
EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)
K. W. Brodlie, D. J. Duke, K. I. Joy (Editors)

Isosurface Extraction Using Fixed-Sized Buckets

Kenneth W. Waters, Christopher S. Co, and Kenneth I. Joy

Institute for Data Analysis and Visualization
University of California, Davis

{waters,co,joy}@cs.ucdavis.edu

Abstract

We present a simple and output optimal algorithm for accelerated isosurface extraction from volumetric data sets.
Output optimal extraction algorithms perform an amount of work dominated by the size of the (output) isosurface
rather than the size of the (input) data set. While several optimal methods have been proposed to accelerate
isosurface extraction, these algorithms are relatively complicated to implement or require quantized values as
input. Our method is based on a straightforward array data structure that only requires an auxiliary sorting
routine for construction. The method works equally well for floating point data as it does for quantized data
sets. We demonstrate how the data structure can exploit coherence between isosurfaces by performing searches
incrementally. We show results for real application data validating the method’s optimality.

1. Introduction

Isosurface extraction has been greatly accelerated by the de-
velopment of algorithms that determine active cells—cells
intersected by a given isosurface. Various data structures and
algorithms have been proposed, many of which are output
optimal, meaning that the amount of work to identify active
cells is proportional to the size of the resulting isosurface. A
major impediment to these optimal algorithms is the relative
complexity of the implementation. While a few optimal al-
gorithms exist that are relatively simple to implement, they
are limited to quantized data. These methods cannot be ap-
plied to scalar fields consisting of floating point values, such
as data resulting from computational simulations.

We describe an average-case optimal method for active
cell lookup based on commonly used data structures that
can be implemented with reasonably little effort. The con-
struction of our data structure, discussed in Section 3, in-
volves two sorting passes over the data. Our method for
identifying active cells, described in Section 4, involves a
straightforward array traversal of this data structure. We
show how incremental extraction of isosurface geometry can
be achieved using our data structure. The time and space ef-
ficiency achieved by our technique coupled with its relative
simplicity make it an attractive solution to isosurface extrac-
tion.

2. Related Work

Early techniques to accelerate the extraction of isosur-
face geometry focused on determining active cells spatially.
Marching methods [LC87] were enhanced by the use of oc-
tree search methods [WG92] to accelerate the identification
of active regions. Surface growing techniques [vKvOB∗97]
that follow the isosurface from a starting point cell outward
were also investigated. These methods rely on knowledge of
a sufficient starting set of cells, since growing a surface from
a single cell can only capture one component of an isosur-
face that consists of many components.

Near-optimal and optimal techniques were obtained by
posing the problem of active cell determination in span
space [LSJ96]. In 2D span space, each cell corresponds to
a point classified by two coordinates: the minimum inten-
sity and maximum intensity values of the cell. These values
represent the interval of isovalues contained in a cell, or al-
ternatively the range of surfaces to which the cell contributes
geometry. This pioneering observation reduces the problem
of active cell determination to the problem of range finding
in 2D, see Figure 1a.

Range-based methods are attractive because they are ap-
plicable to a wide variety of data sets consisting of differ-
ent cell representations. The NOISE method [LSJ96] ac-
complishes this range search with the aid of a kd-tree in

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

Waters et al. / Isosurface Extraction Using Fixed-Sized Buckets

Span Space Our Data Structure

qq

min

m
a

x

m
in

 =
 m

ax

ca

min

m
a

x

ca

(a) (b)

Figure 1: Illustration of the correspondence between span
space and our data structure. (a) The problem of active
cell determination becomes a range finding problem in span
space. An isovalue q defines a 2D active region. (b) Our
method efficiently implements this range search using a
straightforward 2D array representation of the span space.
Cells are rendered as black points and active regions are
shaded with diagonal hatches. Alternating colors are used to
show the correspondence between columns (buckets) of our
2D array structure and span space. The region in span space
corresponding to the last active bucket ca is split by the ver-
tical line induced by query q resulting in non-contiguous ac-
tive cell locations in that bucket.

near-optimal running time, O(K +
√

N). The ISSUE method
[SHLJ96] also achieves near-optimal results O(K + log N

L +√
N

L) with the use of an L × L lattice superimposed on
the span space. Cignoni et al. [CMM∗97] applied inter-
val trees accomplishing search in O(K + log N) time. The
span-triangle [vRLHJ∗04] is an array-based technique that
achieves an optimal search time of O(K + D). The span-
triangle method uses the inherent quantization of many ex-
isting data sets to create an array of buckets to store cells
of the volume. The quantization allows the portions of the
array that contain active cells to be determined efficiently.
Bordoloi et al. [BS03] use standard lossy compression and
transform coding techniques to greatly reduce the memory
footprint of their algorithm. The cost of this compression is
error in the form of false positives in the search and increased
complexity of implementation. These extra cells have to be
removed at geometry creation time, increasing total extrac-
tion time.

