
Volume Graphics (2005)
E. Gröller, I. Fujishiro (Editors)

A Simple and Flexible Volume Rendering Framework
for Graphics-Hardware–based Raycasting

Simon Stegmaier† Magnus Strengert† Thomas Klein† Thomas Ertl†

Institute for Visualization and Interactive Systems
University of Stuttgart

Figure 1: Various volume renderings of a distance field derived from the Stanford Lucy data set, including translu-
cency, transparent isosurfaces, refraction, and reflection.

Abstract
In this work we present a flexible framework for GPU-based volume rendering. The framework is based on a single
pass volume raycasting approach and is easily extensible in terms of new shader functionality. We demonstrate
the flexibility of our system by means of a number of high-quality standard and non-standard volume rendering
techniques. Our implementation shows a promising performance in a number of benchmarks while producing
images of higher accuracy than obtained by standard pre-integrated slice-based volume rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Raytracing

1. Introduction

Scientific volume visualization plays an important role in
both academia and industry. Depending on the applica-
tion, various visualization techniques are being employed.
In order to obtain a productive system that is universally
applicable—in medicine, geosciences, engineering, etc.—it
is necessary to integrate these techniques into a single tool.
Furthermore, the optimal volume rendering tool is supposed
to be future-proof. Of course, this refers to technical ad-

† (stegmaier|strengert|klein|ertl)@vis.uni-stuttgart.de

vances, like e.g. in graphics hardware, to guarantee best per-
formance also for increasingly large data sets; but this desire
also refers to new methodologies, i.e. we expect the optimal
tool to be very flexible and to allow for fast and painless in-
tegration of innovative new volume rendering techniques if
they can help to support doctors in diagnosing illnesses or
engineers in recognizing deterioration in critical mechanical
parts.

At the moment, actual volume rendering implementations
are almost exclusively based on slice-based methods where
axis- or viewport-aligned textured slices are blended to-
gether to approximate the volume rendering integral. With-

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

S. Stegmaier et al. / A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting

out doubt, these slice-based approaches have their bene-
fits. However, slice-based implementations are rasterization-
limited and can be hardly optimized from an algorithmic
point of view. Furthermore, when applying a perspective
projection the integration step size will vary along viewing
rays when using planar proxy geometries, leading to visible
artifacts. Finally, they do not easily allow for an implemen-
tation of techniques with viewing rays changing direction as
it does occur in refracting volumes. Slice-based techniques,
therefore, fail to meet the criteria for an optimal volume vi-
sualization framework.

On the other hand, the advent of DirectX Shader Model 3
and comparable OpenGL extensions has led to graphics
processors providing an ideal platform for efficiently map-
ping raycasting-based volume rendering to hardware. This
fragment-program–based raycasting does not suffer from
any flexibility issues and, therefore, fulfills the second cri-
terion of an optimal volume visualizing tool as it was de-
fined above. Furthermore, hardware manufacturers urge to
use any novel fragment program features, promising that this
functionality will become very fast in future generations of
graphics hardware. It can thus be assumed that GPU-based
raycasting is also future-proof from a technical point of view
and, accordingly, matches all criteria of an optimal volume
visualization framework.

In this paper we describe our experiences in develop-
ing such a framework (Secs. 4 and 5) and a series of
shaders for both standard and non-standard volume render-
ing techniques (Sec. 6), elaborating on all the idiosyncrasies
involved in the implementation. A performance compari-
son between GPU-based raycasting and slice-based volume
rendering and a qualitative comparison—discussing image
quality and flexibility—will be given in Sec. 7 in order to
demonstrate the claimed properties and to establish the pre-
sented approach as a worthwhile alternative to existing ap-
proaches.

2. Related Work

Most of the work in direct volume visualization in recent
years has been focused on texture-based approaches. First
introduced by Cullip and Neumann [CN93] and Cabral
et. al [CCF94], the basic raycasting concept is realized by
sampling the volume data using a stack of, typically, planar
slices as a proxy geometry and approximating the evalua-
tion of the volume rendering integral by blending the tex-
tured slices in front-to-back or back-to-front order in the
framebuffer. This pixel-parallel processing of the viewing
rays during rasterization of the proxy geometry exploits the
unmatched bi- or trilinear interpolation capabilities of mod-
ern graphics hardware and is the primary reason for the
unsurpassed speed and success of this method. Many en-
hancements to this simple approach have been proposed that
exploit more advanced texture mapping capabilities of to-
day’s graphics hardware to increase the interactivity and ap-

plicability of the method, e.g. [RSEB∗00, WE98]. The in-
troduction of multidimensional transfer functions [KKH02]
and pre-integrated volume rendering [EKE01] has greatly
improved the quality of renderings that can be achieved.
Also, some acceleration techniques proposed for the origi-
nal raycasting approach, such as early ray termination and
empty space skipping [LMK03], or hierarchical accelera-
tion structures [BNS01, GWGS02, LHJ99] have been suc-
cessfully adopted to texture-based direct volume rendering.
Nevertheless, it is still much harder and requires consider-
ably more effort to integrate such techniques into a slice-
based volume renderer compared to the implementation in
an obviously much more flexible software-based raycasting
code.

