
Volume Graphics (2005)

E. Gröller, I. Fujishiro (Editors)

GPU-based Object-Order Ray-Casting for Large Datasets

Wei Hong, Feng Qiu, and Arie Kaufman †

Center for Visual Computing (CVC) and Department of Computer Science

Stony Brook University

Stony Brook, NY 11794-4400, USA

Abstract

We propose a GPU-based object-order ray-casting algorithm for the rendering of large volumetric datasets, such

as the Visible Human CT datasets. A volumetric dataset is decomposed into small sub-volumes, which are then

organized using a min-max octree structure. The small sub-volumes are stored in the leaf nodes of the min-max

octree, which are also called cells. The cells are classified using a transfer function, and the visible cells are then

loaded into the video memory or the AGP memory. The cells are sorted and projected onto the image plane front to

back. The cell projection is implemented using a volumetric ray-casting algorithm on the GPU. In order to make

the cell projection more efficient, we devise a propagation method to sort cells into layers. The cells within the

same layer are projected at the same time. We demonstrate the efficiency of our algorithm using the Visible Human

datasets and a segmented photographic brain dataset on commodity PCs.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

I.3.7Computer GraphicsThree-Dimensional Graphics and Realism

1. Introduction

High resolution CT data is highly demanded by many cur-

rent medical applications. The typical size of contemporary

clinical 16bit CT data is about 256MBytes (5123voxels).

The photographic volumetric datasets have color informa-

tion, which are usually larger than the CT and MRI datasets

of the same resolution. Moreover, the size of datasets will

likely keep increasing at a high rate due to the advance of

scientific devices. The rendering of large volumetric datasets

is a classical problem in visualization.

Algorithms for direct volume rendering generally fall

into two categories: image-order algorithms (e.g. ray-casting

[Lev90]) and object-order algorithms (e.g. splatting [Wes90]

or shear-warp [LL94]). The ray-casting algorithm can pro-

duce high quality images, and can achieve an interactive

rendering speed using graphics hardware. Unfortunately, it

imposes limits on the size of volumetric datasets that we

can render at adequate update rates, because most state-of-

the-art graphics cards only have 256 MBytes video mem-

† Email: {weihong|qfeng|ari}@cs.sunysb.edu

ory. Real-time rendering of large datasets larger than 256

MBytes using the image-order algorithm is currently infeasi-

ble unless super-computers [PSL∗98,KMM∗01] or PC clus-

ters [MOM∗01, SMW∗04] are used.

Volumetric datasets used in a variety of fields usually

contain many regions that are classified as transparent or

empty. The object-order approaches are well-suited for skip-

ping empty regions, but usually the associated filters are too

complex to be used for interactive rendering. And the hid-

den volume removal is also inefficient compared with the

ray-casting method. Mora et al. [MJC02] proposed a CPU-

based object-order ray-casting algorithm to take the advan-

tages of both image-order and object-order approaches for

interactive high-quality volume rendering. However, the cell

projection implemented in this method can be efficiently per-

formed only in orthogonal projection.

This paper presents a GPU-based approach for rendering

large volumetric datasets on the commodity computers. A

volumetric dataset is decomposed into small sub-volumes

called cells, which are organized using a min-max octree

structure. The cells are classified as empty cells or non-

empty cells. The non-empty cells are loaded into the video

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

W. Hong & F. Qiu & A. Kaufman / GPU-based Object-Order Ray-Casting for Large Datasets

memory or the AGP memory as more as possible. Then, the

cells are projected from front to back and composited using

the GPU. In order to make the cell projection more efficient,

we devise a propagation method to sort the cells into layers

such that all cells in one layer can be projected simultane-

ously.

The reminder of the paper is structured as follows: in the

next section, we will briefly review related work. Then, we

will describe the overview of our object-order ray-casting

algorithm in Section 3. In Section 4 and 5, we will explain

the detail of the cell projection and sorting algorithm respec-

tively. The implementation and results are discussed in Sec-

tion 6, and the paper concludes in Section 7 with some ideas

for future work.

