
Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

Multiresolution Interblock Interpolation in
Direct Volume Rendering

Patric Ljung†, Claes Lundström‡ and Anders Ynnerman†

†Norrköping Visualization and Interaction Studio, Linköping University
‡Center for Medical Image Analysis and Visualization, Linköping University and Sectra Imtec AB

Abstract

We present a direct interblock interpolation technique that enables direct volume rendering of blocked, multireso-
lution volumes. The proposed method smoothly interpolates between blocks of arbitrary block-wise level-of-detail
(LOD) without sample replication or padding. This permits extreme changes in resolution across block boundaries
and removes the interblock dependency for the LOD creation process. In addition the full data reduction from the
LOD selection can be maintained throughout the rendering pipeline. Our rendering pipeline employs a flat block
subdivision followed by a transfer function based adaptive LOD scheme. We demonstrate the effectiveness of our
method by rendering volumes of the order of gigabytes using consumer graphics cards on desktop PC systems.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing algorithms; I.4.10
[Image Processing and Computer Vision]: Volumetric;

1. Introduction

Direct volume rendering [Kau91] has been shown to be a
very valuable tool in the visualization and exploration of
volumetric data sets. In many areas, including medical imag-
ing and scientific simulations, the size of the generated data
sets are causing severe performance limitations in the vol-
ume rendering pipeline. Methods that can smoothly adapt to
the available resources in the rendering system are therefore
highly desired. Currently the primary means to achieve this
is through level-of-detail (LOD) techniques for volumetric
data. Reducing the LOD in different local regions reduces
memory, transfer bandwidth and processing requirements.

LOD schemes are typically based on a block subdivision
of the volume. The different local resolutions then cause
discontinuities in the rendered image. Several variations of
sample replication between blocks have been proposed to
minimize or avoid these artifacts but replication has a num-
ber of unwanted side effects. The major drawbacks are that
the redundancy introduced significantly decreases the data

† {plg,andyn}@itn.liu.se
‡ clalu@cmiv.liu.se

reduction achieved by the LOD selection and that significant
block interdependency is introduced in the LOD construc-
tion process. Furthermore, there are potential issues with
rendering quality due to incorrect sample positioning, and
the block interdependence makes effective parallelization
harder.

In this paper we introduce an interblock interpolation
technique that removes the need for replication and supports
C0 continuity between arbitrary resolution levels. The main
benefit of this approach is that the full data reduction is kept
throughout the rendering pipeline without increasing render-
ing error. The interblock interpolation has been implemented
in a 3D texture slicing volume ray caster using fragment pro-
grams. We summarize our contribution to be:

• Provision of high quality rendering without discontinu-
ities arising from blocking.

• Permitting high LOD adaptivity through smooth interpo-
lation between arbitrary resolutions.

• Avoiding data replication such that data reduction rates
can be maintained.

• Supporting highly parallel LOD preprocessing since the
proposed method does not impose any interblock depen-
dencies.

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


Ljung, Lundström, Ynnerman / Multiresolution Interblock Interpolation in Direct Volume Rendering

Both hierarchical (octree) and flat block subdivision
schemes have been used for LOD implementations. A draw-
back of hierarchical schemes is that low-resolution blocks
cover a large spatial region. This means that the granularity
of the LOD selection is low, which leads to poor data reduc-
tion in some cases. In contrast, flat schemes are highly spa-
tially adaptive, which is why we have chosen this approach.
To demonstrate the effectiveness of our method, we render
large, out-of-core, uncompressed data sets using a Transfer
Function (TF) based LOD selection [LLYM04]. Data is dy-
namically cached from disk when the LOD selection is mod-
ified and the reduced volume data is fitted to the available
texture memory on consumer graphics cards.

2. Related Work

Multiresolution techniques have been used in a wide range
of applications. Currently, the most common scheme in
hardware-based volume rendering is a hierarchical scheme
(octree) with recursive subdivision and increasing resolu-
tion. It was first introduced in volume rendering by LaMar
et al. [LHJ99] and extended by Weiler et al. [WWH∗00] to
minimize discontinuities between blocks of different level-
of-detail. The criterion for LOD selection is based on region
of interest or distance to viewer.