Range-trees, kd-trees and interval trees are often non-
trivial to implement. Due to the necessary traversal of in-
ternal leaf nodes, range-trees and kd-trees achieve a running
time proportional to the input data size and not the output.
The ISSUE technique contains several special cases, each
requiring separate attention. The span-triangle technique,
while relatively easy to implement, is limited to quantized
data, and it is not clear how to extend the approach to float-
ing point data sets.

Using the span space classification to represent cells of
a volume data set, we accomplish optimal active cell deter-
mination using a range finding approach. Our data structure
uses an array-based memory layout, similar to but distinct
from the span-triangle. The data structure enables average-
case optimal extraction from scalar fields consisting of float-
ing point data as well as quantized data. Information is stored
in a coherent fashion such that large blocks of active cells are
stored close to one another.

3. Data Structure Construction

We organize the N cells of the data set into a logical 2D ar-
ray. This array is constructed in two sorting passes. In the
first sorting pass, all cells of the data set are sorted by their
minimum value, forming a 1D array of sorted cells. This 1D
array of cells is divided into columns, or buckets, of size B,
a user-defined bucket size. The last cell in each bucket—the
bucket cell with largest minimum value—is placed into a
min-dictionary, which aids in the extraction process. In the
second sorting pass, the cells of each bucket are resorted by
their maximum intensity value. What results is a 2D array
where the first elements of the rows are in increasing order
based on minimum intensity value, and each column con-
sists of elements in decreasing order based on maximum in-
tensity value. In this way, the span space is decomposed into
zones such that each zone contains at most B points. Min-
dictionary points are the points closest to the right-hand bor-
der of the zone. Within each zone, the points are ranked from
top to bottom. Figure 2 illustrates how our data structure is
built.

The first sorting pass requires O(N log N) time, while the
second sorting pass requires O(B log B) time for each of the
N
B +1 buckets. Since B is a user-defined constant, the prepro-
cessing is dominated by the first sorting pass. Therefore the
construction of this data structure requires O(N log N) time.
This is comparable with the preprocessing required by cur-
rent state-of-the-art algorithms for active cell identification,
see Table 1.

4. Extraction

The range of a cell is given by its minimum and maximum
intensity values. Given an isovalue q pertaining to an isosur-
face of interest, a cell is defined to be active if

cell.min ≥ q (1)

cell.max ≤ q. (2)

We refer to (1) as the min-criterion and (2) as the max-
criterion. Brute force algorithms for active cell determina-
tion traverse every cell of a data set to check when the above
two criteria are true. Acceleration data structures organize
the data in a preprocessing step so that cells can be trivially
identified as active using few explicit comparisons.

c© The Eurographics Association 2005.

Waters et al. / Isosurface Extraction Using Fixed-Sized Buckets

min

m
a

x

m
in

 =
 m

ax

(b) Min-Sort (d) Bucketwise Max-Sort

min

m
a

x

(a) Cells in Span Space (e) Array-Based Data Structure

C
o

n
st

ru
ct

io
n

(c) Min-Dictionary Creation

Figure 2: Illustration of the construction of our data structure. (a) Input cells are classified by their min- and max-values in
the span space. (b) The cells are sorted globally by their minimum intensity value and then placed into buckets that contain up
to B cells. (B = 3 in this example.) Each bucket is shown in a different color. Note that the last bucket may contain less than B
cells. (c) Min-dictionary cells, shown here as hollow circles, are identified. (d) The cells of each bucket are sorted according to
maximum intensity value. (e) The resulting data structure is a logical 2D array.

4.1. Full Extraction

After initialization, a full extraction is performed. The algo-
rithm determines active cells using a nested loop traversal of
the data structure. In the outer loop, active buckets (columns)
of the array are traversed. In the inner loop, active cells in-
side the bucket are collected.