Recently, GPU-based implementations of the raycasting
algorithm for both structured and unstructured grids that
do not rely on the volume slicing approach have been pre-
sented [KW03, RGWE03, WKME03]. Both approaches dif-
fer from our approach in that they perform multiple render-
ing passes in order to traverse the volume and have to store
intermediate results in temporary buffers. An early technol-
ogy demo that implements the basic functionality of a com-
plete raycasting algorithm for regular volume data in a single
fragment program that does not require multiple rendering
passes has been recently shown by NVIDIA [NVI04b].

3. Raycasting on the GPU

In the last years programmability of workstation and con-
sumer level graphics hardware has evolved at an increas-
ing pace. Driven by the steadily growing demands of the
game industry, performance of modern graphics proces-
sors has exceeded the computational power of CPUs both
in raw numbers and in their extraordinary rate of growth.
Abandoning the simple fixed-function pipeline which was
the characteristic feature of graphics processors only five
years ago, today’s GPUs have evolved into very sophisti-
cated, highly programmable SIMD processing units. With
the advent of graphics processors supporting the new fea-
tures of DirectX Pixel Shader 2.x/3.0 [Mic04] and OpenGL
NV_fragment_program2 [NVI04a], namely dynamic
looping and branching, GPUs are becoming more and more
“general purpose processing units” comparable to the CPU.

Compute volume entry position
Compute ray of sight direction
While in volume

Lookup data value at ray position
Accumulate color and opacity
Advance along ray

Figure 2: Pseudo code of a fragment-program–based vol-
ume raycaster.

c© The Eurographics Association 2005.

S. Stegmaier et al. / A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting

Figure 3: Illustration of sample distances in direct volume
rendering approaches. In contrast to raycasting (right), the
sampling distance is not constant in slice-based volume ren-
dering (left).

The basic raycasting approach fits very well into the in-
trinsically parallel stream processing semantics of these new
fragment processors. For each pixel of the final image a sin-
gle ray is traced independently through the volume. There-
fore, a fragment program implementation of this simple al-
gorithm working on the fragments generated by rasterizing
a polygon covering the screen space area of the volume’s
projected bounding box is sufficient to compute the cor-
rect result. The volume rendering integral for each pixel is
then approximately evaluated by sampling the ray at a finite
number of positions inside the volume. The contributions of
those samples along the ray are accumulated to the overall
chromaticity and opacity. By applying an appropriate optical
model every desired kind of interaction between light and
the volumetric object can be realized. Unfortunately, due to
limited capabilities of graphics hardware most of the elabo-
rate optical models already proposed a decade ago [Max95]
have not or only with considerable effort and overhead been
integrated into slice-based volume renderers. In contrast, it
is often very easy to include them into a raycasting sys-
tem [KPHE02, RC01].

Pseudo code for a simple fragment-program–based vol-
ume raycaster is shown in Fig. 2. First, the direction of the
viewing ray for the respective fragment/pixel together with
the entry point, i.e the first intersection of the eye ray with the
volume’s bounding-box, has to be determined. Then in each
step of the loop the actual data value for the current sam-
ple point is fetched from a 3D texture map and the already
accumulated color and opacity values for the fragment are
updated according to the chosen optical model or rendering
style. In the simplest case, this could be a dependent texture
look-up combined with alpha-blending for a basic volume
rendering transfer function. Then, the sampling position is
advanced along the ray by a specific step size. The loop is
terminated either if the ray left the volume or if some other
criteria—depending on the chosen optical model—is met,
e.g. early ray termination due to high accumulated opacity
or the first hit semantic if an opaque isosurface is encoun-
tered.