LOD selection based on data error between levels
was proposed by Boada et al. [BNS01], and Guthe et
al. [GWGS02] combine this with wavelet based compres-
sion. LaMar et al. [LHJ03] further propose an efficient
method to compute the level error by means of frequency
tables and they derive a grey scale Transfer Function (TF) er-
ror for the interior octree nodes. Guthe and Strasser [GS04]
present a LOD selection through approximation of the
screen-space error from the maximum voxel deviation,
which is used to overestimate a TF based difference in the
separate RGB color channels. Gao et al. [GHSK03] compute
a Plenoptic Opacity Function (POF) for each block, based on
a set of TF basis functions.

Block-based compression is widely used in image and
video compression techniques, such as JPEG and MPEG.
Flat blocking schemes have also been used for wavelet based
volume compression in [IP99, BIP01, NS01] where the au-
thors present random access techniques for data samples.
Ljung et al. [LLYM04] use a TF based LOD selection that
exploits the multiresolution properties of the wavelet trans-
form on a per block basis. A simplified block histogram is
used to derive an error in the perceptually adapted CIELUV
color space. A coarse value histogram has also been used by
Gao et al. [GHJA05].

In the majority of the presented hierarchical schemes,
blocks are rendered individually and whenever sampling
discontinuities are considered, for example in [WWH∗00,
GWGS02], it is addressed by sample replication (including
interpolation to derive the replication sample). This requires

Low High High Low

a) Left: Single sided replication (grey area) fails to support contin-
uous interpolation unless the higher resolution block is adjusted
(green circles) and accurate data is lost. Right: Missing samples
(green circles) are interpolated to provide continuous interpolation.

20
40
60
80

100
120

20 40 60 80 100 120 140 160 180 200

de
fa

ct
o

re
du

ct
io

n

LOD reduction

None
Single
Double

b) Comparison of de facto data reduction versus LOD reduction for
none, single, and double sided sample replication.

Figure 1: Single sided replication has issues with continuity
(a - left). The de facto reduction is significantly lower for
replication applied to flat blocking (b).

access to neighbor data, at specific resolution levels, which
may be resident in memory [LHJ99, WWH∗00] or decoded
and cached as needed [GWGS02]. Guthe et al. [GWGS02]
use a single sided replication scheme that is C0 continu-
ous only under condition that higher resolution samples are
replaced with interpolated samples from lower resolution
neighbors (figure 1a). While Weiler et al. [WWH∗00] pro-
pose a method that preserves original samples it comes with
considerable replication cost, figure 1b shows the cost for
both single and double sided replication. Both of these meth-
ods require access to higher resolution neighbor blocks in the
LOD creation process for replicated samples, in the double
sided scheme up to 26 blocks have to be considered. Fur-
thermore, these methods also suffer from restricted sample
placement within the block since they have to be aligned
with the block boundary, as seen in figure 1a. Which in turn
limits the set of applicable downsampling schemes.

3. Direct Multiresolution Interpolation

With direct multiresolution interpolation we mean a method
that can directly, without intermediate reconstruction and
sample replication, interpolate between sample values
within and between blocks of arbitrary resolution levels.
First, we establish how sampling within a block is per-
formed, intrablock sampling, and then our scheme for direct
multiresolution interpolation is presented.

c© The Eurographics Association 2006.



Ljung, Lundström, Ynnerman / Multiresolution Interblock Interpolation in Direct Volume Rendering

Block 1
Level 0

Block 2
Level 2

Block 3
Level 1

Block 4
Level 3

δ1 δ2

δ3 δ4

Figure 2: A 2D illustration of a four-block neighborhood.
Red points show the location of block samples, the red
dashed lines are the sample boundaries. The sample bound-
ary distance, δb, is indicated for each block, b.

3.1. Intrablock Volume Sampling

Intrablock sampling defines the sampling within the interior
of a block, with clamping to the sample boundaries. Com-
monly, a lower resolution sample is situated at the center of
its higher resolution source samples. Figure 2 illustrates in
2D a set of four blocks with different resolutions. The sam-
ple placement used in this paper is justified for resampling
using averaging but, in general, the placement depends on
the downsampling method. We define the sample boundary
of a block to be the smallest box spanning all samples: for a
block of resolution level l, a box inset by δ(l) from all edges
of the block boundary (eq. 1).

