
Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

Fast Ray Traversal of Tetrahedral and Hexahedral Meshes
for Direct Volume Rendering

Gerd Marmitt and Philipp Slusallek†

Computer Graphics Group, Saarland University, Germany

Abstract

The importance of high-performance rendering of unstructured or curvilinear data sets has increased significantly,
mainly due to its use in scientific simulations such as computational fluid dynamics and finite element computa-
tions. However, the unstructured nature of these data sets lead to rather slow implementations for ray tracing. The
approaches discussed in this paper are fast and scalable towards realtime ray tracing applications.
We evaluate new algorithms for rendering tetrahedral and hexahedral meshes. In each algorithm, the first cell
along a ray is found using common realtime ray tracing techniques. For traversing subsequent cells within the
volume, Plücker coordinates as well as ray-bilinear patch intersection tests are used. Since the volume is ren-
dered directly, all algorithms are applicable for isosurface rendering, maximum-intensity projection, and emission-
absorption models.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.4.10 [Image Processing and Computer Vision]: Image Representation

1. Introduction

In the past several years the demand for volume rendering of
scalar data sets has increased steadily with a focus on struc-
tured volume data, often generated by CT and NMR devices.
This data is usually organized in rectilinear or even regular
grids and can be used more or less directly for rendering.

On the other hand, numerical simulations often operate on
curvilinear or even unstructured domains. Fully unstructured
volume data is often organized by imposing a tetrahedral
topology between adjacent sample points in 3D. In the same
way, curvilinear grids can be converted into a tetrahedral
mesh. One common technique for visualization is isosurface
extraction [LC87], which was adapted to tetrahedral primi-
tives [DK91]. However, in this paper we want to investigate
algorithms suitable for direct volume rendering. This allows
not only the use of emission-absorption models but also iso-
surface rendering and maximum-intensity projection.

Rendering volumetric data is still a demanding task

† e-mail: {marmitt, slusallek}@cs.uni-sb.de

mainly due to the handling and processing of huge amounts
of data. This is especially true for curvilinear or even un-
structured volumes, which additionally cannot take advan-
tage of the inherent structure and the predictable access pat-
terns of regular grids. In this paper, we present therefore two
advanced traversal algorithms based on ray tracing. They al-
low for quickly locating the entry point into the volume data
set while using efficient algorithms based on Plücker tests
and bilinear patch intersections to traverse the set of con-
nected tetrahedra respectively hexahedra along a ray.

The remainder of this paper is organized as follows. We
first give a brief overview of related research on rendering
unstructured volume data (Section 2). Section 3 presents the
algorithmic background used in the following Sections. In
Section 4, we cover tetrahedral meshes and show how to
traverse them in Plücker space, while Section 5 evaluates
Plücker coordinates and bilinear patches for the traversal of
curvilinear data. In Section 6, we report the results of using
these approaches for direct volume rendering. Conclusion
and ideas for future work are discussed in Sections 7 and 8.

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


Gerd Marmitt & Philipp Slusallek / Ray Traversal of Unstructured Volume Data

2. Previous Work

Rendering isosurfaces by extracting the implicit surface
from a tetrahedral mesh [DK91] is the most obvious ap-
proach. Recently it became popular to use consumer graphic
cards as the main tool for isosurface rendering [Pas04,
KSE04, KW05].

However, we want to traverse the unstructured or curvilin-
ear volume data directly. Most of the suggested algorithms
for this task can be divided into two groups: object space or
image space methods. The former ones are usually referred
as projective methods. Hybrid algorithms use a combination
of both approaches [HK99, BKS99].

Many researchers have developed projective algo-
rithms [Luc92, WG91]. One drawback of purely projective
methods was the lack of an efficient early termination, i.e.
stopping traversal once the opacity value reached 1.0. Wang
et al. [WSW05] proposed therefore storing a dynamic ray-
cast like traversal link which stops if the opacity reaches
1.0. Since this link has to be rebuild whenever the viewpoint
changes, a performance gain requires many occluded cells.

Another approach is the implementation of a hybrid ray
casting/projective system. Hong et al. [HK99] calculate the
initial face by scan-converting all boundary faces on the im-
age plane and apply depth-sort along the given viewing ray.
Each cell is decomposed into 12 triangles, which are pro-
jected onto the view-port for traversal. Bunyk et al. [BKS99]
extend this method with a modified z-buffer approach and a
view-independent preprocessing step. However, the projec-
tion step introduces additional accuracy problems.

