Chi?, John Riedl

Computer Science and Engineering Department, University of Minnesota
4-192 EE/CS Building, Minneapolis, MN 55455

[echi,riedl]@cs.umn.edu

Abstract. Visual computational steering environments extend traditional visual-
ization environments by enabling the user to interactively steer the computations
applied to the data. In this paper, we develop a new type of computational steer-
ing. “Resource steering” extends current visual steering techniques by providing
machine resource estimation and control to the user. With resource steering, the
user controls the execution of the computation on a parallel or distributed com-
puter based on experimentally or theoretically derived estimates of the parallel
performance of the computation. We demonstrate this extended steering model
by applying it to an information visualization system that analyzes genetic se-
quence similarity reports. We show how our extended steering model enhances
the user’s ability to control visualization computations.

1 Introduction

The process of discovery includes trial-and-error followed by deductive insight. Com-
putational steering in visualization enables users to interactively control the computa-
tion as it is being visualized, enabling us to apply human intuition and experience to the
analysis of data sets. Although existing visual steering environments enhance computa-
tional interactivity, users do not receive feedback on computational resource usage, and
have no control over how resources are used.

It is important to be able to view and interact with the data as it is generated [10, 13].
Early work include Interactive Zoner, which is an interactive grid generator running on
a workstation that is connected to a 2D flow simulation running on a supercomputer [2].
Marshall et. al.´s system enable users to change the parameters of an algorithm as the
computation proceeds [9, 15]. The user has two types of control. She uses the interac-
tive control to direct the simulation by changing variables or the simulation condition.
She can also manipulate the visualization, such as rotating, translating, zooming, and
scaling. (Figure 1)

Recent research has refined computational steering. Jablonowski et. al. described
a system where a program could be partially rewritten to support steerable visualiza-
tion in IRIS Explorer [7]. They provided a framework for a computation written in
FORTRAN to include directives for steering the algorithm. Mulder et. al. discussed a
customizable widget system where attributes of the widgets are linked to steerable al-
gorithmic variables, and direct manipulations of the widgets result in state changes in
the variables [11]. Brodlie et. al. implemented steering along with a history tree that
allowed the user to return to previous computation results [3]. Many other systems for
visual steering have been developed, such as CUMULVS (Oak Ridge), VIPER (TU

? Work done while at U of M, current contact: chi@acm.org, Xerox PARC, Palo Alto, CA 94304

Muenich), SCIRun (Utah), Progress and Magellan (Georgia Tech). Several of these pay
attention to distributed computing. The SCIRun system provide some interactive visual
and quantitative feedback of performance metrics [12]. Pablo and Falcon are some re-
cent work on parallel performance metrics for steering systems provide library routines
for instrumenting source code to extract performance data [14].

Visualization applications should extend computational steering to provide resource
usage feedback and control to the user for two reasons. First, visualization systems uti-
lize expensive and scarce computing resources, which means users must carefully con-
trol resource usage. Visualization applications should provide ways to manage these
resources during the entire user session. Second, users interacting with visualization
environments can initiate long computations with simple manipulations of the inter-
face. When users initiate computation, they often cannot predict the amount of system
resources needed or the length of time required to complete the computation.

We introduce an extended model that incorporates several types of computational
steering. Previous steering techniques can be classified into two types: (1) Parameter
steering is the specification of initial parameters to the algorithm, and (2) algorithm
steering is changing some aspect of the algorithm during computation. We introduce
a new steering technique calledresource steeringthat allows the user to control the
amount of computational resources utilized. Based on resource limits chosen by the
user, the model predicts how long the computation will take, and how efficiently it will
make use of computing resources.

We tested our idea by extending a computational biology visualization system [5,
4] to including these types of computation steering. The visualization application helps
biologists analyze genetic sequence similarity. Previously, biologists used the system
in batch mode by creating data sets off-line. In the new system, biologists initiate and
steer computations. The computations use an appropriate number of processors, based
on the user’s selection of desired response time or efficiency.