Until recently there has been no real branching and loop-
ing support available in fragment level shading programs.
Therefore, previous solutions [KW03,RGWE03,WKME03]

that map this basic raycasting algorithm to programmable
graphics hardware had to revert to multiple rendering passes
and additional pixel tests, e.g. early depth test (z-culling)
and occlusion queries, in order to simulate a dynamic, data-
dependent number of loop iterations, e.g. terminating the
loop if the ray has left the volume. In contrast, now it is pos-
sible to take advantage of the new dynamic flow control ca-
pabilities provided by the DirectX Pixel Shader 3.0 API and
NVIDIA’s NV_fragment_program2OpenGL extension
to implement a single pass volume rendering solution. Cur-
rently, only NVIDIA’s GeForce 6 series GPUs support the
required new set of features, but support from the other ma-
jor GPU manufacturers is expected in upcoming generations
of their graphics processors.

How such an single pass volume rendering shader can ac-
tually be implemented is discussed in more technical detail
in Sec. 5.

However, the fact that principal rasterization complexity
is the same for both raycasting and conventional slice-based
rendering poses the question about why a single pass volume
raycasting should be superior to 3D texture-based slicing.
First, it obviously eliminates the necessity for intermediate
buffer reads and writes. Second, since basically only a single
polygon has to be rendered in order to generate the necessary
fragments, raycasting exhibits a very low geometry process-
ing and fragment generation overhead. And, third, raycast-
ing allows for adaptive step sizes (including early ray ter-
mination and empty space skipping), and by definition sam-
ples the volume at equal distances (Fig. 3), thereby avoiding
artifacts [LHJ99]. Other optimizations based on the history
along the sampling ray also benefit from the flexibility of
our raycasting approach as will be demonstrated in Secs. 5
and 6.

Moreover, raycasting has a much higher accuracy than
slice-based rendering since the entire algorithm is performed
with full 32 bit floating point precision. In contrast, slice-
based rendering suffers from the lack of high accuracy float-
ing point blending and framebuffer support in today’s graph-
ics hardware. Although, it is possible to avoid framebuffer
quantization and to emulate full precision floating point
blending by rendering to a floating point texture target in-
stead of to the framebuffer, this approach further increases
the cost of buffer accesses.

4. Framework

The system for volume raycasting proposed in this paper
consists of two major parts: a framework written in plain
C and based on OpenGL and GLUT, and a set of shaders
described in Sec. 6 that are flexibly loaded and modifiable at
runtime. The system is portable between MS Windows and
Linux.

Independently of the selected shader, the framework co-
ordinates the two-step rendering process, initializes the tex-

c© The Eurographics Association 2005.

S. Stegmaier et al. / A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting

Background Volume

Composited Image

Figure 4: Two-step rendering process. The first part ren-
ders the background by drawing a viewport-filling quadri-
lateral (left), the second part adds the volume visualization
and seamlessly overdraws certain parts of the background
(right).

tures, and provides various functionality like event handling
and transfer functions. Besides coordinating the rendering
process, this is all standard functionality found also in any
slice-based volume rendering application.

The volume data is expected in unsigned char for-
mat and stored in the alpha-component of a 3D RGBA tex-
ture. The gradient information that is needed by a number of
different volume rendering techniques presented in Sec. 6 is
being precomputed using central differences or a 3×3×3 So-
bel operator. Albeit precomputing the gradients poses a non-
negligible texture memory consumption overhead as com-
pared to on the fly computation in the respective fragment
shader program, we chose to compute the gradients in ad-
vance since this allows for the application of filters and usu-
ally results in an increased rendering performance. All gra-
dient components are quantized to 8 bit and stored in the
RGB-components of the RGBA texture already holding the
scalar volume data. Nevertheless, it is possible to compute
gradients on the fly if more accurate gradients are required
or larger data sets must be loaded.

For the description of the two-step rendering process we
first define the following volume properties. Let Sc denote
the number of slices in c-direction and Dc the slice distance
in c-direction with c ∈ {x,y,z}†. Then

ec = Sc ·Dc ,

Ec = (Sc ·Dc)/max({ex,ey,ez}) , and

Cc = Ec/2

define the volume extents, normalized volume extents,
and the volume center. For displaying the volume, we
bind a user-selected volume shader (see Sec. 6) and as
proxy geometry render an axis-aligned box translated by
(−Cx,−Cy,−Cz)

T with backface-culling enabled. One cor-
ner of the bounding box is located at the origin, the oppo-
site corner at (Ex,Ey,Ez)

T . The box defines the normalized
bounding box of the volume considering both the number
of slices and their distances. For each bounding box ver-
tex we define texture coordinates identical to the vertex po-
sitions. Each fragment can thus access the respective ray’s
entry point by just looking at its interpolated texture coordi-
nates and—in combination with the camera position—easily
compute the parametric ray of sight‡.