The min-dictionary aids in the identification of active
buckets for the outer loop. The min-dictionary value for a
given bucket is the largest minimum value of the cells of
that bucket. If the min-dictionary value satisfies the min-
criterion, all cells in that bucket trivially satisfy the min-
criterion. Let c0 be the first bucket of the data structure and
ca be the final active bucket. The active buckets whose cells
trivially satisfy the min-criterion are buckets c0, . . . ,ca−1.
The final active bucket ca fails the min-criterion and is
treated specially.

In the inner loop for buckets c0, . . . ,ca−1, we traverse the
elements of each bucket and collect cells until a cell fails the
max-criterion. Since the bucket is stored in decreasing order
by maximum value, a contiguous block of cells within the
bucket are identified as active. The rest of the cells in the
bucket fail the max-criterion and thus are skipped.

The last active bucket ca requires special processing.
Since the bucket’s min-dictionary value does not satisfy the
min-criterion, cells inside this bucket do not trivially satisfy
the min-criterion. In the span space, we can think of the ver-
tical edge of the query range dividing the last active bucket
into two partitions based on minimum values, see Figure 1a.
This phenomenon creates non-contiguous blocks of active
cells in the bucket ca, since the bucket is organized according
to maximum value, see Figure 1b. Thus, for each cell of the
last active bucket, it is necessary to check that cells satisfy

both the min-criterion and the max-criterion. The number of
cells where both criteria must be checked is upper-bounded
by B, since the bucket contains at most B cells.

4.2. Incremental Extraction

When a new isovalue q′ is specified by the user, existing
cell information from the previous extraction can often be
retained—some cells become inactive and must be deac-
tivated, while others become active and must be activated
in the data structure. To accomplish such an incremental
extraction, additional cell markers are maintained. These
markers keep track of the last cell visited in each bucket
during active cell extraction. Our extraction algorithm is en-
hanced to support incremental extraction by addressing two
cases: when the isovalue increases and when the isovalue
decreases.

4.2.1. Increasing Isovalue

When q′ > q, let c0, . . . ,ca, . . . ,ca′ be the new set of active
buckets. The buckets that must be visited fall into three cat-
egories. First, buckets c0, . . . ,ca−1 remain active but contain
contiguous blocks of cells that must be deactivated. Second,
bucket ca remains active but contains non-contiguous blocks
of cells that must be activated and deactivated. Third, buck-
ets ca+1, . . . ,ca′ have become active and must have active
cells identified. Figure 3 illustrates these regions in the span
space and our data structure.

The first category of buckets correspond to buckets
c0, . . . ,ca−1. These buckets remain active, but some of the
cells have become inactive and must be deactivated. The
marker for each bucket is marched from its current posi-
tion up until the marker points to the first inactive cell. Cells

c© The Eurographics Association 2005.

Waters et al. / Isosurface Extraction Using Fixed-Sized Buckets

Span Space Our Data Structure

qq

q'

1 2 3

min

m
a

x

m
in

 =
 m

ax

1 2 3

min

m
a

x

RemoveAdd Keep

1: c0, . . . ,ca−1 2: ca 3: ca+1, . . . ,ca′

Figure 3: Incremental extraction for increasing isovalue.
Red regions contain cells to be deactivated, and green re-
gions contain cells that must be activated. Three categories
of buckets exist: (1) buckets that remain active where mark-
ers must be pushed upward, deactivating cells passed along
the way, (2) the former last active bucket ca where active and
inactive cells are interleaved, and (3) additional buckets that
can be traversed using a procedure similar to full extraction.

passed by the marker are no longer active and are deacti-
vated. Since the bucket satisfies the min-criterion, only the
max-criterion is checked in updating the markers.

The second category consists of a single bucket, the last
active bucket from the previous query ca. In the previous ex-
traction, bucket ca contained active cells that were located
in scattered locations within the bucket. Bucket ca now con-
sists of a single contiguous block of active cells and a single
contiguous block of inactive cells. Cells of this bucket must
be traversed one by one to determine if a given cell needs to
be activated or deactivated.

In the third category, buckets ca+1, . . . ,ca′ have just be-
come active, and the full extraction method described in Sec-
tion 4.1 is applied. The only difference is that traversal starts
at bucket ca+1 rather than bucket c0.

