
Multiresolution Techniques for Interactive
Texture-based Rendering of Arbitrarily Oriented

Cutting Planes

Eric LaMar?

Mark A. Duchaineau*, Bernd Hamann*, Kenneth I. Joy*

Center for Image Processing and Integrated Computing
Department of Computer Science

University of California, Davis, CA 95616-8562, USA

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Box 808, L-561 Livermore, CA 94551, USA

Abstract. We present a multiresolution technique for interactive texture based
rendering of arbitrarily oriented cutting planes for very large data sets. This method
uses an adaptive scheme that renders the data along a cutting plane at different
resolutions: higher resolution near the point-of-interest and lower resolution away
from the point-of-interest. The algorithm is based on the segmentation of texture
space into an octree, where the leaves of the tree define the original data and the
internal nodes define lower-resolution versions. Rendering is done adaptively by
selecting high-resolution cells close to a center of attention and low-resolution
cells away from it. We limit the artifacts introduced by this method by blending
between different levels of resolution to produce a smooth image. This technique
can be used to produce viewpoint-dependent renderings.

1 Introduction

Computing technology has steadily improved for more than four decades and continues
to improve rapidly. These increased computing capabilities have enabled applications
to scale accordingly in overall throughput and resulting data set sizes. However, current
visualization techniques break down when operating in this environment due to the
massive size of the data sets. New techniques are necessary to enable exploration of
large multidimensional data sets.

In this paper, we combine hardware-assisted texture mapping and multiresolution
methods for rendering cutting planes of large volumetric data sets. The general idea is
to assign priorities to different regions of the volume and to render the high-priority
regions with highest accuracy, while lower-priority regions are rendered with progres-
sively less accuracy, and progressively faster.

We use an octree to decompose texture space producing several coarser levels of
the original data set. Each level is associated with a level in the octree and each level

? eclamar@cipic.ucdavis.edu, duchaine@llnl.gov,fhamann,joyg@cs.ucdavis.edu



is half the resolution of the next level. The leaf nodes are associated with the original
resolution, and the root node is associated with the coarsest resolution. Interior nodes
are created by subsampling the eight child nodes. Each node contains two texture tiles,
calledhighandlow. Thehigh tile stores the node’s copy of the data; thelow tile stores
portion of the parent’shigh tile that covers the same area as the node.

Rendering a cutting plane involves traversing the octree and applying a selection
filter to each node, building a selected node tree. Three results are possible: (1) the
node (and its children) are skipped entirely; (2) the node is skipped, but its children are
visited; or (3) the node is rendered and the children are skipped. The selected node tree
forms an incomplete octree with the leaves being the nodes selected for rendering. The
second step is to balance the selected node tree: all adjacent nodes must differ by no
more than one level of resolution. The final step is to render each node, blending the
highandlow tiles when the node is adjacent to a lower-resolution node.

This technique reduces the amount of data accessed to produce a rendering. This is
important in data mining or visual steering applications, where a user does not know the
point-of-interest or would just like to browse the data. Another application is progres-
sive visualization: often, a data set is too large to be placed on one computer system,
and portions are distributed across a network of machines. It is not always practical to
wait for all systems to finish rendering. With our technique, an initial approximation
is first rendered. As higher-resolution data is received, a higher-quality approximation
is rendered. This continues until all the data is received or the user changes viewing
parameters.

Section 2 contains a survey of related work. Section 3 discusses construction of the
texture hierarchy, and Section 4 covers how to process and render the texture hierarchy.
Section 5 shows results for two data sets and provides performance results. Conclusions
and future work are presented in Section 6.

2 Related Work

High-performance computer graphics systems are evolving rapidly. Silicon Graphics,
Inc. (SGI) has been a primary developer of rendering technology, introducing the Re-
alityEngine graphics system [1] in 1994 and the InfiniteReality graphics system [9] in
1998. SGI has also provided extensions to OpenGL [10], [8] that allow taking advantage
of this hardware.

Cabral et al. [2] show that volume rendering and reconstruction integrals are gen-
eralizations of the Radon and inverse Radon transforms. They show that the Radon
and inverse Radon transforms have similar mathematical forms and, by developing this
relationship, show that both volume rendering and volume reconstruction can be im-
plemented with hardware-accelerated textures. Cullip and Neumann [3] discuss general
implementation issues for hardware-assisted texture-based volume visualization and il-
lustrate the superiority of viewport- versus object-aligned sampling planes. Wilson et
al. [14] and Van Gelder and Kim [12] develop the mathematical foundation for gen-
erating texture coordinates. Van Gelder and Kim also introduce a quantized gradient
method for interactive shading for volume visualization. Westermann et al. [13] show
how to visualize isosurfaces using fragment testing and discuss a technique to shade



the texture-based isosurfaces. Grzeszczuk et al. [5] enumerate many methods using
hardware-accelerated texturing to provide interactive volume visualization, and they
introduce a library for texture-based rendering calledVolumizer[4].

