
Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors)

Live Surface

Christopher J. Armstrong, William A. Barrett and Brian Price

Brigham Young University

Abstract

Live Surface allows users to segment and render complex surfaces from 3D image volumes at interactive (sub-

second) rates using a novel, cascading graph cut (CGC). The process consists of four steps. (1) Preprocessing for

generation of a complete 3D watershed hierarchy followed by tracking of all catchment basin surfaces. (2) User

selection of foreground and background seeds from two-dimensional, image cross-sections. (3) Segmentation of

the volume by cascading through the 3D watershed hierarchy from the top, applying graph cut successively, at

each level, only to catchment basins bordering the segmented surface from the previous level. (4) OpenGL render-

ing for display and update of the segmented surface at interactive rates. CGC allows the entire image volume to

be segmented an order of magnitude faster than existing techniques that make use of graph cut. Segmentation and

rendering, combined, is accomplished in about 0.5 seconds, allowing 3D surfaces to be displayed and updated

dynamically as each additional foreground seed is deposited. CGC allows the user to control and steer the seg-

mentation with immediate user feedback, providing a Live Surface tool for 3D image volumes similar to the Live

Wire (Intelligent Scissors) tool used in 2D images.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene Un-
derstanding I.3.3 [Computer Graphics]: Picture/Image Generation I.4.6 [Image Processing and Computer Vision]:
Segmentation J.3 [Life and Medical Sciences]:

1. Introduction

The Live Wire interface of Intelligent Scissors [MB95] is an
effective means for performing 2D segmentation by provid-
ing immediate feedback for boundary selection as the mouse
moves. This gives the user constant awareness of what be-
longs to the current selection. The introduction of Intelligent
Scissors fundamentally changed the paradigm for interac-
tive boundary detection. For 3D volume segmentation, the
analogous feedback model would be a "live surface." The
ability to update surfaces incrementally and interactively,
within an optimal framework, would provide a user with the
same freedom of interaction in extracting surfaces from im-
age volumes as Intelligent Scissors provides in the extrac-
tion of boundaries from 2D images. Unfortunately, there is
no straightforward extension of Live Wire to surfaces.

Interactive 3D segmentation has wide application medi-
cally in the analysis of CT and MRI imagery. Accurate seg-
mentation of anatomy facilitates measurement and diagnosis
and is critical in areas such as surgical planning, prosthesis
fitting, and diagnosis. Interactivity allows the medical pro-
fessional to guide the segmentation, preventing errors.

The major concern with 3D segmentation techniques to
date is that they are unable to combine optimality with suffi-
cient interactivity. Optimal techniques, though successful in
2D datasets, have difficulty coping with the massive amounts
of data encountered in 3D sets. Faster methods such as
thresholding, levelsets, or region growing algorithms, have
problems with object under/over-estimation and have diffi-
culty distinguishing between neighboring objects with sim-
ilar characteristics, making it difficult to isolate an object
from its neighbors.

We introduce Live Surface for interactive selection and
display of objects in 3D image volumes. We claim that Live
Surface does for 3D image volumes what Intelligent Scissors
did for 2D images; specifically, it brings existing optimal 3D
segmentation techniques into an interactive framework by
providing immediate user feedback to verify the selection.

2. Related Work

Intelligent Scissors [MB95, MB99] introduced an efficient
means of interactive 2D segmentation through the use of

c© The Eurographics Association 2006.

87

http://www.eg.org
http://diglib.eg.org


Christopher J. Armstrong & William A. Barrett & Brian Price / Live Surface

Live Wire which adheres to edges within the image. Intel-
ligent Paint [RB02], a region-based segmentation tool, pro-
vides interactive segmentation through a painting metaphor.
Graph cut [BJ01, BK01] has been used to extend these con-
cepts to images within an optimal framework in Lazy Snap-
ping [LSTS04] and GrabCut [RKB04].

The use of graph cut for optimal and accurate segmenta-
tion of 3D surfaces has been extensively validated for medi-
cal image volumes [LWCS06]; however, execution times can
last up to 10s of minutes to cut volumes of 2–8 megavoxels.
In order to accelerate the process, a single layer of water-
shed regions [VS91] has been used in the place of voxels
for medical volumes [YZNC05], and video [LSS05]. Inter-
active Video Cutout [WBC∗05] goes a step further, gener-
ating two layers of oversegmented image regions. Lombaert
uses a resolution pyramid to perform coarse-to-fine refine-
ment in Banded Graph Cuts [LSGX05]. However, each of
these accelerated approaches still typically requires from 10
seconds to one minute.