δ(l) =
1

21+l (1)

The sample to be retrieved is given by the normalized intra-
block coordinates u′,v′,w′ ∈ [0,1]. The computation of local
block texture coordinates u,v,w, shown for u in equation 2,
ensures that samples are not taken outside the boundary.

u = C1−δ

δ
(u′), (2)

where Cβ

α(γ) clamps the value γ to the [α,β] interval.

3.2. Interblock Interpolation

The task of interblock interpolation is to retrieve a sample
value, ϕ, for a position between the sample boundaries of
neighboring blocks. The overall structure of the method is
given below:

1. Determine the current eight-block neighborhood,
r0,s0, t0, and setup the local coordinates, r,s, t.

2. Take samples, ϕb, from the blocks using the intrablock
method described above.

r

s

t 1 2

3 4

5 6

7 8

8,8

8,8

8,8

8,8

8,8 8,8

8,8 8,8

8,8 8,8

8,8 8,8

1,2

3,4

5,6

7,8

1,3 2,4

5,7 6,8

1,5 2,6

3,7 4,8

Figure 3: Center of eight-block neighborhood configuration
with block and edge labeling. The gray solid lines indicate
the block intersections. The edge labeling is used to define
the edge weights, ei, j(ρ), where ρ is the position along the
edge in the local coordinate system, r,s, t, with origin at the
block intersection center.

3. Compute edge weights, ei, j , between side-facing neigh-
bors.

4. Compute block weights, ωb, from three (in 3D) edge-
weights.

5. Compute the normalized weighted sum of ωbϕb yielding
the sample value, ϕ.

A block neighborhood is illustrated in figure 3 where
block 1 is in the left-lower-front and block 8 is in the right-
upper-back. We also define the volume domain to be in
block units and the volume thus covers the cubical range
〈0,0,0〉 to 〈Nr,Ns,Nt 〉 where Nρ is the number of blocks
along dimension ρ. The local coordinates, r,s, t, for block
1 and 8 centers are consequently 〈−0.5,−0.5,−0.5〉 and
〈0.5,0.5,0.5〉, respectively. The eight-block neighborhood
is determined by translation and clamping of the global vol-
ume coordinates, rg, sg, tg, to yield the block location, r0,
s0, t0, (eq. 3) of the left-lower-front block (block 1 in figure
3). With the neighborhood origin determined, the local co-
ordinates, r,s, t, are easily computed (eq. 4). The other two
dimensions, s and t, are computed analogously.

r0 = bCNr−1
0 (rg −0.5)c, (3)

r = rg − r0 −1.0. (4)

A sample, ϕb, is then taken from each of the blocks using
r,s, t as the intrablock coordinates u′,v′,w′ adjusted with
unit offsets specific to each block’s location in the local
eight-block neighborhood.

For each of the twelve edges in the neighborhood, the
edge weights ei, j ∈ [0,1] are computed, as described later.
For convenience, three edge sets Er, Es, Et , are introduced
for edges of equal orientation (eq. 5). Using the labeling in

c© The Eurographics Association 2006.



Ljung, Lundström, Ynnerman / Multiresolution Interblock Interpolation in Direct Volume Rendering

ρ

e(ρ)

1: Level 0 2: Level 2
a) No interblock interpolation

ρ

e(ρ)

1: Level 0 2: Level 2
b) Minimum Distance Interpolation

ρ

e(ρ)

1: Level 0 2: Level 2
c) Boundary Split Interpolation

ρ

e(ρ)

1: Level 0 2: Level 2
d) Maximum Distance Interpolation

Figure 4: One-dimensional illustrations of the three in-
terblock interpolation variants (b–d) and nearest neighbor
sampling (a). Each graph contain two blocks, the leftmost
with resolution level 0 and the rightmost with level 2.

figure 3 these are:

Er = {(1,2),(3,4),(5,6),(7,8)},
Es = {(1,3),(2,4),(5,7),(6,8)},
Et = {(1,5),(2,6),(3,7),(4,8)}.

(5)

The edge weights, ei, j, determine the block weights, ωb, as
shown below (eq. 6).