4.2.2. Decreasing Isovalue

When q′ < q, let c0, . . . ,ca′ be the new set of active buckets.
The buckets that must be visited again fall into three cate-
gories. First, buckets c0, . . . ,ca′−1 remain active but contain
contiguous blocks of cells that must be activated. Second,
bucket ca′ is an active bucket from the previous extraction
that now contains non-contiguous blocks of cells that must
be activated and deactivated. Third, buckets ca′+1, . . . ,ca
have become inactive and cells in these buckets must be de-
activated. Figure 4 illustrates these regions in the span space
and our data structure.

The first category of buckets correspond to buckets
c0, . . . ,ca′−1. These buckets remain active, but additional

Span Space Our Data Structure

qq

q'

21 3

min

m
a

x

m
in

 =
 m

ax

1 2 3

min

m
a

x

RemoveAdd Keep

1: c0, . . . ,ca′−1 2: ca′ 3: ca′+1, . . . ,ca

Figure 4: Incremental extraction for decreasing isovalue.
Red regions contain cells to be deactivated, and green re-
gions contain cells that must be activated. Three categories
of buckets exist: (1) buckets that remain active where mark-
ers must be pushed downward, adding cells passed along the
way, (2) the new last active bucket ca′ where active and in-
active cells are interleaved, and (3) inactive buckets that can
be deactivated using a procedure similar to full extraction.

cells in these buckets are now active and must be activated.
This corresponds to pushing the markers down to include
cells that have become active. As before, since the bucket
satisfies the min-criterion, only the max-criterion is checked
in updating the markers.

The second category consists of a single bucket ca′ . In
the previous extraction, bucket ca′ contained a single con-
tiguous block of active cells. Cells of ca′ no longer trivially
satisfy the min-criterion and must be traversed to determine
if a given cell must be activated or deactivated.

The third category, buckets ca′+1, . . . ,ca, have become in-
active, and the full extraction method described in Section
4.1 is again applied. Two modifications must be made. First,
traversal starts at bucket ca′+1 rather than bucket c0. Sec-
ond, rather than activate cells traversed by the method we
must deactivate the visited cells.

5. Analysis and Results

Our algorithm achieves average-case optimal running time
with relatively little memory usage. The data structure re-
quires N records (one for each cell) and N

B + 1 min-
dictionary values (one per bucket). If incremental extrac-
tion is incorporated, N

B + 1 marker cells are also neces-
sary. Thus the memory required by our data structure is
O(N + 2N

B + 2) = O(N). In our current implementation, the
constant factor increase in memory consumption is 3 + 1

B
without incremental extraction markers and 3 + 2

B with in-
cremental extraction markers.

In the average case, where at least one cell per bucket is

c© The Eurographics Association 2005.

Waters et al. / Isosurface Extraction Using Fixed-Sized Buckets

Method Preprocessing Time Space Complexity Average-Case Time Complexity

NOISE (kd-tree) O(N log N) O(N) O(K +
√

N)

ISSUE (lattice) O(N log N) O(N) O(K + log N +
√

N)
Interval tree O(M log M) O(H +M) O(K + log H)

Span-triangle† O(N) O(N) O(K +D)

Our method O(N log N) O(N) O(K +B)

N = # of cells K = # of active cells H = # of interval tree nodes
M = # of distinct intervals in data D = # of discrete values in data B = # of cells per bucket

† Only applies to quantized data.

Table 1: Taxonomy of range-based isosurface extraction methods. Our method is optimal in the average case and has prepro-
cessing time and space complexity comparable with state-of-the-art techniques.

collected, our method has a runtime complexity of O(K+B).
This can be seen by noting that no more than three compar-
isons per cell collected from a normal bucket is performed.
One max-criterion comparison is performed for each active
cell in a bucket. For each bucket, one min-dictionary check
and one failed max-criterion check are performed. When
only one cell is extracted for a given bucket, the extraction
cost for that cell is three comparisons. Thus, at most three
comparisons per cell in a normal bucket are performed. In
the last active bucket, the min- and max-criterion must be
checked for every cell, and the number of cells to check is
bounded by B. Thus no more than two comparisons are per-
formed for every cell in the last active bucket. This analysis
leads to a runtime complexity of O(3K + 2B) = O(K + B).
Our experimental results support this average-case optimal-
ity, see Figure 5.