The Voxel-Man project, based on the work of Karl Heinz
Höhne [HPP∗01, HH92, HBP∗90], extends segmentation to
3D for visualization of medical volumes. Voxel-Man is a vi-
sually impressive tool for exploring human anatomy. These
tools produce a visualization of objects within a volume very
quickly, but require extensive user interaction and are based
on nonoptimal interactive thresholding.

Fuzzy connectedness [US96, USdAL02, US03] seeks to
produce a more optimal segmentation than techniques based
on simple homogeneity criteria such as thresholding or
region-growing. Fuzzy techniques measure the "affinity" be-
tween image elements and then group them accordingly.

The graph cut algorithm popularized by Boykov and
Jolly [BJ01] has found widespread use in advancing the
work of optimal 2D and 3D segmentation. Efficiencies
in interaction have been gained through the use of over-
segmentaion, but so far these have been limited to 1 or
2 levels [WXSC04, LSTS04, YZNC05, LSS05]. The com-
plete watershed hierarchy as described by Reese and Bar-
rett [RB02] now provides a means for near real-time seg-
mentation in Live Surface.

3. System Overview

The interface to Live Surface is shown in Figure 1. The user
is presented with the raw data which is displayed as a par-
allelepiped volume. The user may rotate the volume and ad-
vance a cross section through it. The user may also lock the
cross section to a specific voxel that will remain in the cross
section as the volume is rotated. This allows the user to more
easily find a cross section that will minimize interaction.

Live Surface allows the user to extract the surface of ob-
jects using simple mouse clicks and brush strokes. The vox-
els specified in this manner will be used as foreground and

Figure 1: Visual Interface for Live Surface. User interacts

with cross sections of the image volume (right). The Result-

ing surface is rendered with OpenGL (left).

background seeds for the graph cut segmentation. The sur-
face is displayed in the left panel and updated in real time.

Graph cut, as it is typically used, is unable to handle the
massive number of voxels in image volumes at interactive
speeds. We generate a tobogganed watershed hierarchy as a
preprocessing step in order to present graph cut with a sim-
pler graph to work with. Each catchment basin’s visible sur-
face is also defined during preprocessing so that during in-
teraction the surfaces are simply selected from a table. These
important preprocessing steps make sub-second surface ex-
traction possible.

As the user interacts with the volume it is segmented using
the novel cascading graph cut (CGC) algorithm described in
5.3, which allows for sub-second segmentation, taking ad-
vantage of the watershed hierarchy structure. Finally the pre-
defined surfaces that form the surface of the segmentation
are then rendered using OpenGL.

4. Preprocessing

The goal of the preprocessing phase of Live Surface is to
compute everything possible a priori so as not to slow the
interaction. The principal computations of the preprocessing
phase are the tobogganed watershed hierarchy and the sur-
face of each catchment basin. On average, the preprocessing
phase lasts a little over one minute for 1–18 megavoxel vol-
umes.

4.1. Watershed Hierarchy

Voxels are grouped into catchment basins using the tobog-
ganing watershed algorithm [Fai90] (using the keep sliding
method [YH91] to handle plateaus). Catchment basins are
grouped into larger basins using a similar algorithm [Ree99].
The process is repeated until all basins are grouped into
a single basin, thus generating a complete hierarchy. Each
level of the hierarchy forms an adjacency graph for the graph
cut algorithm.

3D tobogganed watersheds are a straightforward exten-
sion of their 2D counterpart. First we compute the gradient

c© The Eurographics Association 2006.

88



Christopher J. Armstrong & William A. Barrett & Brian Price / Live Surface

magnitude of each voxel. Voxels are grouped into regions
called catchment basins. In row major order each voxel is
recursively grouped with ("slides" to) its 6-connected neigh-
bor whose gradient magnitude is the smallest, with the con-
dition that the neighbors gradient magnitude is less than or
equal to that of the voxel itself, where ≤ handles the plateau
problem. A catchment basin is thus composed of all voxels
that slide to the same local minimum.