On the other hand, we have methods solely based on ray
casting. Frühauf [Frü94] presents such a method for curvilin-
ear volume data. The volume is traversed in computational
space which makes a two-step processing necessary. When-
ever the viewpoint changes, a redirection vector needs to
be recomputed for all nodes within the grid. Forsell [For94]
adapts this method to Line Integral Convolution (LIC). This
method generates a texture of the grid size that can be con-
volved with a filter kernel and the texture pixel indicated by
the vector field.

Weiler et al. [WKME03] implemented an efficient ray-
caster for tetrahedral meshes on a consumer graphics card.
The initial tetrahedron is found by rasterizing the extracted
boundary faces of a given model. For their ray-casting ap-
proach, a ray-plane intersection is used. However, this pre-
computation leads to a total memory requirement of 160
bytes per tetrahedron, and hence the size of the model is
restricted to 600,000 tetrahedra on the card used. Addition-
ally, a convexification needs to be performed as suggested by
Williams et al. [WM92], which further increases the number
of tetrahedrons of the data set.

Additionally, it is still hard to extend GPU ray casters for
combining different rendering primitives in one scene with
full interaction. Ray tracing, on the other hand, lets different

rendering primitives interact with each other including re-
flection and refraction. It was always considered as too slow
to use for interactive rendering tasks [Lev90, Gar90]. Re-
cently Parker [PPL∗99] and Wald [WFM∗05] showed, that
this is no longer true.

Unfortunately, Parker’s [PPL∗99] approach was restricted
to a supercomputer for achieving practical rendering times,
while Walds [WFM∗05] algorithm is restricted to rectilinear
isosurface rendering. In this paper we therefore investigate
ray tracing algorithms for rendering curvilinear and unstruc-
tured volume data for interactive purposes. Especially for the
tetrahedral mesh traverser we are using the results by Mar-
mitt et al. [MS05] and their proposal for traversing curvi-
linear grids [MFS05]. All algorithms are suitable for both,
isosurface and emission-absorption volume rendering.

3. Algorithmic Background

Before we continue with our evaluation of interactive vol-
ume traversal algorithms, we first provide some algorithmic
background. In particular we discuss properties of the so-
called Plücker space.

Plücker coordinates are a way of specifying directed lines
in three-dimensional space [Eri97]. Basically, these coor-
dinates represent a ray by an oriented line. Suppose a ray
r(t) = o+dt is given, this results in the following six-vector:

πr = {d : d ×o} = {pr : qr} (1)

In particular we use this representation to determine
whether an oriented line passes clockwise or counter-
clockwise around another oriented line. This information is
simply given by the permuted inner product of their Plücker
coordinates, which is rather easy to compute. Given two
lines in Plücker space r and s this results in:

πr �πs = pr ·qs +qr · ps (2)

Note that this is also the volume of a tetrahedron spanned
by the lines r and s. A positive result means that r passes
s clockwise, while in the negative case r passes s counter-
clockwise. If this product is zero both lines intersect each
other (see Figure 1). Care has to be taken about the direction,
i.e. the Plücker value for a line r → s differ from s → r: the
sign of the permuted inner product changes.

4. Tetrahedral Meshes

One way to organize unstructured volume data is to add
an explicit structure like a tetrahedral mesh. This can be
achieved e.g. by Delaunay-tetrahedralization. As Platis et
al. [PT03] showed, Plücker coordinates can be used for a
fast computation of the intersection point.

c© The Eurographics Association 2006.

236



Gerd Marmitt & Philipp Slusallek / Ray Traversal of Unstructured Volume Data

(a) (b) (c)
s

r

s s

rr

Figure 1: Three possible cases for the Plücker test: (a) ray
r passes clockwise line s, (b) ray r passes counter-clockwise
line s, and (c) ray r intersects line s.

In the following we describe how to use the Plücker space
to traverse a tetrahedral mesh. In a first step we need to iden-
tify the initial tetrahedron along a ray. This can be found us-
ing a well-known acceleration structure for ray tracing, i.e.
kd-trees are employed on the boundary faces of the tetra-
hedral mesh. Once the first tetrahedron is known, all subse-
quent tetrahedra are traversed using Plücker coordinates de-
termining the tetrahedra traversed along a given ray. In each
cell either isosurface rendering or an emission-absorption
model can then be applied.