A significant benefit of this approach is the inherent mini-
mization of the number of rays. However, starting rays from
the bounding box surface leads to the problem that the view-
port is only partially being filled (see Fig. 4, right). For many
shaders this poses no problem since, e.g. in direct volume
rendering a uniform background is usually chosen. Frag-
ments outside the bounding box can then be set by appro-
priately setting the clear color. Unfortunately, this does not
work for patterned backgrounds which are, e.g., used to vi-
sualize refraction. In our system, the remaining fragments
are thus processed in a separate step prior to rendering the
volume.

Assuming the background pattern is stored in a texture,
one way to accomplish this is to render a large, viewport-
filling textured quadrilateral. This approach, however, eas-
ily leads to artifacts at the crossings to the background pix-
els generated in the raycasting step. Studying Fig. 4 reveals
that the fragment program used to display the volume needs
some functionality to render the background pattern anyway.
Thus, a robust, artifact-free solution is obtained by re-using
this section of the fragment program to assign color values to
pixels outside the projected volume bounding box. We will
elaborate on the fragment program in Sec. 5. In order to use
the fragment program for rendering background pixels, the

† We assume the data to be defined on a regular or uniform grid.
‡ The fragment attribute fragment.position stores the (x,y)
window coordinates of the fragment center relative to the lower
left corner of the window and fragment’s z window coordinate and
not the fragment’s coordinates in object space; accessing the object
space coordinates is, therefore, not possible without the apparently
redundant setting of texture coordinates equal to vertex coordinates.

c© The Eurographics Association 2005.

S. Stegmaier et al. / A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting

(a) 9.1/11.5/14.5 (b) 12.9/17.3/24.0 (c) 5.2/6.8/8.4 (d) 4.6/5.7/6.7

Figure 5: Illustration of different volume shaders for the Engine data set (256×256×110 voxels). From left to right: pre-
integrated volume rendering, maximum-intensity projection, opaque isosurface combined with pre-integrated volume rendering,
and semi-transparent isosurfaces. The minimum, average, and maximum framerates for a 512×512 viewport are given in the
lower left corner.

framework again has to render some proxy geometry with
texture coordinates set to appropriate object space coordi-
nates. We derive this proxy geometry by unprojecting the
four viewport corners using the inverse of the modelview-
projection matrix used for rendering the volume bounding
box and subsequently render a quadrilateral with the unpro-
jected vertices defining both vertex and texture coordinates.
By definition, the resulting quadrilateral is viewport-filling
and assigns a valid entry point to each fragment.

Fig. 4 illustrates the final two-step rendering process with
the background rendering on the left and the volume ray-
casting being shown on the right. The viewport is drawn in
dashed lines, proxy geometries in solid lines.

5. Single-Pass Volume Shader

All volume shaders implemented for this work are based
on a simple, single-pass raycaster consisting of the ac-
tual raycasting part sampling the volume and the back-
ground rendering part already addressed in discussing
the framework. All shaders are based on NVIDIA’s
NV_fragment_program2 extension [NVI04a]. We will
discuss the skeleton at the example of pre-integrated direct
volume rendering (see Appendix for source code).

The shader starts with setting up the parametric ray equa-
tion. For this purpose, the camera position is first computed
by reversing the translation dictated by the modelview ma-
trix. Since the camera is initially located at the origin, this
translates to a single instruction in the fragment program.
Afterwards, the ray direction is computed. Using the ray’s
entry point given by the texture coordinates and the com-
puted ray direction, it is now possible to sample the vol-
ume with a set of two nested REP loops, allowing for an
overall number of 65,025 iterations. The actual volume sam-
pling is then straightforward since we basically can now fol-
low the software approach without sacrificing the parallel-
processing power of modern GPUs. And this is what finally
makes the difference in flexibility of the given approach.

In the implementation presented, the integration does not
have to resort to low-accuracy framebuffer blending oper-
ations and can take advantage of highly accurate 32 bit
floating point computations. Furthermore, while slice-based
techniques require an overall of three texture look-ups per
fragment to take advantage of pre-integration, the raycasting
approach requires only two look-ups since the complete his-
tory along the sampling ray is available. However, there are
still two subtle issues that have to be addressed.

First, when leaving the volume, the sample lying outside
the volume must be projected back along the ray direction
onto the respective bounding box back side and the volume
rendering integral must be evaluated using the reduced dis-
tance. However, a memory-efficient 2D pre-integration table
is only valid for a single fixed interval length and thus a 3D
pre-integration table would be required, consuming an im-
mense amount of memory. We therefore accept the error in-
troduced by terminating the sampling just before the volume
is left and neglect a correct boundary handling.