ω1 = (1− e1,2) · (1− e1,3) · (1− e1,5)
ω2 = e1,2 · (1− e2,4) · (1− e2,6)
ω3 = (1− e3,4) · e1,3 · (1− e3,7)
ω4 = e3,4 · e2,4 · (1− e4,8)
ω5 = (1− e5,6) · (1− e5,7) · e1,5

ω6 = e5,6 · (1− e6,8) · e2,6

ω7 = (1− e7,8) · e5,7 · e3,7

ω8 = e7,8 · e6,8 · e4,8

(6)

The sample value, ϕ, is then computed as a normalized
sum of all block samples, ϕb (eq. 7). Normalization is re-
quired since the edge weights do not always sum to one, as
when block neighbors are of different resolutions.

ϕ = ∑
8
b=1 ωbϕb

∑
8
b=1 ωb

(7)

We present three variations of interblock interpolation:
Minimum Distance, Boundary Split, and Maximum Dis-
tance. The variations stem from how the edge weights, ei, j,
are computed. Figure 4 shows how edge weights are com-
puted for the variants and a comparison and illustration of
the block weights for the methods is shown in figure 5.

Minimum Distance Interpolation: The motivation for
this method is that a sample should not have impact out-
side its valid footprint, 2δ(l) (figure 4b). A consequence is
that lower resolution samples are extended towards the edge
(eq. 8).

ei, j(ρ) = C1
0(0.5+ρ/2min(δi,δ j)) (8)

where (i, j) ∈ Eρ and ρ is one of r, s, t.

Boundary Split Interpolation: This variant is based on
the idea that the steepness of the interpolation should not
be influenced by neighboring blocks. Thus, the interpolation
is divided into a two-segment linear function that is split at
the spatial block boundary (figure 4c). Compared with Min-
imum Distance, high resolution samples have wider foot-
prints and the constant part of low resolution samples is re-
moved (eq. 9).

ei, j(ρ) =

{
C1

0(0.5+ρ/2δi) if ρ < 0

C1
0(0.5+ρ/2δ j) if ρ ≥ 0

(9)

Maximum Distance Interpolation: A drawback of the
other two variants is a discontinuity in the derivative of the
interpolation weight within the interval. Maximum Distance
avoids this problem, see figure 4d. The value is interpo-
lated in one linear segment over the whole distance between
neighboring sample boundaries (eq. 10).

ei, j(ρ) = C1
0

(
(ρ+δi)/(δi +δ j)

)
(10)

The interblock interpolation variants all equate to traditional
trilinear interpolation when the blocks have equal resolution.
Let δi = δ j = δ, then equations 8, 9, and 10 each result in

ei, j(ρ) = C1
0

(
0.5+ρ/2δ

)
(11)

which is a linear interpolation kernel. From the local nature
of this method it follows that neighboring blocks do not af-
fect the block sampling within the sample boundary.

The proposed method is C0 continuous, which follows
from the continuity property of summation, product and quo-
tient, given that ∑b ωb 6= 0 (eq. 7) and the edge interpolators
ei, j ∈ C0 (eq. 8, 9, 10). These conditions are met as long as
the pair-wise sample distance δi + δ j > 0 for all (i, j) ∈ Eρ

and δb ≥ 0 for all b, conditions which are all met.

4. Implementation

With the interblock interpolation sampling framework estab-
lished we can proceed to implement a highly adaptive LOD
selection scheme. We have incorporated the LOD selection
scheme presented in [LLYM04] which uses a basic block
histogram approximation together with the active TF to pre-
dict block significance. We also use cropping to affect the
LOD selection. A memory budget is specified, such that the
data fits in texture memory, and the method optimizes the
LOD for each block with respect to its required size.

c© The Eurographics Association 2006.



Ljung, Lundström, Ynnerman / Multiresolution Interblock Interpolation in Direct Volume Rendering

a) Minimum Distance Interpolation b) Boundary Split Interpolation c) Maximum Distance Interpolation

Figure 5: Block interpolation weights in 2D for a four-neighborhood. The interpolation weight for each specific block is
illustrated by the four intensity images. Within each image the blocks resolutions are 1× 1, 4× 4, 2× 2 and 8× 8, from left-
bottom to right-top. Images have been cropped vertically.

NV
x

NV
y

0 S 2S 3S 4S 5S 6S 7S 8S
0

S

2S

3S

4S

Figure 6: 2D illustration of block packing within a single
texture object. Texture patches are allocated per level in
chunks of the largest block size, S. Each block is represented
by a square, smaller squares are lower resolution blocks.
Multiple lower resolution blocks are packed tightly within
the unit size S×S, the largest squares.