We extend and accelerate an approach suggested by Gar-
rity [Gar90]. He finds the nearest tetrahedron along a ray
using a grid as acceleration structure. Connectivity informa-
tion between adjacent tetrahedra is then used to traverse the
cells incrementally by calculating plane intersections.

4.1. Finding the Initial Tetrahedron

To find the initial tetrahedron along a ray, we first extract all
outer faces during a preprocessing step. It is easy to see, that
this is the set of all tetrahedral faces not shared with another
tetrahedra in the set. A kd-tree can then be used as accelera-
tion structure, which has been proven as a fast and efficient
technique when using ray tracing [Hav01]. Especially we
used the implementation suggested by Wald et al. [Wal04].
The resulting triangle provides the tetrahedron as well as its
entry face so that we can continue in Plücker space.

4.2. Mesh Traversal in Plücker Space

Here, we extend the ray-tetrahedron intersection algorithm
introduced by Platis et al. [PT03] for the traversal of tetrahe-
dral meshes. They especially used the fact that each tetrahe-
dron can be decomposed into four triangles. The entry face
is already known due to the shared-face property. To find the
exiting face, we check each triangle whether it is intersected
by the ray. This can be achieved by converting all three edges
and the intersecting ray into Plücker space. Using the prop-
erties described in Section 3, a ray intersects the triangle if
and only if all results have the same sign. The only condition
is that Plücker coordinates are either clockwise or counter-
clockwise calculated. Figure 2 illustrates the basic idea.

(b)(a)

Figure 2: Two different configurations with the same result:
(a) the ray passes all line segments of the triangle clockwise,
hence all signs are positive, and (b) the ray passes all line
segments counter-clockwise, and therefore all signs are neg-
ative.

A naïve approach would be now to check all three possible
exit faces separately. This would lead to three to nine tests.
As an optimization we can make use of the property that
each edge is shared by two faces we already know. Hence,
we can reuse the Plücker tests from the exit face, i.e. we first
test the lines v0 → v3 and v1 → v3 against our ray. If the sign
of these two tests differs, we also have to check v2 → v3.
An important premise is, that all interior faces are shared by
exact two tetrahedra. Hence, we do not allow sliding inter-
faces, i.e. tetrahedra that share only part of their faces. Figure
3 illustrates both methods.

(a) (b)

v3 v3

v2v2

v0 v0 v1v1

Figure 3: (a) Naïve approach: All three exiting faces of
the triangle are tested independently although each line
is shared by two faces, and (b) Optimized approach: The
solid lines tests are given from the previous tetrahedron and
the dotted line needs only to be computed if the test with
the dashed lines failed. The direction of each line can be
swapped by turning the sign of the Plücker test.

Applying the above mentioned optimizations, the number
of tests drops to 2.67 on average. Also, the raw performance
of tetrahedra processed per second raises by 55% on average
compared to the naïve approach. Another advantage is that
only one vertex coordinate, i.e. v3, and the corresponding
scalar value have to be fetched per tetrahedron. This keeps
the memory bandwidth low and improves the overall per-
formance due to better cache usage. Once the exit face is
identified, we need connectivity information to get to the
neighboring tetrahedron. This requires 16 additional bytes
per tetrahedron.

The baseline performance for determining the exit face
including the barycentric coordinates and the distance of

c© The Eurographics Association 2006.

237



Gerd Marmitt & Philipp Slusallek / Ray Traversal of Unstructured Volume Data

the hit point reaches 15.5 million tetrahedra per second on
our test system (Dualcore-Opteron with 2GHz, both CPUs
used). Note that the conversion into Plücker space was not
pre-computed, since this would double the memory require-
ments.

4.3. Cell Intersection

For all rendering tasks, the interpolated value at the en-
try/exit points has to be computed first. Plücker tests provide
directly the scaled barycentric coordinates, which is a ma-
jor advantage to plane intersection-based approaches. Thus
each Plücker value needs only to be divided by the sum of
all three values belonging to that face:

wi = πr �πei and ui = wi/
3

∑
i=0

wi (3)

For the emission-absorption model these values can either be
directly used for accumulation, or additional super-sampling
is applied. To find the implicit isosurface, we have to inter-
polate between the entry and exit face. Of course, the iso-
value has to be within the range of the interpolated values at
these faces. A user may even modify this isovalue during the
rendering task.