A similar method is used to group catchment basins for
the next level of the hierarchy. We use the t-score difference
between adjacent regions in place of the gradient magnitude
to recursively group each basin with the basin most similar
to it [Ree99]. The t-score models the distributions of colors
in neighboring basins parametrically (equation 1), allowing
us to quickly compare neighboring basins.

t
2 =

NmNn‖Cm −Cn‖
2

NmVn +NnVm
(1)

where N is the number of voxels in the basin (the subscripts
m and n indicate which basin), C is the average color vector
of the basin, and V is a measurement of the color variance of
the basin. V is computed as follows (where Ck is the color of
some voxel k in the basin):

V =
1

N
∑
k∈n

‖Cn −Ck‖
2 (2)

This process is repeated until the image volume is reduced
to a single basin. This is what is meant by a complete water-
shed hierarchy. Each basin corresponds to a node in the hi-
erarchy, with its children nodes corresponding to the basins
from which it is composed. Each level of the hierarchy rep-
resents a level of image granularity. The hierarchy forms a
complete partition of the image volume. The basins at each
level of the hierarchy are mutually exclusive and exhaust the
space. The average branching factor of the hierarchy is 5.
Hierarchy depths range from 9–12 levels. The watershed hi-
erarchy preserves the natural edge information in the image
volume, thus preventing the loss of detail resulting from a
traditional resolution pyramid.

Each level is also used to generate a weighted graph for
graph cut. Each graph represents the 3D adjacency of all
basins at the same level of the hierarchy. Each node repre-
sents a basin. Each edge represents the adjacency of a pair of
basins. We are currently using the metric described in Lazy
Snapping [LSTS04] to weight the edges in the graph:

w(m,n) =
1

1+‖Cm −Cn‖2
(3)

where w(m,n) is the weight of the edge between m and n.
Cm and Cn are the average color vectors of basins m and n.

4.2. Predefining Surfaces

In order to speed rendering we predefine the visible surface
of each basin at the lowest level of the hierarchy. The sur-

face of any selection at any level of the hierarchy is com-
posed of these surfaces. We store a surface patch for each
edge in the graph at the lowest level of the hierarchy in a
lookup table. Each patch can take on the color of either of the
two basins which it separates depending on which is classi-
fied as foreground. Each patch is composed of actual voxel
faces which may be rendered with one of two surface nor-
mals computed from the x, y, and z gradients of the two vox-
els which the face separates. The surfaces are generated by
sweeping through the volume and finding neighboring vox-
els belonging to different catchment basins.

5. Live Surface Extraction

The goal of Live Surface is to extract and render a surface
which evolves as the user moves the mouse. The mouse in-
put generates the foreground and background seeds which
are applied to the watershed hierarchy. The volume is then
segmented using CGC. Finally the result of the segmentation
is rendered using the predefined surfaces.

5.1. Graph Cut

A key algorithm for extraction of a live surface is graph cut.
We use Kolmogorov’s implementation [BK01] to perform
the graph cut. Graph cut segments a graph into two mutually
exclusive subgraphs (foreground and background) by cutting
the edges between them such that the sum of the weights of
the cut edges is minimized. Seeds (placed by the user) assign
nodes to belong to one of the two subgraphs. Our graph is
formed as described in 4.1.

Figure 2: Propagation of seeds and dual-seeded basins.

5.2. Seeding

The user extracts a surface by specifying seed voxels within
the volume. Each seed the user specifies in the volume must
be represented at each level of the hierarchy (Figure 2).
When a foreground (white) or background (black) seed is
placed, it is propagated up the hierarchy from child to parent
until it reaches the top. Some basins then contain both fore-
ground and background seeds (shown as a mix of white and
black). We call such basins dual-seeded basins. Such basins

c© The Eurographics Association 2006.

89



Christopher J. Armstrong & William A. Barrett & Brian Price / Live Surface

indicate that the user disagrees with the hierarchy’s aggre-
gation of certain basins and thus signals the CGC algorithm
that further refinement is needed in that area.

5.3. Cascading Graph Cut

The intent of cascading graph cut is to provide hierarchical
speedup by reducing the number of nodes in the graph to
be cut. This is done by computing a graph cut for a coarse
approximation of the surface and including only basins ad-
jacent to that surface to refine the surface at the next level of
the hierarchy with another graph cut.