LaMar et al. [7] discuss techniques on which this work is based. This paper [7]
shows that multiresolution techniques, when applied to large data sets and used for vol-
ume rendering applications, are a reasonable approach to reducing both rendering time
and amount of data rendered. Shen et al. [11] discuss a temporally based multiresolution
scheme for volume visualization of unsteady data sets.

Our method differs from these prior approaches in that we allow adaptive rendering
of a cutting plane. Prior algorithms assume that a data set is “uniformly complex” or
“uniformly important.” This is not the case in an immersive environment, where data
closer to the viewer has more visual importance than data far away. Our method of
rendering tiles at different resolutions enables us to treat quality as a “tunable” param-
eter. Artifacts that may appear are removed by blending higher-resolution nodes into
lower-resolution nodes.

3 Generating The Texture Hierarchy

3.1 High/Low Texture Tiles

H

L

Pixels

1Texture Function Domain0

Fig. 1. A node with one-dimensional tiles,high(H) andlow(L).

In hardware texturing, linear interpolation is used to interpolate the values at the
centers of adjacent texels. To allow for blending within a node, each node contains two
texture map tiles (Figure 1). Thehigh tile is the normal data associated with that node.
The low tile is that part of the parent’shigh tile that is covered by the child node. The
size ratiohigh to low is defined asjhighj = jlowj � 2 � 1. Thus one of the tiles must
have odd size. If the size of a texture tile must be a power of two, then this relationship
will incur some memory overhead. Our system uses a power-of-two size for thelow
tile, and the size for thehigh tile is calculated accordingly.

3.2 The Multiresolution Texture Hierarchy

Figure 2 shows a texture hierarchy consisting of two levels. The higher-resolution level
is denoted as levelA, with nodesA0 andA1, and the lower-resolution level asB. The
image represented byA can be approximated byB. Thehighandlow tiles inB are the
same size as thehigh andlow tiles inA0 or A1, and half the total size of thehigh and



H

L

H

L

Level

A

B

A
0

A
1

Fig. 2.A texture hierarchy of two levels.

low tiles inA. We note that the natural relationship for two textures whose resolutions
differ by a factor of two is using texel-center alignment. In the binary tree arrangement
defined by this one-dimensional texture,B is the parent ofA0 andA1. Also, note the
correspondence between thelow tile of the children to thehigh tile of the parent.

Level 1
16 Tiles

 Level 0
64 Tiles

Level 2
4 Tiles

P

C

Final
5 Tiles

Fig. 3.Selecting a set of tiles from a 2D hierarchy of four levels (level 3 not shown).

Figure 3 shows a two-dimensional quadtree example. The original texture, level0,
contains64 nodes. The dark regions show the portion of the level used in rendering the
cutting plane. Nodes are selected when the distance from the center of the node to the
point p is greater than the diagonal length of the node, and when the node intersects
the cutting planec. The selected nodes are shaded. The original texture, divided into64

nodes, requires64 time units to transfer. The multiresolution rendering uses five nodes,
requiring five time units which implies a speed-up factor of about 13.

This technique extends to three-dimensional textures. Approximations are gener-
ated by subsampling the textures. The amount of memory “wasted” over the prior tech-
nique [7] is the storage of thelow tile with each node; since eachlow tile is 1

8
the size

of thehigh tile, the additional memory overhead is1
8
.

4 Rendering

The rendering phase is divided into the following steps: (1) selecting nodes to be ren-
dered and building the selected node tree; (2) balancing the selected node tree; (3)
computing the blending ratios; and (4) rendering the nodes.

4.1 Selecting Nodes

The first rendering step determines which nodes will be rendered. The general filtering
logic starts at the root node and performs a depth-first traversal of the octree. For each
node, we evaluate a selection filter, which returns one of three possible responses:



– Ignore this node and all of its children. This response is used to cull the tree. For
example, if a node is not in the view frustum, then we can ignore the node and its
children.

– The node satisfies all criteria. Render the node and do not consider the children.
– The node does not satisfy the criteria. Check the children.

Our primary selection filter is based on one of these two criteria:

– Cutting Plane. This filter selects a node when it intersects the cutting plane.
– Multiresolution Cutting Plane. This filter selects a node when it intersects the cut-

ting plane and the distance from the node center to the point-of-interest (on the
cutting plane) is smaller than the diagonal length of the node.