2. Related Work

Parker et al. [PSL∗98] showed that it is feasible to perform

interactive iso-surface rendering of the full resolution Visible

Woman dataset with brute-force ray tracing on an SGI Real-

ity Monster. They achieved up to 20 fps when utilizing 128

processors. Kniss et al. [KMM∗01] presented a hybrid vol-

ume renderer, which can render full resolution time-varying

dataset, such as the Raleigh-Taylor fluid flow dataset, at

nearly 5 fps on a 128-CPU, 16-pipe SGI Origin 2000 with

IR-2 graphics hardware. Muraki et al. [MOM∗01] presented

a scalable PC cluster system designed specially for simulta-

neous volumetric computation and visualization, using com-

positing hardware devices and the latest PC graphics acceler-

ators. Strengert et al. [SMW∗04] described a system for the

texture-based direct volume rendering of large datasets on a

PC cluster equipped with GPUs. Hierarchical wavelet com-

pression is applied to increase the effective size of volumes

that can be handled. However, these large scale solutions do

not fit in the needs and capacities of an ordinary medical en-

vironment. Hence, many approaches have been devised on

PCs.

Ghosh et al. [GPKM03] presented a multi-board schemes

for rendering large volumetric datasets interactively. They

implemented an image-partitioned rendering method by

loading the entire volume on all available boards, but re-

stricting the range of the image and depth buffers to be

filled by each board. They achieved 24 fps for rendering the

Visible Male on one PC with four VolumePro 1000 boards

[PHK∗99]. The limitation of this method is that the size of

the volumetric dataset that can be rendered is limited by the

memory size of the single board.

Guthe et al. [GWGS02] presented a method for render-

ing large datasets at interactive frame rates on standard PC

hardware. The volumetric dataset is converted into a com-

pressed hierarchical wavelet representation in a preprocess-

ing step. During rendering, the wavelet representation is de-

compressed on-the-fly and rendered using texture mapping

hardware. The level of detail used for rendering is adapted

to the local frequency spectrum of the dataset and its posi-

tion relative to the viewer. However, the wavelet compres-

sion method degrades the performance and quality of the

rendering results. We use an object-order processing method

to skip the empty region and graphics hardware to remove

the hidden volume, which is efficient without degrading the

quality of the rendering.

Grimm et al. [GBKG04] presented a CPU-based volume

ray-casting approach based on image-ordered ray-casting

with object-ordered processing. They introduced a memory

efficient acceleration technique for on-the-fly gradient esti-

mation and a memory efficient hybrid removal and skipping

technique of transparent regions. Their method is also lim-

ited to orthogonal projection. In contrast to this method, our

approach is a hybrid solution, which also supports perspec-

tive projection. Moreover, we devised a sorting algorithm to

make our object-order ray-casting algorithm more efficient.

3. Algorithm Overview

In our object-order ray-casting approach, we define a cell

as a cubical region which corresponds to a sub-volume con-

taining N ×N ×N voxels. A cell is classified as empty, if

all voxels of the cell are invisible based on the transfer func-

tion. Otherwise, it is classified as non-empty. The min-max

ocree [WG92] is used to organize the cells for efficient clas-

sification. Each leaf node of the min-max octree contains a

cell, as well as the minimum and maximum density values

of the cell. Each interior node only contains the minimum

and maximum density values found in that node’s subtree.

In stead of projecting a reconstruction kernel for each

voxel onto the image plane as in the splatting technique,

we project the whole cell onto the image plane. Moreover,

we use a fragment program to do ray integration for the

projected cell on-the-fly, in which a volumetric ray-casting

algorithm is performed. For each cell, we need to store its

corresponding voxels in a 3D texture. Since the volumetric

ray-casting algorithm requires a neighborhood of voxels for

proper interpolations and gradient calculations, the neigh-

boring voxels of the cell need to be stored in the 3D texture.

Thus, for each cell the resolution of the corresponding 3D

texture is (N +2)× (N +2)× (N +2).

In order to obtain correct compositing result, we must

first determine the visibility order of the cells so that the

cells can be projected from front to back. Although the cells

can be hierarchically sorted using the min-max octree struc-

ture, we devised a more efficient propagation algorithm to

sort cells. As a result, the cells are front-to-back sorted and

grouped into layers. The cells within the same layer can be

projected simultaneously, which dramatically improves the

performance of our cell projection algorithm on the GPU.

Our cell sorting algorithm and cell projection algorithm can

take the advantage of the parallelism between the CPU and

the GPU. Thus, when a layer of cells are determined, they

c© The Eurographics Association 2005.

W. Hong & F. Qiu & A. Kaufman / GPU-based Object-Order Ray-Casting for Large Datasets

can be projected immediately to trigger fragment programs

to be executed on the GPU. The CPU then can be used to

generate the next layer of cells.