CGC computes a coarse graph cut segmentation at the top
of the hierarchy based on the user specified seeds. If a basin
is not dual seeded and does not lie on the surface of the cut it
is ignored (Figure 3 a). The children of the remaining basins
(Figure 3 b) are used to compute a refined cut at the next
level of the hierarchy (Figure 3 c). Once again the basins not
on the surface of the cut are ignored. Notice the striped basin
that was previously ignored is now included because it lies
on the surface of the cut (Figure 3 d). The process repeats
until the bottom of the hierarchy is reached. As we cascade
down the hierarchy the vast majority of basins are ignored,
providing a hierarchical speed-up. The number of nodes in
the graph to be cut no longer depends on the size of the vol-
ume but on the surface area of the selected object. Since the
watershed hierarchy is a proper tree structure, determining
which basin to include and which to ignore is done by simply
traversing the tree. This allows for sub-second segmentation
results. The resulting cut is the selected surface.

The recursive CascadingGraphCut algorithm in Ap-
pendix A details this process. It first computes a graph cut
on the input graph G, classifying each basin as foreground

(a) (b)

(c) (d)

Figure 3: Cross section of a volume to which CGC is ap-

plied. (a) An initial graph cut is computed and basins not on

the surface of the cut are ignored (gray). (b) The children

of the remaining basins are collected into a cascaded graph

(white). (c) The cascaded graph is segmented, using graph

cut to refine the surface. (d) Once again basins not on the

surface are ignored. The process repeats.

or background. It then generates the next graph to be cut
H. The children of basins along the surface of the cut are
included in H (white in Figure 3 a). Some of these basins
may not be in G (striped in Figure 3 d). The children of dual
seeded basins are also included in H. Each edge in H cor-
responds to an edge in the existing graph in the hierarchy.
Any edge connecting two basins in H is included as is. All
edges from a basin in H to a basin not in H are represented
in the cascaded graph by an edge from the basin in H to a
generic seed basin. The classification of the basin not in H

determines which of the two generic seed basins to use. This
has the effect of lumping each ignored basin into one of the
generic seed basins.

5.4. Cascading Graph Cut Refinement

It is inefficient to compute a segmentation of the entire vol-
ume as the user refines the selection. We assume that once
the user has a general selection, further interaction will be
aimed at refining local discrepancies. In this case local re-
finement would be preferable to a global segmentation. In
order to accomplish this we provide a variation of CGC, cas-
cading graph cut refinement (CGCR).

When the user places a foreground (or background) seed
in a basin that already contains a foreground seed the graph
cut performed on levels of the hierarchy at or above that
basin give no new information and so is not performed. In-
stead we simply form a graph from the children of the pre-
viously seeded basin and start a CGC. This localizes the
bulk of the CGC to the region near the new seed. How-
ever, as CGC cascades, basins that do not descend from the
preseeded basin (striped in Figure 3 d) may be included in
the CGC as they become a part of the surface. The effect is
that cuts made by local refinements are integrated seamlessly
into the globally optimal surface.

Appendix A contains the detailed algorithm for Cascad-

ingGraphCutRefine. When a user deposits a seed, it is
propagated up the hierarchy until either the top of the hi-
erarchy is reached or a basin is reached that already contains
the same kind of seed. If the top of the hierarchy is reached
we begin a CGC with the graph at the top of the hierarchy as
input. If we find a basin that already contains the same kind
of seed, we generate a graph with only the children of that
basin, formed in the same manner as in CGC.

Figure 4: Selecting the bones in the arm and hand by drag-

ging the mouse over them in the voxel display. The result is

an evolving surface that appears to be growing.

c© The Eurographics Association 2006.

90



Christopher J. Armstrong & William A. Barrett & Brian Price / Live Surface

The effect of this update appears as a growing surface like
that shown in Figure 4. As the user adds new seeds, the se-
lection is updated on average in less than a second.

5.5. Rendering

A critical feature of live surface is the rendered surface of
the selection. This allows for inspection of the results which
often leads to recognition of discrepancies. In order to ren-
der the selection we scan through the edges of the graph at
the lowest level of the hierarchy. Each edge we find that sep-
arates foreground from background is used to look up a sur-
face patch in the table of predefined surfaces. The color and
normals of the foreground basin are applied to the surface
patch. OpenGL allows the evolving surface to be rendered at
interactive rates.

5.6. Application to video

Live surface has been designed for (x,y,z) volumes such as
CT and MRI. However, video (x,y,t) can also be segmented
with live surface. The video surface in Figure 12 is extracted
from the volume represented by the frames shown to the left
of the renderings. Each rendering shows an evolving video
surface viewed from different projections.