In the worst case, it is possible to traverse many buck-
ets that do not contain active cells. Consider, for example,
a pathological scenario where only one cell in a given input
data set is active, and this cell is located at the bottom of the
last bucket of the array. The search algorithm would traverse
N
B buckets and at most B inactive cells until arriving at the re-
sult. The complexity of the method in this pathological case
is O(N

B + B) = O(N). We note that this worst-case scenario
is extremely rare in real application data. We further note
that if we set B =

√
N, the average and worst case extraction

is upper-bounded to O(K +
√

N), a near-optimal result.

We implemented an interval tree to compare our technique
against existing methods. Two timing experiments were run
for two data sets, one per data set. For each data set, 1000
full extraction queries evenly spaced over the value range of
the data were performed. For each of these 1000 query iso-
values, the average search time for five queries was recorded.
We plotted the average search time against the number of ac-
tive cells, see Figure 5. The results show that our method is
competitive with the interval tree method, an optimal tech-
nique. These results also demonstrate that our algorithm on
average achieves optimal performance for real data sets en-

Average Search Time vs. Active Cells for WingHigh

0

200

400

600

800

1000

1200

1400

0 20,000 40,000 60,000 80,000 100,000

Active Cells

S
ea

rc
h

Ti
m

e
(µ

s)

Interval Tree

Our Method

Average Search Time vs. Active Cells for RockerArm

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20,000 40,000 60,000 80,000 100,000

Active Cells

S
ea

rc
h

Ti
m

e
(µ

s)

Interval Tree

Our Method

Figure 5: Timing comparison between an interval tree im-
plementation and our approach shown as a plot of average
search time versus the number of active cells. The plots show
that the running time of our method is competitive with an in-
terval tree, an optimal technique. The regression lines show
that our method achieves O(K) performance on average.

c© The Eurographics Association 2005.

Waters et al. / Isosurface Extraction Using Fixed-Sized Buckets

Data Set # of Cells Description

WingLow 287,962 tetrahedral mesh, float
WingHigh 2,000,034 tetrahedral mesh, float

Kyle 1,720,432 tetrahedral mesh, float
Engine 8,258,175 hexahedral grid, byte

Klein128 2,048,383 hexahedral grid, float
RockerArm 2,048,383 hexahedral grid, float

Table 2: Summary of data sets used in our experiments.

Data Set Full Incremental Coherence

RockerArm 0.967 ms 0.444 ms 63 %
Engine 2.285 ms 0.432 ms 88 %

Table 3: Comparison of full versus incremental search. The
timing results reflect average search time for 100 isosurfaces
over a range of values. The impact of incremental search on
performance depends on data set coherence, which is mea-
sured as the average percentage of cells that remain active
between queries.

countered in practice. An idea for how our method com-
pares to other methods can be obtained by examining Table
1, which provides a concise summary of the complexity of
several existing range-based search algorithms.

We used data sets from a variety of applications, most
consisting of single-precision floating point values. We used
three data sets resulting from flow simulations computed
over unstructured tetrahedral meshes. The Kyle data set can
be seen in Figure 7. The WingLow and WingHigh data sets
are two different resolutions of the same logical simulation.
The RockerArm data set is a 128× 128× 128 grid volume
representing an unsigned distance field constructed around a
mechanized part. The Klein128 data set is a 128×128×128
grid volume sampled from an implicit function representing
a Klein bottle surface. We also applied our technique to a
quantized Engine data set consisting of 256×256×128 un-
signed byte data values. Table 2 provides a summary of the
data sets we used.

Incremental extraction performance depends on the co-
herence of the data. Table 3 shows timing results comparing
our full extraction method to our incremental search algo-
rithm. In the timing experiment, 100 queries evenly spaced
in a predefined range were made with increasing isovalue.
The same sequence of 100 queries were then made in de-
creasing order. The search times for a full extraction and an
incremental extraction were measured for these 200 queries
and then averaged. We used 100 values over the range
[−5,10] for the RockerArm and [25,255] for the Engine.

In our experience, an appropriate choice for the bucket

0

100

200

300

400

500

600

700

800

10 100 1,000 10,000 100,000 1,000,000

Bucket Size

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(µ

s)

Kyle(1) WingHigh(2) WingLow(3) Klein64(4) RockerArm(5) Klein128(6)

6

5

2

1

4
3

Figure 6: Log-linear plot of average search time versus
bucket size. These results indicate that a reasonable bucket
size B is around 4096, regardless of the input data size.

size B is 4096. This empirical result was obtained by ex-
tracting multiple isosurfaces from several data sets of various
sizes using different values for B. For this experiment, 1000
isosurfaces were extracted for the six data sets described in
Table 2. We plotted the average extraction latency against
bucket size, see Figure 6. In our experiments, average ac-
tive cell lookup time decreases toward 4096 and begins to
increase past 8192. The consistency of this result seems to
indicate that the optimal choice of B is not related to the in-
put size of the data.