Given a tetrahedron with its vertices vi and correspond-
ing scalar values si(i ∈ {0,1,2,3}), we calculate this linear
function by solving the system of four equations:

si = axi +byi + czi +d (4)

with vi = (xi,yi,zi) for the unknowns a, b, c and d. The inter-
section is then found by substituting the ray equation into (4)
and setting si to the chosen iso-value. Figure 4 illustrates the
results for the described rendering modes as well as applying
a transfer function to highlight regions of interest.

Figure 4: The tetrahedral Blunt-fin data set rendered as
an iso-surface (upper-left), maximum-intensity-projection
(upper-right), direct volume rendering (lower-left) with
transfer functions (lower-right).

4.4. Normal Calculation

From the previous observations follows directly that the
orientation of the plane describing the iso-surface is inde-
pendent from the iso-value. Hence the plane normal Nt =
(a b c)T is constant within the cell. Unfortunately, this re-
sults in severe discontinuities between the tetrahedra sur-
faces, which decreases the rendering quality significantly.
For better results, one can calculate a normal Nv per vertex
of the tetrahedron. This can be expressed as the sum of all
n tetrahedra ht connected to this vertex weighted with their
volume V (ht):

Nv(a b c)T =
n

∑
t=0

Nt(a b c)T ∗V (ht) (5)

These vertex normals can be pre-computed and stored into
the data file. In a final step, four barycentric coordinates of
the intersection point within the tetrahedra are calculated and
weighted with the corresponding vertex normal to obtain a
smooth isosurface normal. To achieve this, the 2D barycen-
tric coordinates for triangles are extended for the 3D (i.e.
tetrahedral) case. Finally, the vector resulting from equa-
tion 5 needs itself to be normalized.

5. Hexahedral Meshes

Hexahedral meshes are better known as curvilinear data sets.
The topology of data points is still a grid, but the space
between two neighboring points varies. Ideally, a bijective
function is supplied, which allows to convert points from the
physical space into computational space and vice versa. In
reality, this function is often not available. Therefore we as-
sume here, that only scalar values together with the 3D mesh
vertices are supplied.

Again, the initial hexahedron along a ray is found using
the same kd-tree as described in Section 4.1. For this pur-
pose we extract all boundary faces of the data set in a pre-
processing step, and decompose each resulting quadrilateral
into two triangles. This makes the kd-tree traversal as effi-
cient as for the tetrahedral traversal.

5.1. Mesh Traversal

Two approaches are evaluated in the following subsections.
First, it is easy to see, that the Plücker test introduced in
Section 4.2 can be extended for traversing hexahedral grids.
However, each face needs to be decomposed into two tri-
angles for calculating the coordinates for the interpolation.
This leads to parametric discontinuities along this additional
diagonal, but allows to determine the intersected faces unam-
biguously. The second method extends this approach using
bilinear patches. Here, no singularities can occur, but holes
within a cell are introduced.

There is no extra memory for connectivity required as
the topology is implicit in the grid structure. Once the exit

c© The Eurographics Association 2006.

238



Gerd Marmitt & Philipp Slusallek / Ray Traversal of Unstructured Volume Data

face has been determined, we only have to modify the in-
dex pointer by incrementing respectively decrementing with
respect to the dimension. If our pointer exits the volume
bounds, the traversal stops.

5.1.1. Plücker Space

Applying the same optimizations as for the tetrahedra-
traversal from Section 4.2 leads to at most four tests to de-
cide which one of the five possible faces is the exit face. This
algorithm is optimized for convex hexahedral faces but can
be easily extended to handle concave faces too. Figure 5 il-
lustrates our algorithm. Suppose that the entry face is given
by the vertices v0, v1, v2, and v3. The opposite face shall be
determined by v4, v5, v6, and v7.

In a first step, we perform the Plücker test with edges
v4 → v5 and v6 → v7. This results in three areas A0, A1,
and A2. Note that each area contains exactly three faces of
the hexahedron, i.e. there are only three faces left to check.
To do this we have to treat each area differently, e.g. we need
to test the edges v2 → v6 and v3 → v7 for A0, v4 → v6 and
v5 → v7 for A1, and v0 → v4 and v1 → v5 for A2. The sec-
ond test only needs to be performed if the first does not lead
to a decision. This second step is illustrated in Figure 5(b).
Now simple sign comparisons are sufficient to determine the
correct exit face.