2 Resource Steering under Our Model

Our steering model is shown in Figure 2, which depicts the interactions between the
user and the visualization analysis loop. First, the user initiates an analysis session by

Interactive

 Control
Algorithm

Data

User

or Simulator

Graphics Images

Fig. 1. Existing steering model. The simulation generates data that is given to a visualizer to
generate the images on the screen. The user can interact with parameters of the algorithm and
manipulate the objects on the screen.

specifying the initial parameters and conditions. Then the parameters are fed into the
simulation algorithm to start the simulation process. The parallel machine, in response
to the request, starts multiple processors on the simulation, and then generates the data.
The data is then processed and given to the visualizer to present to the user.

translation,

rotation
scaling,

Interactive

 Control

Resource
Estimator

feedback

Initial
Parameters

Algorithm

Virtual Parallel Architecture

Data

Data
Processing

Visualizer

parameter
steering

algorithm
steering

resource
steering

User

or Simulator

and Condition

visual
feedback

Fig. 2.Extended steering model. Thin arrows represent flow of control, while wide arrows repre-
sent the flow of data.

Previous computational steering can be described in two ways: (1) Inparameter
steering, the initial input parameters and conditions are specified for every run of the
algorithm. Interactive manipulation of initial input parameters to the algorithm is often
mentioned as a simple form of computational steering. In some cases, the computation
can be parallelized effectively to bring the computation time down to interactive speed
(tens of seconds or a few minutes), making the interactivity with initial input parameters
or conditions significant. (2) Inalgorithm steering, some aspect of the algorithm is
changed during the execution of the simulation. An example of algorithm steering is
the specification of the number of iterations of an iterative numeric method, or perhaps
an entirely different algorithm.

In resource steering, the computation engine itself is modified either during the
execution or from run to run. This feedback can be useful in many situations, such as
when the amount of computational resources is limited, or the user and the administrator
of the system is interested in obtaining good efficiency. If the response time is too slow,
the user might want to increase the number of processors working on the computation.
The user may also be interested in the efficiency of the system, especially if she is
paying for supercomputing time.

We can provide this feedback by studying the performance of the parallel system
under different conditions, and then predicting the performance. For example, given
some initial parameters, the current state of the algorithm, and the machine character-
istics desired (the number of processors), the estimator returns the expected response
time. Alternatively, given some desired response time, the estimator returns the number
of processors needed to meet that requirement.

In our model, the three types of steering parameters are given to a resource estima-
tor as constraints. The resource estimator then returns an estimation of the amount of
resources needed. The resource estimator uses aresource estimation functionthat maps
from the steering parameters to the amount of resources needed. Here we will first de-
scribe how we can obtain a performance model for the resource estimation function.
Then we discuss how to use the model in a resource estimator.

2.1 Establishing a performance model

The resource estimation functionis a function that takes the parameter space as input,
and returns the runtime (e.g. runtime = r.e.f.(X1; X2; X3; : : :), whereXi is the input
parameters). To predict performance, we can obtain the resource estimation function by
using either a theoretical model or an experimental model.

Theoretical ModelTo develop a theoretical model, we can derive the parallel runtime
Tp from the algorithm that solves the problem. The parallel runtime is a function of the
parameters and the number of processors. Theoretical derivations have been verified and
shown to model the parallel system reasonably in many cases [8]. For example, consider
the problem of addingn numbers on ap-processor machine arranged on a hypercube
network [8]. Let us assume that it takesTa units of time to add two numbers andTc
units of time to communicate one number between two directly connected processors.
Each processor is assignedn=p numbers initially, and this will take(n=p � 1)Ta to
sum at each processor. After the local results are known, it takeslog p steps to add these
partial sums together, where each step takes one addition and one communication. Thus,
knowingn andp, we can compute the parallel runtime. The parallel runtime is:

Tp = (n=p� 1)Ta + (Ta + Tc) log p (1)

The theoretical derivation for many types of algorithms is available in the parallel
computing literature, such as sorting, graph algorithms, dynamic programming, fast
Fourier transforms, numerical algorithms, and discrete optimization algorithms [8]. If
the scalability of a parallel algorithm is known, we can use it to predict the parallel
runtime, given the initial parameters and the number of processors.