Figure 1: The three-layer structure used to store the cell

data.

Although a large number of cells are classified as empty

cells, which do not need to be uploaded to the GPU, the 3D

textures corresponding to the non-empty cells are still too

large to be fitted in the video memory. We need to trans-

fer some non-empty cells to the video memory on-the-fly.

The OpenGL extension pixel_buffer_object (PBO) defines

an interface to using buffer objects for pixel data, which dra-

matically improves the texture uploading performance. By

using this extension, the GPU can asynchronously pull the

data from the AGP memory using DMA (Direct Memory

Access). Thus, we use a three-level structure to store the cell

data in the video memory, the AGP memory, and the system

memory as shown in Figure 1. Suppose that we can allocate

M 3D textures in the video memory and N buffers of the

same size in the AGP memory, and the first 20 buffers are

used as a memory pool for transferring data on-the-fly. We

first randomly choose N non-empty cells and upload them

into the video memory. We then copy the other M-20 non-

empty cells into the AGP buffers. The rest of non-empty

cells are still resident in the system memory. For each cell,

we use a flag to indicate whether its corresponding data is

resident in the video memory, the AGP memory, or the sys-

tem memory. Thus, the size of the dataset that can be ren-

dered by our algorithm is limited by the size of the system

memory.

The overview of the proposed algorithm is shown in Fig-

ure 2. The min-max octree construction, classification, and

texture loading are performed in the pre-processing step,

which are view independent. Our cell sorting algorithm or-

ganizes cells into layers. When a layer of cells are gener-

ated, we first check whether all non-empty cells are resident

in the video memory. If any non-empty cell within the layer

is not resident in the video memory, we need to upload it

on-the-fly. Before we can transfer the data, we must deter-

mine which 3D texture object is used to receive the data. In

Figure 2: The overview of our GPU-based object-order ray-

casting algorithm.

other words, the current data stored in that 3D texture is re-

placed by the new data. We use a replacement queue to hold

the cells that are already projected and can be switched out.

When a layer of cells are sent to the GPU, we can not put

them into the replacement queue immediately. Because we

do not know whether the corresponding fragment programs

executed on the GPU are finished or not. We use a Nvidia

OpenGL extension NV_fence to determine whether the cell

projection of a layer of cells is finished on the GPU. This ex-

tension introduces the concept of a "fence" to the OpenGL

command stream. Once the fence is inserted into the com-

mand stream, it can be queried whether it is finished. Af-

ter all OpenGL commands for cell projection of the layer of

cells are issued, we insert a fence into the commands. Then,

we query the fence’s state after every layer of cells are pro-

jected. If the fence is completed, the cells before the fence

are inserted into the replacement queue, and a new fence is

inserted into the OpenGL commands stream again. In case

the replacement queue is empty, we randomly choose a 3D

c© The Eurographics Association 2005.

W. Hong & F. Qiu & A. Kaufman / GPU-based Object-Order Ray-Casting for Large Datasets

texture whose corresponding cell has not been projected to

receive the data. We will discuss the detail of the cell pro-

jection algorithm and cell sorting algorithm in the following

sections.

4. Cell Projection

When the orthogonal projection is used, every cell projection

on the image plane is given by the same hexagon shape per

viewing direction. This projection can be computed once,

and then used as a template for all cells, which can be ob-

tained by translation. The rays intersecting with the cell are

then determined by the cell projection efficiently. However,

when the perspective projection is applied, the situation be-

comes more complicated. The cell projections on the image

plane are different, and the pre-computed template can not

be used any more, which make the CPU-based object-order

ray-casting algorithm infeasible. The good thing is that the

cell projection can be efficiently implemented on the recent

graphics card even when a perspective projection is used,

which makes it possible to implement an object-order ray-

casting algorithm on the GPU.

Figure 3: The pipeline of the cell projection.

Our cell projection algorithm is implemented using frag-

ment programs running on the GPU. When a cell is rendered,

a number of fragments are generated, which are correspon-

dent to the rays intersecting with that cell. For every non-

empty cell that has to be projected, the rendering pipeline is

shown in Figure 3. The proposed algorithm consists of four

rendering passes for each cell. The modelview matrix and

projection matrix remain unchanged for all four rendering

passes. Hence, the fragments generated at the same window

position in the four rendering passes correspond to the same

ray intersecting with the cell.