Fetching the data for the next cell and saving the appropri-
ate data for reusing needs more time compared to the tetra-
hedral mesh. Our analysis showed that the costs for these
operations are seven times higher compared to our tetrahe-
dral traverser, where only one vertex and scalar value needs
to be fetched in each step. Unfortunately it is not possible to

������
������
������
������
������
������

������
������
������
������
������
������

v0 v1

v3v2

v4

v6

A1

A2

A0

(b)(a)
v0

v3

v6

A1

A2

A0

v5

v7v7

v1

v2

v4 v5

Figure 5: (a) To determine the exiting face, the hexahedron
is subdivided into three areas. (b) The next step is then to
check which face is intersected by applying two additional
Plücker tests (A0: dotted edges, A1: solid edges, and A2:
dashed edges).

just scale the computed Plücker values to receive the para-
metric coordinates directly, since they are only suitable for
triangles. This makes it necessary to split each face into two
triangles so that we again can compute the barycentric co-
ordinates. Depending on the previously computed Plücker
tests, one or two additional tests are required, which reduces

the performance significantly. Furthermore, decomposing a
face into two triangles leads to unwanted discontinuities if
the values of the hexahedra are badly distributed (see Fig-
ure 6). The number of hexadedra processed per second, in-

Figure 6: Blunt-fin: Decomposing produces artifacts (left),
while the bilinear patch delivers smooth results (right).

cluding the calculation of (u,v), as well as the distance to
the intersection point reaches 3.2 million on our test system
(Dualcore-Opteron 2 GHz, both CPUs used). Again, all line
segments are converted on-the-fly into Plücker space during
traversal.

5.1.2. Bilinear Patch-Extension

To avoid these singularities, we found bilinear patches to be
an interesting alternative. Note that it is even possible to tra-
verse the curvilinear data set directly by applying this test
to each of the five possible exit faces and stop as soon as a
patch is hit, i.e. (u,v) ∈ [0,1]2. However, in some configura-
tions this is not possible since bilinear patches are generally
not flat, i.e. we introduce holes in our hexahedron. These
holes are caused by the implicit edge representation of bi-
linear patches. In particular, an edge of the bilinear patch
depends on all four face vertices. In contrast, Plücker coor-
dinates allow a unique decision whether a ray passes clock-
wise or counter-clockwise since they depend solely on the
two edge points. Hence, we need to handle this inconsistency
so that a ray can traverse the correct cells within a volume.

We found that a combination of Plücker and bilinear patch
tests works best. Hence, the first step is again to compute the
Plücker values of the lines v4 → v5, v6 → v7, and the ray,
which results again in the three areas A0, A1, and A2 (see Fig-
ure 5). In contrast to the previous method, we check all three
possible exit faces using the bilinear patch intersection. As
a result, raw traversal performance is 15% lower compared
to the pure Plücker-traverser. However, we save time in the
overall performance, since the surface parameters (u,v) are
already known at this point. A fast and robust implementa-
tion was described by Ramsey et al. [SDRH04] which was
also implemented for this paper.

In case of inconsistencies due to numerical issues (i.e.
insufficient floating point accuracy), we perform two addi-
tional Plücker tests equivalent to the second step described

c© The Eurographics Association 2006.

239



Gerd Marmitt & Philipp Slusallek / Ray Traversal of Unstructured Volume Data

in Section 5.1.1. These numerical issues depend on the geo-
metric average unit of the cells and are therefore data depen-
dent. However, this hardly occurred in our two tested models
and leads therefore to a performance gain of 25% on aver-
age. In all, this algorithm is able to process up to 4.5 million
hexahedra per second on our system (Dualcore-Opteron 2
GHz, both CPUs used).