All results were generated on a dual Intel Xeon 3.06 GHz
machine with 4 GB of main memory.

6. Conclusions and Future Work

The work we have presented shows that output optimal
isosurface extraction is achievable using simple data struc-
tures. The ease of implementation, relatively small mem-
ory footprint, and average-case optimality of the method
make it extremely attractive for active cell determination.
The method is flexible enough to incorporate incremental
extraction, which can be advantageous in large-scale visual-
ization systems.

The core algorithm is relatively simple to implement. We
provide a sample implementation of the construction of the
data structure and the full extraction algorithm in Appendix
A.

The method is competitive with state-of-the-art ap-
proaches. Like most existing methods, our technique re-
quires initial sorting taking O(N log N) time. Our current
implementation incurs only a 3+ 1

B factor increase in mem-
ory consumption, 3+ 2

B if incremental search is desired. For
large enough B, this factor is effectively 3. Although our

c© The Eurographics Association 2005.

Waters et al. / Isosurface Extraction Using Fixed-Sized Buckets

method has a worst case performance of O(N), it achieves
an average case runtime complexity of O(K), the optimal re-
sult. Our experiments with real application data support this
analysis.

We hope to address several issues in our future work. The
common availability of high-resolution data necessitates the
development of methods capable of operating outside main
memory. Our method is amenable to such an out-of-core im-
plementation. Out-of-core sorting algorithms [CSS98] have
been developed and can be incorporated into our technique
without loss of generality. At runtime, the necessary infor-
mation to maintain in main memory is the min-dictionary.
Out-of-core and even parallel methods for traversing the
buckets in an efficient and memory sensitive fashion can be
developed using techniques borrowed from virtual memory
systems. We plan to investigate these and other issues related
to extending our method.

Acknowledgments

This work was supported by the National Science Foun-
dation under contracts ACR 9982251 and ACR 0222909,
the Lawrence Livermore National Laboratory under con-
tract B523818, and by Lawrence Berkeley National Labora-
tory. We thank the members of the Visualization and Graph-
ics Group of the Institute for Data Analysis and Visualiza-
tion (IDAV) at UC Davis. The Engine data set was obtained
from http://www.volvis.org/. We are grateful to Serban Po-
rumbescu of IDAV for supplying the RockerArm data set.
We thank Dr. Kyle Anderson of the NASA Langley Re-
search Center and Dr. Dimitri Mavriplis of the University
of Wyoming for providing unstructured data sets.

References

[BS03] BORDOLOI U. D., SHEN H.-W.: Space efficient
fast isosurface extraction for large datasets. In IEEE Visu-
alization 2003 (Oct. 19–24 2003), Turk G., van Wijk J. J.„
Moorhead R., (Eds.), IEEE, pp. 201–208. 2

[CMM∗97] CIGNONI P., MARINO P., MONTANI C.,
PUPPO E., SCOPIGNO R.: Speeding up isosurface extrac-
tion using interval trees. IEEE Transactions on Visualiza-
tion and Computer Graphics 3, 2 (Apr. 1997), 158–170.
2

[CSS98] CHIANG Y. J., SILVA C. T., SCHROEDER W. J.:
Interactive out-of-core isosurface extraction. In IEEE Vi-
sualization ’98 (1998), Ebert D., Hagen H.„ Rushmeier
H., (Eds.), IEEE, pp. 167–174. 7

[LC87] LORENSEN W. E., CLINE H. E.: Marching
Cubes: A high resolution 3D surface reconstruction algo-
rithm. In Siggraph 1987, Computer Graphics Proceed-
ings (July 1987), Stone M. C., (Ed.), vol. 21, ACM Press /
ACM SIGGRAPH / Addison Wesley Longman, pp. 163–
169. 1

[LSJ96] LIVNAT Y., SHEN H., JOHNSON C. R.: A Near
Optimal IsoSurface Extraction Algorithm Using the Span
Space. IEEE Transactions on Visualization and Computer
Graphics 2, 1 (1996), 73–84. 1