OpenGL provides pixel buffers (pbuffer for short) for off-

screen rendering. Combined with the render_texture exten-

sion, it allows the color buffer of the pbuffer to be used for

both rendering and texturing. Three pbuffers are used as ren-

dering targets for different render passes in our algorithm.

The first pbuffer, the rendering target of the first rendering

pass, is used to store the exiting points of the rays that inter-

sect with the projected cell. It is also bounded to a 2D RGB

floating point texture, named exiting points texture (EPT),

which is accessed in the third rendering pass to compute

the length of each ray segment and normalized ray direc-

tion. The second pbuffer is made up of a depth buffer and

a color buffer, which are the rendering targets of the sec-

ond and third rendering pass, respectively. The depth buffer

is used to implement early ray termination with the early-z

test technique described in [KW03]. This optimization hap-

pens only if the fragment program is not going to modify

the fragment’s depth. However, we need to modify the depth

values based on the opacity values. We thereby use a sep-

arate rendering pass to modify the depth values. The color

buffer is used to store the result of the ray integration, which

is bound to a 2D RGBA floating point texture, named ray

integration texture (RIT) and accessed in the last rendering

pass. The third pbuffer is the rendering target of the last ren-

dering pass, which is used to accumulate the color values. It

is bound to a 2D RGBA floating point texture in the second

rendering pass, which is named color accumulation texture

(CAT). Its opacity values are accessed in the second render-

ing pass to modify the depth values accordingly for culling

the fragments whose corresponding rays have already satu-

rated their opacity values. The cell projection algorithm is

described as follows:

• Pass 1 (Exiting Points Computation): In the first rendering

pass, the exiting points for the rays intersecting with the

projected cell are computed by only rendering the back

faces of the cell. For each vertex of the cell, we assign its

texture coordinates in the corresponding 3D texture space

as its primary color. The fragment program is straightfor-

ward, which just passes the fragment’s primary color as

output. As a result, we obtain a texture coordinate for each

fragment, which is the coordinate for the exiting point of

the ray in the texture space.

• Pass 2 (Early Ray Termination): The opacity value of the

fragment is accessed through the color accumulation tex-

ture (CAT). For any fragment whose opacity value ex-

ceeds 0.99, the depth value is set to one. As a conse-

quence, if the depth test is set to GREATER, the corre-

sponding fragment in the third rendering pass is discard.

• Pass 3 (Volumetric Ray-Casting): The front faces of the

cell are rendered to compute the entry points for the rays

using the same method as Pass 1. In the fragment pro-

gram, the exiting point is obtained through accessing the

exiting point texture (EPT). The normalized ray direction

and length of ray segment are computed in the 3D texture

space. The ray is then evenly sampled with a sampling

c© The Eurographics Association 2005.

W. Hong & F. Qiu & A. Kaufman / GPU-based Object-Order Ray-Casting for Large Datasets

Figure 4: A layer of cells have the same Manhattan distance and can be projected together.

distance 0.5 to do ray integration. It is impossible to pre-

compute the gradient information and store them on the

GPU for large datasets. Thus, we estimate the gradient on

each sampling point on the fly. We use texture lookup to

obtain the density at six neighboring positions, then esti-

mate the gradient using central difference.

• Pass 4 (Color Accumulation): The front faces of the cell

are rendered again to generate corresponding fragments.

In the fragment program, the color value and opacity value

of the projected cell are accessed through ray integra-

tion texture (RIT), and returned as color output directly.

OpenGL blending is enabled in this rendering pass for ac-

cumulating the color and opacity values.

When all non-empty cells are projected, the color accu-

mulation texture (CAT) holds the final image. In fact, the

rendering Pass 2 is not need to be executed for every layer.

In our implementation, we enable the rendering Pass 2 every

other two layers.

Because the rendering context are switched three times

during the cell projection, this may cause a significant loss in

performance on current GPUs. In order to decrease the num-

ber of rendering context switching, we need to project more

cells in each rendering pass to improve the performance of

the cell projection. Thus, we devise a cell sorting algorithm,

which allows us to project a layer of cells each pass.

5. Cell Sorting

For a given viewing direction vector in the octree coordinate

system, the signs of the coordinates determine the order in

which the eight children are visited when parallel projection

is used. When perspective projection is used, visibility order

of the eight children can still be determined by the location

of the camera to the octree. However, the octree structure

only allows us to project at most four cells in one pass for

some viewing directions. We need to project cells as more as

possible to decrease the number of rendering context switch-

ing.