5.2. Cell Intersection

In addition to the traversal operation we need to interpo-
late the scalar values at these points for shading the vol-
ume. This introduces one or two additional Plücker tests
depending on what can be reused from the exit face de-
cision. When using bilinear patches we can make use of
the fact, that the parametric coordinates are already known,
and we only need to compute the interpolated scalar value
on the entry and exit faces. Discontinuities are completely
avoided this way. Applying isosurface rendering is now

Figure 7: Combustion chamber data set rendered as iso-
surface (upper-left), maximum-intensity-projection (upper-
right), direct volume rendering (lower-left) with transfer
functions (lower-right).

fairly simple. If the user-defined value is within the values
interpolated at the entry and exit faces, an additional lin-
ear interpolation determines the intersection with the im-
plicit surface. For emission-absorption models or maximum-
intensity-projection we use the interpolated faces values di-
rectly. It is of course also possible to super-sample these val-
ues in the computational domain to obtain smoother results.

5.3. Normal Calculation

If we assume for a moment, that we know the normal vectors
at each of the eight vertices of a hexahedron we can proceed
as follows. We reuse the same parametric coordinates as for
interpolating the scalar values, except that we interpolate a
vector at the entry and exit face. Another linear interpola-
tion between these two vectors based on their distance of the
isosurface yields the normal. This corresponds to a kind of
trilinear interpolation.

For computing the vertex normals of a hexahedron we
adapted a method suggested by Frühauf [Frü94]. The ba-
sic idea is to compute the normal like in a regular grid with
unit length, i.e. in computational space. The following rela-
tionship can thereafter be used to convert between physical
coordinates xi and computational coordinates ξ j , determined
using the Jacobian matrix Ji j:

xi = Ji j ·ξ j and Ji j =
δxi

δξ j
(6)

Note that we can also use this equation to convert vectors
from one space into another. Furthermore, we approximate
the unknown Jacobian matrix for a grid node n by using cen-
tral differences:

Ji j =
1
2
·
(

xi(n)− xi(n−1)
ξ j(n)−ξ j(n+1)

+
xi(n+1)− xi(n)
ξ j(n+1)−ξ j(n)

)
(7)

Hence we can calculate three vectors, since we operate in
three dimensions. A linear combination of these vectors with
the normal in computational space Nc results in the con-
verted normal N p.

6. Results

For the evaluation we measured the rendering performance
with four common volume data sets. Buckyball and Com-
bustion chamber are available as tetrahedral respectivily hex-
ahedral meshes only. The Blunt-fin on the other hand was
available for both types of volume organization and there-
fore allows for a direct comparison.

For measuring the actual rendering performance we
equipped our system with a Dualcore-Opteron 2 GHz and
32 GB main memory running Linux, using both cores in
parallel. We decided to measure the frame-rate for three
of the most common techniques used for volume render-
ing, namely isosurface rendering (iso), maximum-intensity-
projection (mip) and emission-absorption models (eam) us-
ing a 512x512 view-port. Base indicates the obtained frames
per second for finding the initial surface triangle only. We
evaluated the tetrahedral Plücker against the hexahedral
Plücker (hex-P) and our hybrid (hex-H) approach. Since the
number of tetrahedra respectively hexahedra varies largely
within the views, we decided to use an average of three
views from each dimension together with one perspective
view along the cell diagonal.

Table 1 shows that finding the initial face using a kd-tree
needs 6 - 18% of the total rendering time (base measure-
ment. More importantly, our hybrid approach (hex-H) deliv-
ers not only a better quality but is in most cases significantly
faster compared to the pure Plücker approach (hex-P) when
rendering hexahedral meshes. In general, we suggest using
this hybrid approach for traversing curvilinear grids on a ray
tracing basis. Compared to our tetrahedral implementation
the performance is about the same. We believe that this is

c© The Eurographics Association 2006.

240



Gerd Marmitt & Philipp Slusallek / Ray Traversal of Unstructured Volume Data

Table 1: While the performance (fps) of the hexahedral
Plücker traverser is sometimes even lower than the tetrahe-
dra Plücker, our hybrid approach outperforms the other two
algorithms in every rendering task.

Data set base iso mip eam
Blunt-fin (tetra) 27.35 1.67 1.99 1.74
Bucky-ball (tetra) 21.68 0.92 0.95 0.84
Blunt-fin (hex-P) 27.35 1.86 1.35 1.55
Blunt-fin (hex-H) 27.35 2.00 2.16 1.77
Comb (hex-P) 18.43 2.48 0.88 3.14
Comb (hex-H) 18.43 2.43 1.25 3.55

Figure 8: Seamless integration with surface ray tracing. The
volume data set, in this case the Bucky-ball, is augmented
and surrounded by reflective surfaces and light sources.

caused by higher memory bandwidth and poor cache perfor-
mance.