Video demonstrates more significant changes in the t di-
mension than volumes in the z dimension, requiring slightly
different treatment. One simple change to allow for this dif-
ference is to first group regions within frames before group-
ing them between frames. For video we compute the first
level of catchment basins within frames before grouping
basins between frames. Although Live Surface currently re-
quires a little more interaction to segment video volumes
than (x,y,z) volumes, the sub-second update time still holds,
making the process considerably less tedious than other sys-
tems.

6. Results

Performance results for Live Surface applied to a variety of
medical image volumes are summarized in Table 1. These
results were gathered using a machine with a 3.6 Ghz Intel R©
XeonTM processor with 3 GB RAM. For image volumes
ranging from 1 to 18 megavoxels, preprocessing required
from 2 seconds to 2 minutes depending linearly on the size
of the volume and the total number of basins at all levels
of the hierarchy. User interaction required about 5 minutes
on average. User interaction time is indicative of the number
of seeds specified by the user. The average time to compute
CGC for all volumes was .42 seconds, with an average of
.05 seconds to render the result. The number of 3D catch-
ment basins in the initial hierarchy was 199,239 on average.
The number of levels in the complete watershed hierarchy
ranged from 9 to 12 (Table 2). The number of levels for each
volume corresponds to the size of the volume and the com-
plexity of its content.

P
re

pr
oc

es
s

U
se

r
In

te
ra

ct
io

n

A
ve

ra
ge

C
ut

C
ut

an
d

R
en

de
r

knee 147 120 0.36 0.38
hand 51 300 0.40 0.45
pollen 16 20 0.058 0.090
skull 80 1200 1.15 1.19
foot 34 300 0.51 0.56
teddy 2 20 0.12 0.13
VHP 35 180 0.37 0.39

Table 1: Performance results for 7 different image volumes.

Times are recorded in seconds

Segmentation and rendering results for Live Surface ap-
plied to the Visible Human Project are shown in Figures 8
and 9. The coloration in the rendering comes from sampling
the color in the data itself. The color chosen for the heart is
the average color of the basins forming its surface. Soft tis-
sue is typically much more challenging to segment with con-
ventional tools such as thresholding and region growing be-
cause of the similarity in color and density with surrounding
organs and structures. However, CGC performs very well,
allowing the user to extract surfaces interactively and incre-
mentally, with anatomically relevant surfaces (heart cham-
bers, ascending or descending aorta, carotid arteries, ribs,
etc.) added to the cumulative surface with each user interac-
tion.

Application of CGC to skeletal anatomy in CT volumes
is shown in Figure 10. Segmentation of the bones in the foot
is challenging for several reasons. Because of the articula-
tion of the joints, the bones lie in close proximity to one an-
other and therefore, due to aliasing, the intensity of the vox-

kn
ee

ha
nd

po
ll

en

sk
ul

l

fo
ot

te
dd

y

V
H

P

voxel 8M 18M 6M 13M 13M 1M 7M
L 1 .5M 91k 10k .4M .1M 32k .3M
L 2 .1M 24k 4k 97k 9k 8k 64k
L 3 36k 63k 772 25k 2k 2k 5k
L 4 10k 2k 201 6k 613 583 916
L 5 3k 433 50 2k 155 156 207
L 6 933 114 13 416 45 40 52
L 7 223 32 3 102 11 13 15
L 8 53 9 2 27 4 4 5
L 9 13 4 1 9 2 2 3
L 10 4 2 3 1 1 2
L 11 2 1 2 1
L 12 1 1

Table 2: Numbers of basins at each level of the complete

watershed hierarchy for each of the 7 image volumes.

c© The Eurographics Association 2006.

91



Christopher J. Armstrong & William A. Barrett & Brian Price / Live Surface

Figure 5: Segmenting "Teddy van Gough" from the CT vol-

ume is accomplished with just a few mouse clicks.

els between the bones is increased making it difficult to sepa-
rate them using standard interactive segmentation techniques
such as thresholding or region growing. However, CGC al-
lows individual bones to be segmented and separated quite
easily. In fact, separation of adjoining structures is some-
thing at which graph cut, in general, excels. The bones also
vary in density through the interior. This too causes tech-
niques such as thresholding or levelsets to sometimes fail by
segmenting out the interior and/or overestimating the sur-
face. Finally, because the foot bones consist of fine, thin
bones of varying thickness and density, many techniques are
not adaptive or robust enough to capture them. Once again
Live Surface has no trouble including them in the selection.