4.2 Blending

a b

c d

1-a 1-b

1-c 1-d

(A) (B) (C)

(D) (E) (F)

(G)

Fig. 4. Blending red and green checker board patterns.

Texturing is performed by modulating the color of the proxy geometry by the tex-
ture; the color is white and constant across a polygon. However, to blend two images,
we can change the polygon color to implement bilinear filtering. In Figure 4, image (G)
is created by performing a per-pixel affine combination of images (A) and (D). Image
(B), with ratios ofa = c = 1 andb = d = 0, multiplies (A) and produces (C). Image
(E) multiplies (D) and produces (F). Images (B) and (E) sum to unity. Adding (C) and
(F) produces (G): a transition from red checks on the left to green checks on the right.
We obtain a smooth transition provided (A) and (D) are two different resolutions of the
same image.

4.3 Neighborhoods and “Balancing”

The blending algorithm described in section 4.2 requires that all selected nodes in a
26-neighborhood (across node faces, edges, and corners) have resolutions that differ
by at most one level in the octree. Blending within a node can only blend between
two texture resolutions: the high-resolution texture is blended into the low-resolution



texture. Nodes have two textures tiles,high andlow, so that a pair of nodes that differ
by one level in the tree can be blended. Those that differ by two or more levels do not
share any textures and cannot be blended.

After balancing the tree, we examine the neighbors of all selected nodes. The nodes
adjacent to a node of lower-resolution must be blended such that the textures match.
For each corner of a given node, when any of the seven adjacent nodes exist and have a
lower-resolution, that corner must blend to thelow tile; otherwise, it must use thehigh
tile.

a=0

b=0

c=0.7

d=1

e=1

A=0

B=1

C=0

D=1
E=0

F=0

G=0

H=1

Fig. 5. Cutting plane clipped to an intersecting node.

Figure 5 shows a cutting plane clipped to an intersecting node.A to H are the blend
ratios associated with the node: corners B, E, and H are adjacent to lower-resolution
nodes, so that the blend ratio is one; the other corners have a blend ratio of zero, se-
lecting thelow andhigh tile of the node, respectively. The valuesa to e are the blend
ratios associated with the clipped cutting planes vertices. Ratios on an edge are linear
combinations of the ratios at the ends of that edge, and are proportional to the position
of the point along the edge.

For rendering, we first define the RGB value for each clipped cutting plane vertex
to the ratio (a to e in Figure 5), download thelow texture tile, and draw the polygon.
The color values will be interpolated across the polygon, multiplying the texture and
producing the first weighted image. Next, we download thehigh texture tile, define the
RGB value for each clipped cutting plane vertex to one minus the ratio, and draw the
polygon, producing the second weighted image. Finally, by adding the first and second
images, we produce the blended result.

5 Results

We have implemented the algorithm and applied it to parts of the Visual Female data
set. The data sets were rendered on an SGI Onyx2 computer system with 512MB of
main memory and 16MB of texture memory, using a single 195MHz R10K processor.

For comparison, Figure 6 shows a multiresolution image of a Mandrill. This image
is used to point out the artifacts when not blending across different levels of resolution.
Image 6(b) shows the nodes and node boundaries: the resolution is shown by the node’s



Mandrill (Fig. 6) Visible Female (Fig. 7)
Data set resolution 256

2 � RGB (2D) 5002 � 250 � RGBA (3D)
Data set size 192K 238MB
Tile resolution (high/low) 15

2/82 32
3/163

Tile size (high/low) 1024=256 bytes 128K=16K bytes
Level 0 nodes 324 2601

Rendered nodes: fixed/MR324 41 443 50

Bytes transmitted 405K 51K 56MB 7MB
Rendering time - - 2:0 sec. 0:37 sec.

Table 1.Timing results for Mandrill and Visible Female data sets.

(a) (b)

(c) (d)

Fig. 6. Multiresolution Mandrill: (a) without blending; (b) node boundaries high-lighted; (c)
blended nearest-neighbor; and (d) blended, bilinear filtering.



(a) (b)

(c)

Fig. 7.Multiresolution cutting plane of the Visible Female data set: (a) fixed resolution; (b) blend-
ing with node boundaries high-lighted; and (c) MR, blending.

boundary color, from highest to lowest: black, red, green, and yellow; notice the arti-
facts at the node boundaries in image 6(a). Image 6(c) shows the blending result, with
nearest-neighbor filtering; notice that the pixel sizes blend smoothly across the nodes.
Image 6(d) shows the final result; notice how the image is free of the boundary artifacts
and smoothly blends high resolution nodes to low resolution nodes.