The main idea of our algorithm is to divide the cells into

layers. We only need to determine the visibility order of lay-

ers. The cells within the same layer can be projected at the

same time. It is observed that the cells that have the same

distance to the camera can be projected together. However,

using the Euclidean distance from the cells to the camera to

do the cell sorting is inefficient. In order to improve the per-

formance, we use the Manhattan distance instead of the Eu-

clidean distance. Moreover, we use the Manhattan distance

between a source cell and the other cells to group the cells

into layers. A source cell is determined first for a given view

point, which is the closet cell to the camera. We then use a

propagation method to compute the Manhattan distance for

the other cells. The cells that have the same Manhattan dis-

tance to the source cell are put into the same layer. We first

describe our cell sorting algorithm in the 2D case, and then

extend it to 3D.

In the 2D case, the whole object can be represented with a

square, and the camera can be set up around the square. We

first find the closest cell to the camera based on the camera’s

location with respect to the square. If the camera is located

at the corner region as shown in the right image of Figure

4, the closest cell is the corresponding corner cell shown in

grey. Otherwise, the closest cell is on the edge of the square

that is opposite to the camera as shown in the left image of

Figure 4. The closest cell can be obtained by shooting a ray

perpendicular to the edge. The intersected cell is the closest

cell. If the ray intersects two cells, the two cells are both

c© The Eurographics Association 2005.

W. Hong & F. Qiu & A. Kaufman / GPU-based Object-Order Ray-Casting for Large Datasets

used as source cell. In Figure 4, we shows the Manhattan

distance of each cell. It is observed that the cells show a very

clear layer structure. It is also noted that each layer consists

of more cells by using the Manhattan distance than using

the Euclidean distance. In fact, we do not need to explicitly

compute the Manhattan distance. From the Figure 4, we can

see that the source cell is made up of the first layer. And, the

second layer consists of the edge neighboring cells of the

source cell. Thus, we can use a propagation method to group

the cells into layers from the source cell C0. The propagation

algorithm is described as follows:

1. Let C0.visited = 1 and put C0 into a list L0. Set the other

cells to be un-visited.

2. For each cell Ci in the list L0

a. Obtain the four edge neighboring cells Ci j(j =
0,1,2,and3) of Ci. If Ci j .visited is 0, let Ci j .visited =
1 and put Ci j into the list L1.

3. Project the non-empty cells of L0. If all non-empty cells

are projected, the algorithm is terminated.

4. Copy L1 to L0, and goto 2.

By using this sorting algorithm, each layer of the cells

have the same Manhattan distance to the source cell. The

cells within the same layer does not occlude with each other,

which can be projected at the same time. This algorithm can

be easily extended to the 3D case. In the 3D case, the closest

cell still can be find efficiently based on the region where the

camera is located with respect to the volumetric dataset. The

propagation process is almost same, except that we need to

use the six face neighboring cells for propagation in the 3D

case.

If the camera is located inside the dataset, the sorting al-

gorithm becomes even simpler. The source cell is right the

cell where the camera is located. Moreover, we only need

to propagate the order information along with the viewing

direction of the camera. The cell projection of the starting

cell is implemented a little different from the of other cells.

Only one rendering pass is needed to implement the pro-

jection of the starting cell. The rendering target is the third

pbuffer used for color accumulation. The back faces of the

starting cells are rendered to trigger the fragment program,

which also give the exiting points of the corresponding rays.

The camera position is passed to the fragment program as

an uniform parameter. The ray direction is computed by us-

ing the exiting points and camera position. Then, the ray is

evenly sampled to do ray integration from the camera po-

sition. Thus, our algorithm can be used for the fly-through

applications, such as virtual colonoscopy.

6. Implementation and Results

In this section, we present some implementation details and

testing results. The presented algorithm is implemented us-

ing C/C++, and fragment programs are implemented using

Cg [MGAK03]. The experiments have been conducted on a

3.0GHz Intel Pentium IV PC, with 2G RAM and a NVIDIA

Quadro FX 3400 graphics card. We list the information of

the datasets used in our experiments in Table 1.