Experimental modelWe can also use an experimental model of the algorithm for estab-
lishing the performance model. Performing experiments to obtain the resource estima-
tion function is often necessary for a variety of reasons. For example, (a) the theoretical
derivation might be difficult; (b) there are unknown variables in the computation; and
(c) there is a need to establish the validity of a theoretical model or a need to be more
accurate. Therefore, often an experimental model is desirable.

The major drawback of experimental models is that they are relatively difficult to
obtain accurately. However, the difficulty can be reduced with carefully planning of

experiments. We can establish an experimental performance model by first systemati-
cally listing all the steering parameters, and then varying the steering parameters and
studying the effect on the parallel runtime. Imagine the parameter space coupled with
an axis measuring runtime. We can sample this parameter space on a grid, and measure
the runtime at each point on the grid. Then we obtain the runtime characteristic as a
multi-dimensional surface in this parameter space. Given this rough sketch of the esti-
mation function, we can interpolate between the points to obtain an runtime estimation.
This will work well if there are not too many sample points (e.g. there are only a hand-
ful of parameters, and the ranges of each parameter is relatively narrow.) In our case
study, we used this method to study the effect of each of the steering parameters on the
parallel runtime. The limitation of this approach is that this parameter space may not be
continuous, since other factors such as number of page faults can result in substantial
jumps in runtime. Experimental modelling works well if the steering parameters are
mostly independent from each other, and do not affect the runtime in some unexpected
way when combined.

2.2 Resource Estimator: Using the performance model to estimate resources

We can use the performance model in a variety of ways, since given all except one vari-
able of the resource estimation function, we can determine the value of that last variable.
For example, (1) We can use the performance model straightforwardly to obtain an es-
timated runtime. Since the user often cannot predict the length of a computation, this
provides the necessary feedback to the user. (2) We can use the model to predict the
number of processorsp needed when given the desired response time. In order to do
this, we need to invert the estimation function with respect top. We can obtain the in-
verted function directly if we know the precise runtime equation for the function. Or we
can computep implicitly by using a simple for-loop going fromp = 1 to the maximum
number of processors available, and stopping whenp can satisfy the required runtime.
(3) We can use the estimation function to predict the speedup and the efficiency. In
an experimental model, givenTp, we can directly compute speedup and efficiency as
S = Ts

Tp
andE = S

p
= Ts

pTp
, respectively. Given the runtime equations, we can directly

compute the algebraic representation of speedup and efficiency. For example, in the
example of parallel addition above:

S =
nTa

(n=p� 1)Ta + (Ta + Tc) log p
(2)

E =
nTa

(n� p)Ta + (Ta + Tc)p log p
(3)

So given the number of processorsp, we can obtain the parallel runtime and the effi-
ciency of the system. We can again invert the efficiency estimation function to calculate
how many processors we can utilize when we allow the efficiency to drop.

The above examples show that the user can specify any one of the resource steering
parameters (e.g. runtime, number of processors, and efficiency), and get an estimation
of the other parameters. In high resource load situations, users can use resource steering
to obtain efficient performance. If the user is paying for the computing time, this method
gives them the power to manage the classic tradeoff between efficiency and speed. This

allows the users of the system to have strict control over the utilization of computing
resources.

3 An Application of Resource Steering

Here we describe a problem solving environment for genetic sequence similarity com-
putation that incorporates the above ideas and illustrate the techniques for controlling
resource usage.

Computational ModelMolecular biologists utilize known sequence data in large ge-
nomic databases and similarity algorithms to help determine the function of new se-
quences. BLAST [1] is a well-known similarity algorithm. We first derived a rough
theoretical derivation of the BLAST parallel performance model. The BLAST sequence
comparison algorithm first serially computes some hashing information, then the database
is partitioned into many pieces, which are then given to each of the processors on-the-
fly to compare. Thus, the parallel runtime is the time for the serial component plus the
parallel database searching component. We expect the parallel component to be nearly
linearly scalable, since the database is large compared to the size of the query sequence.
However, because the database content is not uniform, and we are not confident whether
dynamic load-balancing contributes a large overhead, an experimental study is needed
to help us refine and validate the theoretical model. Such validation is required in many
applications.