Second, as seen in Sec. 4, the normalized bounding box
extents are given by the values Ec. Positions within this
bounding box are thus invalid texture coordinates and can-
not be directly used for accessing volume data without being
scaled to the maximum texture coordinates tc = Sc/Tc. Here
Tc = 2n, where n is the smallest integer such that 2n ≥ Sc,
denotes the actual volume texture size in direction c. The
required scaling factors are then given by:

Fc =
tc
Ec

=
Sc

Tc
·

max({ex,ey,ez})

ec

=
max({ex,ey,ez})

Tc ·Dc
.

The scaling factors Fc do only depend on the volume data
set to be visualized and are computed once in the framework
and passed to the shaders as program parameters. The scal-

c© The Eurographics Association 2005.

S. Stegmaier et al. / A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting

(a) 6.2/7.1/8.2 (b) 1.6/5.4/9.0 (c) 4.5/5.3/6.6 (d) 1.9/3.1/5.0

Figure 6: Other shaders implemented for this work. From left to right: Opaque isosurface with self-shadowing, opaque iso-
surface clipped by a simple spherical clip volume, translucent material, and a continously refracting volume. The minimum,
average, and maximum framerates for a 512×512 viewport are given in the lower left corner.

ing can then be either accomplished within the inner loop—
which is very costly—or outside the loop by scaling the en-
try point and the direction vector. It should be noted that the
latter must be done after normalization. The resulting ray-
casting then takes place in texture space and neither the ray
direction nor the sampling position can be used any more for
geometric computations in object space which are required
for rendering the background.

To optimize the rendering performance, we implemented
both early ray termination and an inside-test checking for
whether the ray has left the volume and, accordingly,
whether the sampling can be terminated. Both optimizations
are based on a conditional BRK and, therefore, demand the
usage of TXL—the equivalent of TEX requiring an explicit
mipmap level—although no mipmaps are being used. Only
the latter optimization proved advantageous. The former did
not improve the overall rendering performance (Sec. 7) and
is thus not shown in the given source code.

Once the raycasting step has determined the fragment’s
base color and opacity, the fragment is blended with the
background. This can be both a uniform color or a pattern
defined by a 2D texture map. Therefore, a hypothetical back-
ground plane with its normal being the normalized negative
viewing direction (initially (0,0,−1)T) is defined and the
ray/plane intersection is computed analytically. To obtain a
static background, the plane normal has to be transformed
with the inverse modelview matrix MV (as does the camera
position to match the view seen by the user when rendering
the bounding box). Since in general the transformed normal
is given by~n′ = (M−1)T ·~n, we obtain~n′ = ((MV−1)−1)T =
MV T . Furthermore, since the image of (0,0,1)T is stored in
the 3rd column of the modelview matrix but column-access
is not supported by ARB_fragment_program, we need
to transpose the matrix again and can obtain the sought-after
normal efficiently with a single instruction. The local coordi-
nate system of the texture coordinates used for accessing the
background texture is then similarly derived by the images
of the unit vectors in x- and y-direction, respectively.

6. Volume Shader Examples

We have implemented a number of volume shaders to illus-
trate the flexibility of our framework and the selected ray-
casting approach. All shaders can be easily derived from the
basic volume shader described in Sec. 5. A screenshot of the
Engine data set rendered with this shader is shown in Fig. 5a.

A straightforward and trivial modification of the basic
direct volume renderer is a maximum-intensity–projection
shader (Fig. 5b). The standard isosurface functionality was
implemented by searching along the ray for sign changes
of the difference of the isovalue and the current and previ-
ous sample, respectively. The accuracy of this approach can
be further improved by linearly interpolating between the
sample points enclosing the isosurface once a sign change
has been detected. This optimization basically comes at no
costs but nevertheless has a dramatical effect on the result-
ing image quality (Fig. 7). The standard isosurface function-
ality has further been combined with direct volume render-
ing (Fig. 5c) and various lighting techniques.

Isosurfaces can also be made semi-transparent. Combined
with standard surface lighting, this can be used to visualize
both the exterior surfaces and structures obscured in opaque
isosurface renderings (Fig. 5d).

Self-shadowing was implemented by just re-orienting the
sampling ray towards the light source upon an isosurface hit
and by subsequently checking for occluders (Fig. 6a). A sim-
ilar technique was applied to implement image-based light-
ing. We have demonstrated this for highly reflective mate-
rial with an implementation of sphere mapping. The latter is
shown in Fig. 1 for the Lucy data set being illuminated by
the Grace Cathedral lightprobe [Deb04].