MRI images are inherently more noisy than CT images
but this is another area where the globally optimal proper-
ties of graph cut excel. Figure 11 illustrates segmentation
of the femur, tibia, fibula, and muscles of the knee from an
MRI volume. In this example, CGC is still extremely effi-
cient, completing each cut in an average of .38 seconds, well
within the user’s interactive time constant. The muscles are
an example of the ability of CGC to segment not only the
high contrast skeletal anatomy, but also the low contrast, soft
tissue.

The teddy bear data set is an excellent example of how
Live Surface is frequently able to extract well defined sur-
faces with a single foreground and background seed. In Fig-
ure 5 the initial surface is segmented with only one of each
seed. Each update to the surface is achieved with a single
foreground seed. Updates for the teddy bear are computed
and rendered in .13 seconds average.

The hand in Figure 6 shows the versatility of CGC in its
ability to adapt to both skeletal and soft tissue anatomy in the
same segmentation. This allows the anatomy to be explored
in context, and because of the segmentation and rendering
speed, anatomical layers can be added or deleted interac-
tively.

Finally the skull in Figure 7, while exceeding one sec-
ond in average update time when selecting the entire skull,
updates much more quickly when selecting just the teeth.
Traditionally segmenting individual teeth would be consid-
erably difficult using techniques such as thresholding or lev-
elsets. Live Surface is not just able to select individual teeth,
but each tooth selected on the left of the figure has a distinct
surface and is not fused with any of the neighboring teeth.

The focus of Live Surface is to provide an interactive tech-
nique for optimally segmenting image volumes. At this point
we rely on the body of existing literature, as well as visual
inspection, to validate the correctness and accuracy of the
extracted surfaces. For example, graph cut has been shown
to produce accurate results in medical imaging [LWCS06]
and desirable results for video [WBC∗05,LSS05]. However,
an important part of future work will be to quantitatively
compare surfaces obtained from our Cascading Graph Cut
(CGC) with the extensively validated voxel-level graph cut.
Lombaert [LSGX05], shows that a coarse-to-fine approach
results in a good approximation, lending great confidence to
the quality of our results. Furthermore, our interactive speed
allows the user to quickly adjust the segmentation to the de-
sired result if it has not yet been achieved.

7. Conclusion and Future Work

Live Surface does for 3D volumes what Intelligent Scissors
did for 2D images. Intelligent Scissors was not the first tech-
nique to formulate optimal boundary detection as a mini-
mum cost path search in a graph, but it brought it into an
interactive framework. In the same way, Live Surface pro-
vides the user with immediate (∼ 0.5 sec) feedback about the
selected surface. This immediate feedback helps the user de-
cide what to sample next. This is a significant improvement
upon existing graph cut techniques which typically require
5–10 seconds (often much more) to make the cut. (Imagine
trying to steer a car remotely with a snapshot of the car’s po-
sition on the road updated only every 5–10 seconds.) Live
Surface allows the user to segment volumes continuously
with immediate visual feedback in the refinement of the se-
lected surface. Hence Live Surface fundamentally changes
the paradigm for interactive 3D segmentation and surface
extraction.

Figure 6: Skeletal and soft tissue anatomy are segmented

adaptively and simultaneously, allowing the user to explore

both in context.

c© The Eurographics Association 2006.

92



Christopher J. Armstrong & William A. Barrett & Brian Price / Live Surface

Figure 7: Segmenting individual teeth from the skull CT vol-

ume (13 Mega-voxels) is accomplished in about two minutes.

Segmenting the entire skull takes a little over twenty minutes.

None of the core components of Live Surface limit it
to 3D data. Thus Live Surface could be applied to n-
dimensional data sets as well [Bar86, SUR∗05]. We ex-
pect that such applications may exceed the sub-second up-
date speeds; however, the speedup should still scale and
demonstrate significant improvement over non-hierarchical
approaches.

Most formulations of graph cut make use of a second term
or second kind of edge other than that described by equa-
tion 3. The second term is a measurement of how each node
conforms to some foreground or background model and may
provide greater adaptivity to the current Live Surface formu-
lation.

User interaction requires by far the greatest amount of
time in the process, especially when extracting fine, complex
structures. Much of user interaction results from exploration
of the cross-

Live Surface allows objects in 3D image volumes to be ex-
tracted and visualized interactively using a cascaded formu-
lation of optimal graph cut. By identifying object surfaces in
a preprocessing stage, data structures can be generated that
allow for sub-second object segmentation. Optimal graph cut
coupled with immediate user feedback makes Live Surface
an efficient tool for segmentation, visualization, and explo-
ration of object surfaces in 3D image volumes.