Figure 7 shows a multiresolution view of the Visible Female data set. The 443 nodes
of the Visible Female represent the highest-resolution nodes that intersect the cutting
plane (the other 2158 are never considered). The performance results shown in Table
1 are for a single frame; at 20 frames per second. The 1.1GB/sec required for the non-
multiresolution approach exceeds the SGI InfiniteReality Engine’s maximum transfer
rate for textures of 320MB/sec by a factor of about 3.5, while the 140MB for the mul-
tiresolution approach has capacity to spare. The selection criteria are flexible and under



user control. When the bandwidth is very low (e.g., over a modem), even fewer nodes
can be selected.

6 Conclusions

We have presented an algorithm for interactive rendering of multiresolution cutting
planes. We use hardware-based texturing, multiresolution techniques, and image blend-
ing to render a smooth approximation of a cutting plane. We have shown that our algo-
rithm can produce a reasonable approximation while using less data. Despite the fact
that our overall system is limited by the amount of available texture memory, the algo-
rithm produces very good results, and we expect that this approach will have a major
impact on the exploration of massive volumetric data sets that are currently generated
in numerous applications.

Future work includes error analysis. We will implement this technique in our mul-
tiresolution volume visualization system and extend it to visualizing vector fields.

7 Acknowledgments

This work was supported by the National Science Foundation under contract ACI 9624034
(CAREER Award) and through the National Partnership for Advanced Computational
Infrastructure (NPACI);the Office of Naval Research under contract N00014-97-1-0222;
the Army Research Office under contract ARO 36598-MA-RIP; the NASA Ames Re-
search Center through an NRA award under contract NAG2-1216; the Lawrence Liver-
more National Laboratory under ASCI ASAP Level-2 Memorandum Agreement B347878
and under Memorandum Agreement B503159; and the North Atlantic Treaty Organi-
zation (NATO) under contract CRG.971628 awarded to the University of California,
Davis. We also acknowledge the support of ALSTOM Schilling Robotics, Chevron,
Silicon Graphics, Inc. and ST Microelectronics, Inc. We thank the members of the Visu-
alization Thrust at the Center for Image Processing and Integrated Computing (CIPIC)
at the University of California, Davis.

References

1. Kurt Akeley. RealityEngine graphics. InProceedings of Siggraph 93, pages 109–116. ACM,
August 1993.

2. Brian Cabral, Nancy Cam, and Jim Foran. Accelerated Volume Rendering and Tomographic
Reconstruction Using Texture Mapping Hardware. In1994 Symposium on Volume Visual-
ization, pages 91–98. ACM, October 1994.

3. Timothy J. Cullip and Ulrich Neumann. Accelerating Volume Reconstruction With 3D Tex-
ture Hardware. Technical Report TR93-027, Department of Computer Science, University
of North Carolina - Chapel Hill, May 1994.

4. George Eckel.OpenGL Volumizer Programmer’s Guide. SGI, Inc., 1998.
5. Robert Grzeszczuk, Chris Henn, and Roni Yagel.SIGGRAPH ’98 ”Advanced Geometric

Techniques for Ray Casting Volumes” course notes. ACM, July 1998.
6. IEEE. IEEE Visualization 99, November 1999.



7. Eric LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolution Techniques for Interactive
Hardware Texturing-based Volume Visualization. InIEEE Visualization 99[6], pages 355–
361.

8. Tom McReynolds and Davis Blythe.SIGGRAPH ’98 ”Advanced Graphics Programming
Techniques Using OpenGL” course notes. ACM, July 1998.

9. John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J. Migdal. Infinite
Reality: a Real-Time Graphics System. InProceedings of Siggraph 97, pages 293–302.
ACM, August 1997.

10. Mark Segal and Kurt Akeley.The OpenGL Graphics System: A Specification (Version 1.2).
SGI, Inc., 1998.

11. Han-Wei Shen and Kwan-Liu Ma. A Fast Volume Rendering Algorithm for Time-Varying
Fields Using A Time-Space Partitioning (TSP) Tree. InIEEE Visualization 99[6], pages
371–377.

12. Allen Van Gelder and Kwansik Kim. Direct Volume Rendering with Shading via Three-
Dimensional Textures. InProceesings of 1996 Volume Visualization Symposium, pages 23–
30. IEEE, October 1996.

13. Rüdiger Westermann and Thomas Ertl. Efficiently Using Graphics Hardware In Volume
Rendering Applications. InProceedings of Siggraph 98, pages 169–177. ACM, July 1998.

14. Orion Wilson, Allen Van Gelder, and Jane Wilhelms. Direct Volume Rendering via 3D
Textures. Technical Report UCSC-CRL-94-19, University of California, Santa Cruz, June
1994.