Another useful extension is volume clipping. This has
been implemented by deciding for each sampling point
whether it lies inside or outside the clipping geometry de-
fined by the isosurface of another arbitrary volume, e.g. a
distance field generated from a polygonal mesh [WEE02].
This approach proved to be more flexible than using a binary

c© The Eurographics Association 2005.

S. Stegmaier et al. / A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting

clipping volume. Fig. 6b shows an isosurface of the Engine
data set clipped against the isosurface of a radial field.

Since none of the previous volume visualization tech-
niques succeeds in modeling indirect light attenuation, we
implemented a translucency shader that decreases the light
intensity based on the distance light has to travel within the
volume enclosed by the isosurface on its way to a surface
point. Results of this shader are shown in Figs. 1 and 6c.

While all the shaders described heretofore can also be rel-
atively easily implemented with slice-based volume render-
ing approaches, see e.g. [KPHE02], a slice-based renderer
for volumetric data with continuous refraction requires con-
siderable effort. On the other hand, implementing refraction
is straightforward with the presented approach and easily in-
tegrates into the framework, requiring no modifications be-
sides extending the transfer function by another dimension
for storing the refraction coefficients. Applications of this
shader are shown in Figs. 1 and 6d for the Stanford Lucy
and Engine data sets.

7. Results and Discussion

In this section results regarding the performance and quality
of the single pass volume raycasting technique are presented
and advantages of our approach compared to standard slice-
based volume rendering are discussed.

All performance measurements were conducted on a stan-
dard PC equipped with an NVIDIA GeForce 6800 GT based
graphics accelerator card. Figs. 5 and 6 show examples of
renderings of the 256×256×110 Engine data set performed
with the different shaders we described in Secs. 5 and 6.
Of course, the rendering performance differs significantly
for the different shaders. Although the basic structure of all
shaders is identical, the amount of computation that has to
be carried out and the efficiency of the optimization tech-

Figure 7: Isosurface renderings of the 1283 Bucky Ball
data set. The images were rendered with a sampling dis-
tance equivalent to 50 slices. For the right image accuracy
was improved by linear interpolation. The upper parts show
spheremap renderings using the Grace lightprobe, the lower
parts show color codings of the corresponding surface nor-
mals.

Table 1: Comparison between texture-based volume render-
ing and the raycasting approach presented in this paper. The
figures represent average framerates.

Raycasting Texture-based
5122 10242 5122 10242

Bucky Ball (1283) 14.0 4.1 41.3 11.5
Engine (2562×110) 10.8 3.2 25.5 7.2
Head (2562×225) 7.2 2.2 16.6 4.6
Lucy (2562×512) 7.0 2.6 n/a∗ n/a∗

∗ data set could not be loaded

niques applied varies significantly. The minimum, average,
and maximum framerates are given in the lower left cor-
ners of the respective images, measured while rotating the
tilted volume around the y-axis. Thus, the given framer-
ates account for differences due to changing viewing di-
rections. Considering these framerates, it becomes appar-
ent that volume clipping appears to be very slow regard-
ing the low computational complexity of the required op-
erations. We currently have no explanation for this severe
performance breakdown which is accompanied by extensive
view-dependent, mosaic-like artifacts. Since these artifacts
are non-deterministic and even occur when moving the win-
dow we assume this to be a driver or hardware problem.

As already mentioned in Sec. 5 the performance gain ex-
pected by early ray termination is often foiled by the over-
head posed by dynamic flow control instructions, i.e. BRKs,
in the loops. Although the performance benefit that can be
achieved by early ray termination is hard to quantify—it
strongly depends on the structure of the data set, the chosen
transfer function, the current view direction, and the sam-
pling rate—we found that in most cases very little is gained.
For semi-transparent volume rendering of the Engine data
set shown in Fig. 5 we have measured everything from a
20% performance loss up to a 60% performance increase.

In order to relate our results to standard volume render-
ing techniques in terms of performance and accuracy, we
compared our single pass volume raycasting solution with
a slice-based volume renderer. The results are summarized
in Tab. 1. For all measurements the step size was chosen
such that the object space sampling distance was equal for
both approaches and—for viewing directions aligned with
the volume bounding box—reflected the actual number of
slices contained in the data set. Obviously, the raycasting im-
plementation is currently only approximately half as fast as
the reference implementation. The primary reason for this is
the current low performance of dynamic loops and branches
which however can be expected to become considerably bet-
ter with the next generation of graphics processors [Gre04].
The presented performance figures should, thus, only be
considered preliminary.

c© The Eurographics Association 2005.