[SHLJ96] SHEN H. W., HANSEN C. D., LIVNAT Y.,
JOHNSON C. R.: Isosurfacing in span space with utmost
efficiency (ISSUE). In IEEE Visualization ‘96 (1996),
pp. 287–294. 2

[vKvOB∗97] VAN KREVELD M. J., VAN OOSTRUM R.,
BAJAJ C. L., PASCUCCI V., SCHIKORE D.: Contour
trees and small seed sets for isosurface traversal. In Sym-
posium on Computational Geometry (1997), pp. 212–220.
1

[vRLHJ∗04] VON RYMON-LIPINSKI B., HANSSEN N.,
JANSEN T., RITTER L., KEEVE E.: Efficient Point-
Based Isosurface Exploration Using the Span-Triangle. In
IEEE Visualization 2004 (Oct. 10–15 2004), Rushmeier
H., Turk G.„ van Wijk J. J., (Eds.), IEEE, pp. 441–448. 2

[WG92] WILHELMS J., GELDER A. V.: Octrees for faster
isosurface generation. ACM Transactions on Graphics 11,
3 (July 1992), 201–227. 1

Appendix A: Pseudo-C++ Implementation

We provide pseudocode resembling C++ to facilitate the
implementation of our method. The algorithms for con-
struction and full extraction are shown here. Addition-
ally, a complete implementation is available online at
http://graphics.cs.ucdavis.edu/˜genwitt/eurovis05.html.

A C++ class named SpanQuad implements our data
structure. In it, a record represents a cell by its minimum and
maximum intensity value. The record also contains a handle
to the cell the record represents. In practice, this handle can
be implemented as an index into a cell array or a pointer to
cell information. The record is implemented by the follow-
ing code.

struct Record {
CellHandle cell;
Type min, max;

};

The value of Type depends on the data being examined. The
SpanQuad class contains the following information neces-
sary for performing active cell lookups.

Record* m_cells ; // Cell records
Type* m_min_dict ; // Min-dict. values
int m_last_bkt ; // Last bucket location
int m_last_bkt_len ;// Last bucket length

Construction

The following routine takes as input an array R of N cell
records. The constant B represents the bucket size. We as-
sume the routines sortByMin() and sortByMax() are

c© The Eurographics Association 2005.

Waters et al. / Isosurface Extraction Using Fixed-Sized Buckets

Figure 7: Isosurfaces extracted using our method. Above:
Single surface extracted from the Engine data set. Below:
Multiple isosurfaces from the Kyle unstructured flow simu-
lation data set.

provided. The logical 2D array is maintained as a 1D array
using the same memory occupied by the input array.

void SpanQuad::construct(Record* R, int N)
{

// Keep pointer to cell records
m_cells = R;

// Sort all cells by min
sortByMin(R[0], N);

// Create buckets
int num_buckets = N / B + 1;
m_last_bkt = num_buckets - 1;
m_last_bkt_len = N - m_last_bkt * B;

// Create min-dictionary
m_min_dict = new Type[num_buckets];
for(int i = 0; i < m_last_bkt; i++)
m_min_dict[i] = m_cells[(i+1)*B-1].min;

m_min_dict[m_last_bkt] = m_cells[N-1].min;

// Sort each bucket by max
for(int i = 0; i < m_last_bkt; i++)
sortByMax(m_cells[i*B], B);

sortByMax(m_cells[m_last_bkt*B], m_last_bkt_len);
}

Full Extraction

The following routine takes as input an isovalue q and ac-
cumulates active cells. As before, the constant B represents
the bucket size. The routine addCell() is a user-defined
callback provided to accumulate active cells as they are iden-
tified by the algorithm.

void SpanQuad::search(Type q)
{

int cb; // current bucket
int rec; // current record to examine
int lim; // end of last active bucket

// Normal active buckets
for(cb = 0;

cb != m_last_bkt && q >= m_min_dict[cb];
cb++)

{
rec = 0;
for(Record* i = &m_cells[cb*B];

i->max >= q && rec < B;
i++)

{
addCell(i->cell);
rec++;

}
}

// Last active bucket
lim = (cb == m_last_bkt ? m_last_bkt_len : B);
rec = 0;
for(Record* i = &m_cells[cb*B];

i->max >= q && rec < lim;
i++)

{
if(q >= i->min)

addCell(i->cell);
rec++;

}
}

c© The Eurographics Association 2005.