The specific resolution levels per block are requested from
the volume data stored on disk and the data kept in main
memory constitutes a volume data cache. From this cache a
packed block data texture and a block metadata texture, de-
scribing block level and location, are created. The packing of
the volume data texture is straightforward and conceptually
similar to the method proposed in [KE02], see figure 6. Our
method differs, primarily, in that we do not store replicated
samples and that the level-of-detail is dictated by a LOD se-
lection scheme.

For access to packed block samples in graphics hardware
textures, the texture coordinates x,y,z need to be computed.
This requires the scale, σ(l) = 2l , and origin u0,v0,w0 of
each block. As in [KE02], this is looked up in an index
data texture storing these metadata for all blocks in the vol-
ume. Since the texture coordinates reside in the [0,1] inter-
val, the side sizes of the allocated texture, κr,κs,κt , are also
required. These are in block units, S = σ(lmax), with lmax
being the highest block resolution level. The complete ex-

pression is shown in equation 12.

〈x,y,z〉 = 〈 σu+u0

Sκr
,

σv+ v0

Sκs
,

σw+w0

Sκt
〉 (12)

The renderer then uses a texture-slicing rendering tech-
nique [CCF94] and our interpolation scheme is implemented
using OpenGL ARB Fragment Programs. Each slice can be
rendered in one or two passes. The reason for using two
passes is to increase the performance of the renderer by min-
imizing the use of the interblock interpolation fragment pro-
gram. The first pass draws all pixels from block-interior sam-
ples and zero level blocks. We use the zero level, a single
sample value, to indicate completely transparent, non-visible
blocks which are also rendered in their full spatial extent in
the first pass. The zero level is a degenerate case without any
interior domain. The fragment is killed if it is outside a block
interior and not a zero level block. The second pass then ex-
ploits the early Z-termination feature and thus restricts the
execution of the interblock interpolating shader to samples
between the blocks.

To further speed up interaction, such as rotating, zoom-
ing, cropping and clip plane movements, the sampling den-
sity is lowered and/or interblock interpolation disabled while
interaction takes place. Since the focus has been on the in-
terpolation quality we have not yet applied more advanced
acceleration methods such as empty space skipping, early
ray termination and adaptive sampling density.

5. Results

When dealing with multiresolution data, it is important to
consider the error introduced by the varying level-of-detail
and the error introduced by interblock interpolation. In this
paper we focus on the quality of the interblock interpolation
schemes rather than of the level-of-detail scheme.

The first results are provided in figure 7, in which a
slightly rotated linear gradient, from dark grey to white, is
used as input. A linear gradient should only present round-
ing errors from the intrablock sampling and the choice of

c© The Eurographics Association 2006.



Ljung, Lundström, Ynnerman / Multiresolution Interblock Interpolation in Direct Volume Rendering

Nearest Neighbor Minimum Distance Boundary Split Maximum Distance
0.0
2.0

5.0

8.0

12.0

25.5

∆E

Figure 7: A comparison of the interpolation methods on a slightly rotated linear gradient. The original image was a 256×256
grey-scale image (8×8 blocks) being reconstructed using random levels between 1×1 and the full resolution, 32×32. The
bottom row shows color mapped images of the pixel-wise errors using the ∆E color difference from CIELUV.

LOD should therefore not affect the results. The recon-
structed output has the same sampling resolution as the in-
put, 256×256 (the images shown in the figure are cropped),
and we have assigned random resolution levels for each
block, varying from level zero (1×1) to five (32×32). The
bottom row shows color-coded error images based on ∆E,
a perceptually adapted color error in the CIE 1976 L∗u∗v∗

(CIELUV) [Poy97]. The Maximum Distance variant clearly
reconstructs the signal with the smallest error. In this image
the largest errors come from the image boundary where in-
terpolation is not possible.

The implementation has been tested on two different
graphics adapters, an NVIDIA 7800 GTX PCI-express and
an ATI X800XT AGPx8, both with 256 MB DDR3 memory.
The non-interpolating shader uses 20 instructions including
diffuse lighting and the corresponding Maximum Distance
shader uses 171 instructions. Of the instructions, there are 4
and 25 texture lookup instructions, respectively. These fig-
ures refer to the NVIDIA card. Based on the number of in-
structions we could anticipate that the interblock interpola-
tion scheme would require 8 times longer per frame but the
texture lookups lead to a slowdown by a factor of 10 to 15
on the NVIDIA card. Using the two pass method described
in section 4 the ATI graphics card can render volumes with
interblock interpolation with considerably less performance
drop, it being only about 3 to 4 times slower, by exploiting
the early Z-termination feature.