S. Stegmaier et al. / A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting

8. Conclusion and Future Work

We have presented a framework for the hardware-
accelerated visualization of volumetric data. Our system is
based on a single-pass raycasting approach taking advan-
tage of recent advances in programmable graphics hardware.
Compared to standard slice-based volume rendering tech-
niques, the system exhibits very high flexibility and allows
for an easy integration of non-trivial volume rendering tech-
niques which has been demonstrated for a number of exam-
ples. Since the blending is performed on the GPU, our ray-
casting approach is more accurate than implementations that
have to rely on framebuffer blending and can even approach
the accuracy of software solutions. This improved accuracy
is currently traded for considerable performance penalties
which, however, will hopefully be alleviated with the next
generation of graphics cards.

The framework—including all shaders—can be found in
source code on our web page at http://www.vis.uni-
stuttgart.de/eng/research/fields/current/

spvolren.

Acknowledgments

We would like to thank Klaus D. Engel, Siemens Corpo-
rate Research, for providing us with his pre-integrated slice-
based volume renderer used for the performance compari-
son.

References

[BNS01] BOADA I., NAVAZO I., SCOPIGNO R.: Mul-
tiresolution Volume Visualization with a Texture-based
Octree. The Visual Computer 17, 3 (2001), 185–197. 2

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated
Volume Rendering and Tomographic Reconstruction us-
ing Texture Mapping Hardware. In VVS ’94: Proceedings
of the 1994 Symposium on Volume Visualization (1994),
ACM Press, pp. 91–98. 2

[CN93] CULLIP T. J., NEUMANN U.: Accelerating Vol-
ume Reconstruction With 3D Texture Hardware. Tech.
Rep. TR93-027, University of North Carolina at Chapel
Hill, 1993. 2

[Deb04] DEBEVEC P.: Light Probe Image Gallery.
http://www.debevec.org/Probes, 2004. 6

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-Quality
Pre-Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading. In Eurographics / SIG-
GRAPH Workshop on Graphics Hardware ’01 (2001),
Annual Conference Series, Addison-Wesley Publishing
Company, Inc., pp. 9–16. 2

[Gre04] GREEN S.: GeForce 6 Series OpenGL Ex-
tensions, NVIDIA Technical Developer Relations.
http://developer.nvidia.com/object/6800_leagues_presen-
tations.html, 2004. London, United Kingdom. 7

[GWGS02] GUTHE S., WAND M., GONSER J.,
STRASSER W.: Interactive Rendering of Large Vol-
ume Data Sets. In Proceedings of IEEE Visualization ’02
(2002), IEEE Computer Society, pp. 53–60. 2

[KKH02] KNISS J., KINDLMANN G., HANSEN C.: Mul-
tidimensional Transfer Functions for Interactive Volume
Rendering. IEEE Transactions on Visualization and Com-
puter Graphics 8, 3 (2002), 270–285. 2

[KPHE02] KNISS J., PREMOZE S., HANSEN C., EBERT

D.: Interactive translucent volume rendering and proce-
dural modeling. In Procceedings of IEEE Visualization
’02 (2002), IEEE Computer Society, pp. 109–116. 3, 7

[KW03] KRÜGER J., WESTERMANN R.: Acceleration
Techniques for GPU-based Volume Rendering. In Pro-
ceedings of IEEE Visualization ’03 (2003), pp. 287–292.
2, 3

[LHJ99] LAMAR E., HAMANN B., JOY K. I.: Multires-
olution Techniques for interactive Texture-based Volume
Visualization. In VIS ’99: Proceedings of the Confer-
ence on Visualization ’99 (1999), IEEE Computer Society
Press, pp. 355–361. 2, 3

[LMK03] LI W., MUELLER K., KAUFMAN A.: Empty
Space Skipping and Occlusion Clipping for Texture-based
Volume Rendering. In Proceedings of IEEE Visualization
’03 (2003), pp. 317–324. 2

[Max95] MAX N.: Optical Models for Direct Volume
Rendering. IEEE Transactions on Visualization and Com-
puter Graphics 1, 2 (1995), 99–108. 3

[Mic04] MICROSOFT CORPORATION: DirectX 9 SDK.
http://www.microsoft.com/directx, 2004. 2

[NVI04a] NVIDIA CORPORATION: NVIDIA OpenGL
Extension Specifications for the CineFX 3.0 Archi-
tecture (NV4x). http://developer.nvidia.com/object/
nvidia_opengl_specs.html, 2004. 2, 5