Appendix A: Algorithms

Pseudo-code for Cascading Graph Cut and Cascading Graph
Cut Refinement is given here.

Global Variables and Data Structures

Globals:

BASIN f Seed, bSeed {generic seed BASINs}
GRAPH top {the top GRAPH in the hierarchy}

Data Structures:

GRAPH {BASIN[] B; EDGE[] E; Int level;}
BASIN {

Bool isFSeed, isBSeed, isF , isB;
EDGE[] E; BASIN parent; Basin[] children;
}

EDGE {BASIN f rom, to; Float weight;}

Cascading Graph Cut Algorithm

CascadingGraphCut

Input:

GRAPH G

Algorithm:

1. GraphCut(G)
2. if G.level = 0 return

3. Initialize GRAPH H to empty
4. H.level← G.level-1
5. H.B← the children of all BASINs in G that border the cut
6. H.B← the children of all BASINs in G that are dual seeded
7. H.E ← all existing EDGEs to and f rom a BASIN in H

8. for each EDGE E f rom each BASIN in H begin

9. if E.to is not in H begin

10. Initialize EDGE F to be a copy of E

11. F .to← ForeOrBack(E.to)
12. H.E ← F

13. end {this loop generates edges from BASINs
14. end in H to f Seed and bSeed}
15. CascadingGraphCut(H)

GraphCut

Input: GRAPH G

Algorithm: run graph cut, set isF & isB for BASINS in G

ForeOrBack

Input: BASIN B

Output: f Seed or bSeed

Algorithm:

16. if B.isF return f Seed

17. else if B.isB return bSeed

18. else return ForeOrBack(B.parent)

Cascading Graph Cut Refinement Algorithm

CascadingGraphCutRefine

Input:

BASIN B

Bool isFore

Algorithm:

1. if hasSeed(B, isFore) then return

2. initialize Int i← 0
3. initialize BASIN C← B

4. while not hasSeed(C, isFore) begin

5. setSeed(C, isFore)
6. if i = top.level then return CascadingGraphCut(top)
7. C←C.parent; i← i + 1

c© The Eurographics Association 2006.

93



Christopher J. Armstrong & William A. Barrett & Brian Price / Live Surface

8. end

9. initialize GRAPH H to empty
10. H.B← C.children

11. H.E ← existing EDGEs f rom and to a BASIN in G

12. for each EDGE E f rom each BASIN in H begin

13. if E.to is not in H begin

14. Initialize EDGE F to be a copy of E

15. F .to← ForeOrBack(E.to)
16. H.E ← F

17. end {this loop generates edges from BASINs
18. end in H to f Seed and bSeed}
19. CascadingGraphCut(H)

hasSeed

Input: BASIN B, Bool isFore

Output: Bool

Algorithm:

20. if isFore then begin

21. if B.isFSeed then return true; else return false

22. else

23. if B.isBSeed then return true; else return false

setSeed

Input: BASIN B, Bool isFore

Algorithm:

24. if isFore then B.isFSeed← true

25. else B.isBSeed← true

References

[Bar86] BARRETT W. A.: Dynamic three-dimensional shaded
surface display of the rotating, beating left ventricle, atrium and
aorta from cine ct. In IEEE Proceedings of Computers in Car-

diology (Washington, DC, USA, 1986), IEEE Computer Society,
pp. 491–494.

[BJ01] BOYKOV Y., JOLLY M.-P.: Interactive graph cuts for op-
timal boundary and region segmentation of objects in n-d images.
In ICCV (2001), pp. 105–112.

[BK01] BOYKOV Y., KOLMOGOROV V.: An experimental com-
parison of min-cut/max-flow algorithms for energy minimization
in vision. In Energy Minimization Methods in Computer Vision

and Pattern Recognition (2001), pp. 359–374.

[Fai90] FAIRFIELD J.: Toboggan contrast enhancement for con-
trast segmentation. In Proceedings of the 10th International Con-

ference on Pattern Recognition (ICPR ’90) (June 1990).

[HBP∗90] HÖHNE K. H., BOMANS M., POMMERT A., RIEMER

M., SCHIERS C., TIEDE U., WIEBECKE G.: 3d visualization
of tomographic volume data using the generalized voxel model.
The Visual Computer 6, 1 (1990), 28–36.