Using OpenRT [Wal04] as ray tracing framework, it is
also easy to combine and let interact different primitives in
one scene. Figure 8 shows the Bucky-ball in a polygonal en-
vironment. Once the code to compute the intersection with
an unstructured volume data set is available, all ray tracing
effects (e.g. reflection, intersection between polygonal ob-
jects) work without any additional effort. It is furthermore
possible to combine different volume organizations into one
scene (see Figure 9). OpenRT also allows efficient distribu-
tion among a cluster of consumer PCs, or shared memory
systems in our case [MS05].

7. Conclusion

We have demonstrated several traversal algorithms for ren-
dering tetrahedral and hexahedral grids. It was shown that
the properties of Plücker tests are especially useful when
traversing neighboring tetrahedra since this reduces the
number of tests to 2.67 in average. To achieve this, we only
need to store additional 16 bytes of connectivity information

Figure 9: Unstructured (Bucky-ball) and curvilinear (Com-
bustion Chamber) data sets can not only be rendered into
one scene. Even more important is that all primitives inter-
act with each other.

per tetrahedron. Only one vertex needs to be fetched per new
traversed tetrahedron keeping the memory bandwidth low.

For rendering curvilinear data sets our measurements sug-
gests to use a hybrid method of Plücker and bilinear patch in-
tersections. This approach is not only faster but delivers bet-
ter visual results since discontinuities are avoided. Hence,
curvilinear grids should not be converted into a tetrahedral
mesh. This increases the number of cells by five times and
hence the memory consumption, too. Storing the connec-
tivity information needs additional memory, and the perfor-
mance is about the same.

It is also worth noting, that ray tracing is well suited for
scalability. Hence, doubling the number of processors nearly
doubles the performance of our traversal algorithms [MS05].

8. Future Work

Since we have demonstrated a fast software renderer for un-
structured and curvilinear grids using ray tracing we would
like to further improve our algorithms. Especially the mem-
ory access for cell points is time consuming. We believe that
this is due to the poor cache performance, which needs fur-
ther investigation. Finally, the linear scaling with respect to
the number of used processors suggests to adopt this algo-
rithm to the upcoming multi-core processors currently in de-
velopment by all major chip manufactures.

Acknowledgements

The authors wish to thank the Visualization and Interac-
tive Systems Group from the University of Stuttgart and
Ralf Sonderhaus for providing data sets as well as Heiko
Friedrich, Sven Woop, and Holger Theisel for discussion.

c© The Eurographics Association 2006.

241



Gerd Marmitt & Philipp Slusallek / Ray Traversal of Unstructured Volume Data

References

[BKS99] BUNYK P., KAUFMAN A. E., SILVA C. T.: Sim-
ple, fast, and robust ray casting of irregular grids. In
Dagstuhl ’97, Scientific Visualization (Washington, DC,
USA, 1999), IEEE Computer Society, pp. 30–36.

[DK91] DOI A., KOIDE A.: An efficient method of trian-
gulating equi-valued surfaces by using tetrahedral cells.
IEICE Trans Commun. Elec. Inf. Syst E-74, 1 (1991),
213–224.

[Eri97] ERICKSON J.: Pluecker Coordinates. Ray Trac-
ing News (1997). http://www.acm.org/tog/resources/-
RTNews/html/rtnv10n3.html#art11.

[For94] FORSSELL L. K.: Visualizing flow over curvilin-
ear grid surfaces using line integral convolution. In VIS
’94: Proceedings of the conference on Visualization ’94
(Los Alamitos, CA, USA, 1994), IEEE Computer Society
Press, pp. 240–247.

[Frü94] FRÜHAUF T.: Raycasting of nonregularly struc-
tured volume data. In Proceedings of Eurographics 1994
(1994), Eurographics Association, pp. 295–303.

[Gar90] GARRITY M. P.: Raytracing irregular volume
data. In VVS ’90: Proceedings of the 1990 workshop on
Volume visualization (New York, NY, USA, 1990), ACM
Press, pp. 35–40.

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms.
PhD thesis, Faculty of Electrical Engineering, Czech
Technical University in Prague, 2001.

[HK99] HONG L., KAUFMAN A. E.: Fast projection-
based ray-casting algorithm for rendering curvilinear vol-
umes. IEEE Transactions on Visualization and Computer
Graphics 5, 4 (1999), 322–332.