[NVI04b] NVIDIA CORPORATION: NVIDIA SDK 8.0.
http://developer.nvidia.com/object/sdk_home.html, 2004.
2

[RC01] RODGMAN D., CHEN M.: Refraction in discrete
raytracing. In Volume Graphics 2001 (New York, 2001),
Mueller K., Kaufman A., (Eds.), Springer. ISBN 3-211-
83737-X. 3

[RGWE03] ROETTGER S., GUTHE S., WEISKOPF D.,
ERTL T.: Smart Hardware-Accelerated Volume Render-
ing. In Procceedings of EG/IEEE TCVG Symposium on
Visualization VisSym ’03 (2003), pp. 231–238. 2, 3

[RSEB∗00] REZK-SALAMA C., ENGEL K., BAUER M.,
GREINER G., ERTL T.: Interactive Volume Rendering on
Standard PC Graphics Hardware using Multi-textures and
Multi-stage Rasterization. In HWWS ’00: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware (2000), ACM Press, pp. 109–118. 2

c© The Eurographics Association 2005.

S. Stegmaier et al. / A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting

[WE98] WESTERMANN R., ERTL T.: Efficiently using
Graphics Hardware in Volume Rendering Applications. In
SIGGRAPH ’98: Proceedings of the 25th annual Confer-
ence on Computer Graphics and interactive Techniques
(1998), ACM Press, pp. 169–177. 2

[WEE02] WEISKOPF D., ENGEL K., ERTL T.: Volume
Clipping via Per-Fragment Operations in Texture-Based
Volume Visualization. In Procceedings of IEEE Visual-
ization ’02 (2002), pp. 93–100. 6

[WKME03] WEILER M., KRAUS M., MERZ M., ERTL

T.: Hardware-Based Ray Casting for Tetrahedral
Meshes. In Procceedings of IEEE Visualization ’03
(2003), pp. 333–340. 2, 3

Appendix — Basic Volume Shader

Compute the ray’s entry point
MOV geomPos, fragment.texcoord[0];

Compute the camera position
MOV camera,

state.matrix.modelview.invtrans.row[3];

Compute the ray direction
SUB geomDir, geomPos, camera;

Normalize the direction (done manu-
ally instead
of with NRM to improve accuracy)
DP3 geomDir.w, geomDir, geomDir;
RSQ geomDir.w, geomDir.w;
MUL geomDir, geomDir, geomDir.w;
MOV geomDir.w, 0.0;

Account for slice distances and tex-
ture sizes
MUL dir, geomDir, scaleFactors;
MUL pos, geomPos, scaleFactors;
w-component select mipmap level
MOV pos.w, 0.0;

Initialize scalar value
RGB = gradient, alpha = scalar value
TXL scalar, pos, texture[0], 3D;
MOV scalar.g, scalar.a;
MOV scalar.a, 0.0;

REP params2.g;
REP params2.g;

Lookup new scalar value
TXL tex, pos, texture[0], 3D;
MOV scalar.r, tex.a;

Lookup color in pre-int texture
TXL src, scalar, texture[1], 2D;

Perform blending
SUB texblen.r, 1.0, dst.a;

MAD_SAT dst, src, texblen.r, dst;

Move one step forward
MAD pos, dir, stepsize, pos;

Terminate loop if outside volume
SGE temp1, pos, 0.0;
SLE temp2, pos, texMax;
DP3 temp1.r, temp1, temp2;
SEQC temp1.r, temp1.r, 3.0;
BRK (EQ.x);

Save current scalar value
MOV scalar.g, scalar.r;

ENDREP;

BRK (EQ.x);

ENDREP;

Compute the normal of the background plane
MOV normal, state.matrix.modelview.row[2];

Compute ray parameter
SUB temp.rgb, center, geomPos;
DP3 temp.r, normal, temp;
DP3 temp.g, normal, geomDir;
DIV temp.r, temp.r, temp.g;

Compute ray/plane intersection
MAD temp.rgb, temp.r, geomDir, geomPos;

Compute the difference vector
SUB diffVec, temp, center;

Compute the texture coordinates
DP3 temp.r, diffVec,

state.matrix.modelview.row[0];
DP3 temp.g, diffVec,

state.matrix.modelview.row[1];
MUL temp.rg, temp, params2.r;

Center background image
ADD temp.rg, temp, .5;

Look up the texel value
TEX temp.rgb, temp, texture[3], 2D;
MOV temp.a, 1.0;

Blend the background pixel
SUB texblen, 1.0, dst.a;
MAD dst, temp, texblen.x, dst;

Write destination color
MOV result.color, dst;

END

c© The Eurographics Association 2005.