[HH92] HÖHNE K.-H., HANSON W. A.: Interactive 3d segmen-
tation of mri and ct volumes using morphological operations.
JCAT 16, 2 (Mar.–Apr. 1992), 285–294.

[HPP∗01] HÖHNE K. H., PFLESSER B., POMMERT A., RIEMER

M., SCHUBERT R., SCHIEMANN T., TIEDE U., SCHUMACHER

U.: A realistic model of human structure from the visible human
data. Methods Of Information In Medicine 40 (2001), 83–89.

[LSGX05] LOMBAERT H., SUN Y., GRADY L., XU C.: A mul-
tilevel banded graph cuts method for fast image segmentation. In
ICCV ’05: Proceedings of the Tenth IEEE International Confer-

ence on Computer Vision (ICCV’05) Volume 1 (Washington, DC,
USA, 2005), IEEE Computer Society, pp. 259–265.

[LSS05] LI Y., SUN J., SHUM H.-Y.: Video object cut and paste.
ACM Trans. Graph. 24, 3 (2005), 595–600.

[LSTS04] LI Y., SUN J., TANG C.-K., SHUM H.-Y.: Lazy snap-
ping. ACM Trans. Graph. 23, 3 (2004), 303–308.

[LWCS06] LI K., WU X., CHEN D. Z., SONKA M.: Optimal
surface segmentation in volumetric images-a graph-theoretic ap-
proach. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1 (2006),
119–134.

[MB95] MORTENSEN E. N., BARRETT W. A.: Intelligent scis-
sors for image composition. ACM Trans. Graph. (1995), 191–
198.

[MB99] MORTENSEN E. N., BARRETT W. A.: Toboggan-based
intelligent scissors with a four-parameter edge model. In CVPR

(1999), pp. 2452–2458.

[RB02] REESE L. J., BARRETT W. A.: Image editing with in-
telligent paint. In Proceedings of Eurographics 2002 (2002),
vol. 21, pp. 714–724.

[Ree99] REESE L.: Intelligent paint: Region-based interactive

image segmentation. Master’s thesis, Brigham Yound University,
1999.

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: Grabcut:
interactive foreground extraction using iterated graph cuts. ACM

Trans. Graph. 23, 3 (2004), 309–314.

[SUR∗05] SIEGLER S., UDUPA J., RINGLEB S., IMHAUSER C.,
HIRSCH B., ODHNER D., SAHA P., OKEREKE E., ROACH N.:
Mechanics of the ankle and subtalar joints revealed through a 3D
quasi-static stress MRI technique. J Biomech 38, 3 (2005), 567–
78.

[US96] UDUPA J. K., SAMARASEKERA S.: Fuzzy connected-
ness and object definition: Theory, algorithms, and applications
in image segmentation. CVGIP: Graphical Model and Image

Processing 58, 3 (1996), 246–261.

[US03] UDUPA J. K., SAHA P. K.: Fuzzy connectedness and
image segmentation. Proceedings of the IEEE 91, 10 (2003),
1649–1669.

[USdAL02] UDUPA J. K., SAHA P. K., DE ALENCAR LOTUFO

R.: Relative fuzzy connectedness and object definition: Theory,
algorithms, and applications in image segmentation. IEEE Trans.

Pattern Anal. Mach. Intell. 24, 11 (2002), 1485–1500.

[VS91] VINCENT L., SOILLE P.: Watersheds in digital spaces:
An efficient algorithm based on immersion simulations. IEEE

Trans. Pattern Anal. Mach. Intell. 13, 6 (1991), 583–598.

[WBC∗05] WANG J., BHAT P., COLBURN R. A., AGRAWALA

M., COHEN M. F.: Interactive video cutout. ACM Trans. Graph.

24, 3 (2005), 585–594.

[WXSC04] WANG J., XU Y., SHUM H.-Y., COHEN M. F.:
Video tooning. ACM Trans. Graph. 23, 3 (2004), 574–583.

[YH91] YAO X., HUNG Y. P.: Fast image segmentation by sliding
in the derivative terrain. Proceedings of SPIE Intelligent Robots

and Computer Vision 1991 1607 (1991).

[YZNC05] YUAN X., ZHANG N., NGUYEN M. X., CHEN B.:
Volume cutout. The Visual Computer (Special Issue of Pacific

Graphics 2005) 21, 8–10 (2005), 745–754.

c© The Eurographics Association 2006.

94