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

number of processors

Sun
Cray
SGI

Fig. 3. Response time for SGI Challenge, Sun SparcCenter 2000, and Cray CS6400 with a 500
base sequence using parallel BLASTX SMP algorithm.

For BLAST, we obtained and evaluated the experimental model using several dif-
ferent length sequences on three Shared-Memory Parallel machines (SGI Challenge
XL, Sun SparcCenter 2000, Cray CS6400). The parallel response time curve is plotted
in Figure 3. We refined the performance model to include other parameter of the al-
gorithm. Sequence comparison is linearly scalable up to tens of processors, so we can
parallelized heavily to bring the computation close to interactive speeds (tens of seconds
or several minutes). For example, a BLAST process that took nearly 1.3 hours on a sin-
gle processor completed in only 3.5 minutes with 24 processors on Cray CS6400 [6].
Short sequences that used to take 5–10 minutes can be done in tens of seconds.

Application Usage Walk ThroughPreviously, we presented a system called Align-
mentViewer for visualizing similarity information between a single DNA sequence and
a large database of other DNA sequences [5]. Each report consists of an input sequence
and manyalignments. An alignment indicates a region of similarity between two se-
quences. Each alignment has a matching vector and twelve variables. AlignmentViewer
uses three spatial axes and one temporal axis. Any of twelve variables can be mapped
to any of the four axes. The temporal axis allows the user to construct animations with
respect to the temporal variable [5]. The matching vector is represented by a comb-
like glyph. For more details on the visualization representation, please see our previous
papers.

Fig. 4.1: Steering Control Panel:
For response time ¡ 20 sec., this
sequence requires 10 processors.
The efficiency is estimated =89%.

Fig. 4.2: AlignmentViewer’s visual represen-
tation of PAM250 result for anArabidopsis
thalianasequence 172C2T7.

Let us demonstrate a real scenario of a biologist steering the computation of a se-
quence. The system asks the user how to process the input sequence using the steering
control panel (Figure 4.1, initial parameters in the top half, resource steering controls in
the bottom half). The default of one processor is predicted to require 152 seconds, but
the biologist wants the response time to be shorter. She drags the response time slider to
20 seconds. The estimating function then computes the required number of processors
and the resulting efficiency to meet that request. As shown in Figure 4.1, this sequence
requires 10 processors to get the response time under 20 seconds on a SGI Challenge
XL machine. The efficiency will be an estimated 89 percent, which is above the 60 per-
cent minimum specified by the system administrator. The user then presses the “Yes”
button to start the algorithm running with 10 processors. The result of the computation
is visually presented to the user (Figure 4.2).

This sequence report has many good alignments, represented by the abundance of
red teeth on the combs. This suggests that the database sequences we found are all
closely related. After some analysis, the biologist decided to re-run the algorithm with
parameters of closer evolutionary distance. The biologist obtains a new visualization by
running the sequence algorithm again with parameter matrix=PAM60 and asking for at
least 90 percent efficiency.

A new feature of our system implements the subtraction of two visualized data
sets, showing alignments found by one data set but not the other. By using “detail-on-
demand”, the biologist select an alignment and then view the details of that alignment
in a separate window. The result is that we have found “motifs” of a protein called
“peroxidase.” Motifs are short regions that have been preserved with little change over
evolution, presumably because their existence is important to the function of the protein.

The above example showed that the resource steering works well in practice. Our
molecular biology application incorporates computational steering in a visualization
system that analyzes genetic sequence similarity reports. Using this model, the user
is able to change the initial parameters of the algorithm and estimate what effect the
parameters will have on the performance of the system. Biologists have been regularly
using this system since late 1996. The feedback we have received from them is that
using this visualization system has increased their ability to analyze large amounts of
similarity data by at least two or three folds.