We have used three data sets for 3D rendering, these are a
female cadaver, a head, and a heart data set. All of the data
sets are captured with CT. Details can be found in table 1. We
have precomputed the gradients using the 3D Sobel operator
in a preprocessing step and stored all the MIPMAP-levels on
disk. The data sets have been converted to 8-bits per voxel
and the gradients are stored in four bytes using three bytes
for gradient direction and one byte for gradient magnitude.

Table 1: The data sets that have been used for the evalua-
tion of interblock interpolation. All are converted to 8-bits
precision. The heart data set is statically compressed with-
out gradients and stored on disk.

Data Set Dimensions Size Size on disk
Female 512×512×2166 2.7 GB 3.1 GB
Skull 512×512×990 1.2 GB 1.5 GB
Heart 512×448×416 93 MB 2.9 MB

The heart data set has been statically compressed at 32:1 and
stored on disk and it does not have gradients.

In figure 8 we show unlit renderings of the heart compar-
ing all three variants and no interblock interpolation. The
block boundary artefacts are clearly visible without inter-
polation and are reduced for the three variants, as expected
from the 2D results above. It is hard to notice any visible
artefacts from the Maximum Distance method.

Figure 10 shows renderings with a very thin iso-surface,
the TF has been set to show the skin with some transparency
and the bones in white. The blockiness is clearly visible
without interpolation. Since all of the interpolation variants
are equally expensive computationally we show only the
Maximum Distance variant. The volume is rendered at a data
reduction ratio of 35:1 in a window viewport of 1024×1024.
Using 413 slicing planes the intrablock version renders at
4.3 frames per second and at 0.3 frames-per-second for in-
terblock interpolation. The effect of the interpolation is less
obvious in figure 9, which uses a highly opaque TF to show
the bones. The degree of data reduction is significant, a ra-
tio of 143:1. The intrablock frame-rate on the 7800-card was
7.8 and 0.7 for interpolation, for a 512×512 window with
466 slicing planes.

c© The Eurographics Association 2006.



Ljung, Lundström, Ynnerman / Multiresolution Interblock Interpolation in Direct Volume Rendering

No interblock interpolation Minimum Distance Boundary Split Maximum Distance

Figure 8: Comparison of the the presented block interpolations for a 32:1 data reduction of heart data set, original resolution
512×448×416. This rendering does not use any lighting and gradients are not present in the data set.

No interblock interpolation Maximum Distance

Figure 9: Comparison of interblock interpolation for an opaque lit surface. Original data set size 512×512×990 rendered at
a ratio of 143:1. Block level distribution: 0, 2551, 5128, 23041, 32768 (highest to lowest resolution).

6. Conclusions

In this paper we have introduced direct interblock interpo-
lation for block-based level-of-detail schemes and demon-
strated this technique on modern, commodity graphics hard-
ware using fragment programs. The ability to directly and
smoothly interpolate between blocks of arbitrary resolution
levels removes the need for sample replication processing
and does not require additional memory. The data reduc-
tion gained from the LOD scheme can thus be maintained
down to the texture memory. We have used a transfer func-
tion based adaptive level-of-detail scheme [LLYM04] that

works with a flat blocking structure and we have shown in-
teractive, high quality renderings of data sets of the order of
gigabytes.

Three interblock interpolation variants have been ex-
plored. The increase in rendering quality compared to near-
est neighbor sampling is significant. Between the three vari-
ants the difference in performance is small. The Maximum
Distance scheme tends to yield the highest subjective quality,
but the desirable smoothing ability may also create exagger-
ated blurring into low resolution blocks when the resolution
levels differ greatly, see figure 5. Due to the many texture

c© The Eurographics Association 2006.