[KSE04] KLEIN T., STEGMAIER S., ERTL T.: Hardware-
accelerated Reconstruction of Polygonal Isosurface Rep-
resentations on Unstructured Grids. In Proceedings of Pa-
cific Graphics ’04 (2004), pp. 186–195.

[KW05] KIPFER P., WESTERMANN R.: Gpu construction
and transparent rendering of iso-surfaces. In Proceedings
Vision, Modeling and Visualization 2005 (2005), Greiner
G., Hornegger J., Niemann H., Stamminger M., (Eds.),
IOS Press, infix, pp. 241–248.

[LC87] LORENSEN W. E., CLINE H. E.: Marching
Cubes: A High Resolution 3D Surface Construction Al-
gorithm. Computer Graphics (Proceedings of ACM SIG-
GRAPH) 21, 4 (1987), 163–169.

[Lev90] LEVOY M.: Efficient Ray Tracing for Volume
Data. ACM Transactions on Graphics 9, 3 (July 1990),
245–261.

[Luc92] LUCAS B.: A scientific visualization renderer. In
VIS ’92: Proceedings of the 3rd conference on Visualiza-
tion ’92 (Los Alamitos, CA, USA, 1992), IEEE Computer
Society Press, pp. 227–234.

[MFS05] MARMITT G., FRIEDRICH H., SLUSALLEK P.:
Recent Advancements in Ray-Tracing based Volume Ren-
dering Techniques. In Vision, Modeling, and Visualiza-
tion (VMV) 2005 (Erlangen, Germany, November 2005),
Akademische Verlagsgesellschaft Aka, pp. 131–138.

[MS05] MARMITT G., SLUSALLEK P.: Fast Ray Traver-
sal of Unstructured Volume Data using Plucker Tests.
Tech. rep., Saarland University, 2005. Available at
http://graphics.cs.uni-sb.de/Publications.

[Pas04] PASCUCCI V.: Isosurface Computation Made
Simple: Hardware Acceleration, Adaptive Refinement
and Tetrahedral Stripping. In Eurographics - IEE TCVG
Symposium on Visualization (2004) (2004), pp. 293–300.

[PPL∗99] PARKER S., PARKER M., LIVNAT Y., SLOAN

P.-P., HANSEN C., SHIRLEY P.: Interactive Ray Tracing
for Volume Visualization. IEEE Transactions on Com-
puter Graphics and Visualization 5, 3 (1999), 238–250.

[PT03] PLATIS N., THEOHARIS T.: Fast Ray-Tetrahedron
Intersection Using Plücker Coordinates. Journal of
graphics tools 8, 4 (2003), 37–48.

[SDRH04] SHAUN D. RAMSEY K. P., HANSEN C.: Ray
Bilinear Patch Intersections. Journal of Graphics Tools 9,
3 (2004), 41–47.

[Wal04] WALD I.: Realtime Ray Tracing and Interac-
tive Global Illumination. PhD thesis, Computer Graph-
ics Group, Saarland University, 2004. Available at
http://www.mpi-sb.mpg.de/∼wald/PhD/.

[WFM∗05] WALD I., FRIEDRICH H., MARMITT G.,
SLUSALLEK P., SEIDEL H.-P.: Faster Isosurface Ray
Tracing using Implicit KD-Trees. IEEE Transactions on
Visualization and Computer Graphics 11, 5 (2005), 562–
573.

[WG91] WILHELMS J., GELDER A. V.: A coherent pro-
jection approach for direct volume rendering. In SIG-
GRAPH ’91: Proceedings of the 18th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 1991), ACM Press, pp. 275–284.

[WKME03] WEILER M., KRAUS M., MERZ M., ERTL

T.: Hardware-Based View-Independent Cell Projec-
tion. IEEE Transactions on Visualization and Computer
Graphics 9, 2 (2003), 163–175.

[WM92] WILLIAMS P. L., MAX N.: A volume density
optical model. In VVS ’92: Proceedings of the 1992
workshop on Volume visualization (New York, NY, USA,
1992), ACM Press, pp. 61–68.

[WSW05] WANG W., SUN H., WU E.: Projective vol-
ume rendering by excluding occluded voxels. Int. J. Im-
age Graphics 5, 2 (2005), 413–432.

c© The Eurographics Association 2006.

242