4 Conclusion

Existing systems do not provide feedback on the efficiency of the computational engine.
This feedback is important for two reasons. First, if the user initiates a simulation, she
should have information that tells her how long the simulation will take. Second, since
computing resources can be scarce, users need to be able to specify the upper limit on
the usage of resources. In this paper, we described a particular approach to computation
steering that enable users to closely monitor resource usage. Resource steering can be
used in many situations, offering the user the ability to fine-tune the efficiency and
response time. Sometimes the system administrator may impose minimum efficiency
on the computing resources. The system may even provide an estimate of the amount
of dollars a particular computation may cost. As depicted in the case study, the new
combined approach enhances our ability to integrate computation with visualization.

AcknowledgmentsThis work has been supported in part by the National Science Foundation
under grants BIR9402380 and CDA9414015. We wish to thank members of the Arabidopsis
sequencing group at Michigan State University and the genomic database group at the University
of Minnesota for their advice and suggestions.

References

1. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic Local Alignment Search
Tool. Journal of Molecular Biology, 215:403–410, 1990.

2. G. Bancroft, T. Plessel, F. Merritt, and V. Watson. Tools for 3d scientific visualization in
computational aerodynamics at NASA Ames Research Center. InProc. SPIE 1083: Three-
Dimensional Visualization and Display Technologies, pages 161–172, 1989.

3. K. Brodlie, A. Poon, H. Wright, L. Brankin, G. Banecki, and A. Gay. Grasparc — a problem
solving environment integrating computation and visualization. InIEEE Visualization ’93,
pages 102–109. IEEE CS Press, 1993.

4. E. H. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet approach to information visualiza-
tion. In Proceedings of the Symposium on Information Visualization ’97, pages 17–24,116.
IEEE CS, 1997. Phoenix, Arizona.

5. E. H. Chi, J. Riedl, E. Shoop, J. V. Carlis, E. Retzel, and P. Barry. Flexible information
visualization of multivariate data from biological sequence similarity searches. InProc.
IEEE Visualization ’96, pages 133–140, 477. IEEE CS, 1996. San Francisco, California.

6. E. H. Chi, E. Shoop, J. Carlis, E. Retzel, and J. Riedl. Efficiency of shared-memory multi-
processors for a genetic sequence similarity search algorithm. Technical Report TR97-005,
University of Minnesota Computer Science Department, 1997.

7. D. Jablonowski, J. Bruner, B. Bliss, and R. Haber. VASE: The visualization and application
steering environment. InIEEE Visualization ’93, pages 560–569. IEEE CS Press, 1993.

8. V. Kumar, A. Grama, A. Gupta, and G. Karypis.Introduction to Parallel Computing. Ben-
jamin Cummings, 1994.

9. R. Marshall, J. Kempf, S. Dyer, and C.-C. Yen. Visualization methods and simulation steer-
ing for a 3D turbulence model of Lake Erie. InProceedings of Symposium on Interactive 3D
Graphics, pages 89–97, 264. SIGGRAPH, 1990.

10. B. McCormick et al. Visualization in scientific computing. InComputer Graphics, vol-
ume 21. ACM Press, November 1987.

11. J. Mulder and J. van Wijk. 3D computational steering with parametrized geometric objects.
In IEEE Visualization ’95, pages 304–311. IEEE CS Press, 1995.

12. S. Parker, D. Weinstein, and C. Johnson. The SCIRun computational steering software sys-
tem. In E. Arge, A. Bruaset, and H. Langtangen, editors,Modern Software Tools in Scientific
Computing, pages 1–44. Birkhauser Press, 1997.

13. D. Reed, C. Elford, T. Madhyastha, E. Smirni, and S. Lamm. The next frontier: Interactive
and closed loop performance steering. InProceedings of the 25th Annual Conference of
International Conference on Parallel Processing, 1996.

14. J. Vetter and K. Schwan. Progress: A toolkit for interactive program steering. InProceedings
of the 24th Annual Conference of International Conference on Parallel Processing, pages
139 – 142, 1995.

15. C.-C. Yen, K. Bedford, J. Kempf, and R. Marshall. A three-dimensional/stereoscopic display
and model control system for great lakes forecasts. InIEEE Visualization ’90, pages 194–
201. IEEE CS Press, 1990.