Ljung, Lundström, Ynnerman / Multiresolution Interblock Interpolation in Direct Volume Rendering

No interblock interpolation Maximum Distance

Figure 10: Comparison of interblock interpolation for a
thin iso-surface, skin, and bones on the cadaver. The block
boundary artefacts without interpolation are clearly re-
moved by our scheme. There are, however, sampling arte-
facts present in both images. Data reduction through LOD
selection at 35:1. Original data set size 512×512×2166 fit-
ted into a 256×256×256 texture.

lookups and longer fragment program, the frame rates drop
when using interblock interpolation. The early Z-termination
feature on the ATI X800 minimizes the use of the more de-
manding interpolating shader and this two pass rendering
then only runs three to four times slower than without in-
terblock interpolation. The intrablock interpolation scheme
is considerably faster than the interblock. A good combina-
tion of these two methods is to use intrablock during inter-
active use, interblock interpolation only being applied when
the viewing parameters are not being changed.

Acknowledgements

This work has been funded by the the Swedish Research Council,
grant 621-2001-2778 and 621-2003-6582, and the Swedish Founda-
tion for Strategic Research, grant A3 02:116. The Center for Medi-
cal Image Science and Visualization (CMIV) and, in particular, An-
ders Persson is acknowledged for providing the medical data sets.

References

[BIP01] BAJAJ C., IHM I., PARK S.: 3D RGB image compres-
sion for interactive applications. ACM Transactions on Graphics

20, 1 (January 2001), 10–38.

[BNS01] BOADA I., NAVAZO I., SCOPIGNO R.: Multiresolu-
tion volume visualization with a texture-based octree. The Visual
Computer 17 (2001), 185–197.

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated volume
rendering and tomographic reconstruction using texture mapping
hardware. In VVS ’94: Proceedings of the 1994 symposium on
Volume visualization (New York, NY, USA, 1994), ACM Press,
pp. 91–98.

[GHJA05] GAO J., HUANG J., JOHNSON C. R., ATCHLEY S.:
Distributed data management for large volume visualization. In
Proceedings IEEE Visualization 2005 (2005), IEEE, pp. 183–
189.

[GHSK03] GAO J., HUANG J., SHEN H.-W., KOHL J. A.: Vis-
ibility culling using plenoptic opacity functions for large volume
visualization. In Proceedings IEEE Visualization 2003 (2003),
IEEE, pp. 341–348.

[GS04] GUTHE S., STRASSER W.: Advanced techniques for
high quality multiresolution volume rendering. In Computers &
Graphics (2004), vol. 28, Elsevier Science, pp. 51–58.

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.:
Interactive rendering of large volume data sets. In Proceedings
IEEE Visualization 2002 (2002), pp. 53–60.

[IP99] IHM I., PARK S.: Wavelet-based 3d compression scheme
for interactive visualization of very large volume data. Compute
Graphics Forum 18, 1 (1999), 3–15.

[Kau91] KAUFMAN A.: Volume Visualization (Tutorial). IEEE
Computer Society Press, 1991.

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. In Euro-
graphics/SIGGRAPH Workshop on Graphics Hardware (2002),
pp. 7–15.

[LHJ99] LAMAR E. C., HAMANN B., JOY K. I.: Multireso-
lution techniques for interactive texture-based volume visualiza-
tion. In Proceedings IEEE Visualization 1999 (1999), pp. 355–
362.

[LHJ03] LAMAR E. C., HAMANN B., JOY K. I.: Efficient er-
ror calculation for multiresolution texture-based volume visual-
ization. In Hierachical and Geometrical Methods in Scientific
Visualization (2003), Springer-Verlag, pp. 51–62.

[LLYM04] LJUNG P., LUNDSTRÖM C., YNNERMAN A.,
MUSETH K.: Transfer function based adaptive decompression
for volume rendering of large medical data sets. In Proceedings
IEEE Volume Visualization and Graphics Symposium (2004),
pp. 25–32.

[NS01] NGUYEN K. G., SAUPE D.: Rapid high quality compres-
sion of volume data for visualization. Computer Graphics Forum
20, 3 (2001).

[Poy97] POYNTON C.: Frequently asked questions about color.
http://www.poynton.com/PDFs/ColorFAQ.pdf, March 1997. Ac-
quired January 2004.

[WWH∗00] WEILER M., WESTERMANN R., HANSEN C., ZIM-
MERMAN K., ERTL T.: Level–of–detail volume rendering via 3d
textures. In Proceedings IEEE Volume Visualization and Graph-
ics Symposium 2000 (2000), ACM Press, pp. 7–13.

c© The Eurographics Association 2006.