The size N of the cell is crucial to our algorithm. A smaller

N is efficient for empty space skipping, but inefficient for

the cell projection executed on the GPU. Because using a

smaller N will increase the number of rendering context

switching, which decreases the performance. And, it also in-

crease the number of texture objects switching because our

cells are stored in separate 3D textures. A smaller N will re-

sult in the projection of the cell covering less pixels on the

image plane, which degrade the efficiency of the volumetric

ray casting because of the poor caching. Moreover, for each

cell normalized ray direction and length of the ray segment

are needed to be computed for the rays intersecting with that

cell. A larger N can decrease such computation. We choose

N = 64 in our implementation for the purpose of the trade-

off between the empty space skipping and the cell projection

on the GPU.

Table 1: The information of the datasets used in the experi-

ment.

Dataset Dimension Size

Visible Male 512×512×1887 0.71GB

Visible Female 512×512×1734 0.65GB

Brain 1080×1110×158 0.93GB

We use the full resolution Visible Human CT datasets to

test our algorithm. About a half of cells are skipped after the

classification. Thus, most cells are fitted into the video mem-

ory and the AGP memory. Only a small number of cells are

still resident in the system memory. We can achieve several

frames per second for such large datasets on a commodity

PC. We show some resulting images in Figure 5, which are

all rendered at the resolution of 512× 1024. In Figure 5(a),

we show the skin of the Visible Male using an opaque trans-

fer function. In Figure 5(b), we show the bone structure and

some organs of the Visible Male using a semi-transparent

transfer function. In Figure 5(c), the bone of the Visible Fe-

male is shown by using an opaque transfer function. It is

natural that we achieve higher rendering speed when the

opaque transfer functions are applied. Because more cells

are skipped in the object-space and less cells need to be pro-

jected.

We also use a segmented photographic volumetric dataset

to demonstrate the efficiency of our algorithm. Compared

with the CT datasets, the volume rendering for photographic

datasets requires an opacity transfer function from the non-

linear color space, which is more complicated than that for

the CT datasets. We use the CIE Luv color space to obtain

c© The Eurographics Association 2005.

W. Hong & F. Qiu & A. Kaufman / GPU-based Object-Order Ray-Casting for Large Datasets

(a) 3.1 fps (b) 1.8 fps (c) 3.5 fps

Figure 5: Visible Human CT datasets rendered using our algorithm.

a perceptually uniform representation of the color volume,

and assign an opacity value for each voxel using the method

proposed by Ebert et al. [EMRY02]. Thus, each voxel of this

dataset contains RGB color, opacity and segmentation infor-

mation. In order to render segmented datasets, for each cell

we store a list of labels that are used for labeling the vox-

els in the cell. When an organ is chosen for rendering, only

the cells containing the corresponding label are loaded into

the video memory for projection. These cells usually can be

fitted into the video memory without on-the-fly transferring

data, which allows us to interactively explore the segmented

organs. In Figure 6, we show some resulting images ren-

dered from the segmented brain dataset with a resolution of

512× 512. A top view of the full resolution brain dataset is

shown in Figure 6 (a). The segmented brain stem and ven-

tricle can be rendered in real-time shown in Figure 6 (b) and

(c), because all the related cells can be fitted in the video

memory.

7. Conclusions and Future Work

We presented a GPU-based object-order ray-casting algo-

rithm for rendering large volumetric datasets such as the

Visible Human CT datasets. The volume dataset is decom-

posed into small cells, and organized using a min-max octree

structure. The empty cells are skipped immediately after the

classification. The volumetric ray-casting algorithm is per-

formed on the GPU for each non-empty cell projection, and

the resulting integration of the cell are front-to-back com-

posited to generate the final image. We devised a cell sorting

algorithm to allow us project a layer of cells at the same

time, which improves the performance of the fragment pro-

c© The Eurographics Association 2005.

W. Hong & F. Qiu & A. Kaufman / GPU-based Object-Order Ray-Casting for Large Datasets

(a) 1.5 fps (b) 21.8 fps (c) 23.1 fps

Figure 6: Brain dataset of the Korean Visible Human rendered using our algorithm.

grams on the GPU. The hidden volume is culled by using the

assistance of the graphics hardware.

The main bottleneck of our algorithm is on-the-fly trans-

ferring data from the system memory to the video memory,

although we have already used OpenGL pixel buffer object

(PBO) extension to accelerate it. Moreover, the 3D textures

belonging to the culled cells due to the opacity occlusion are

still uploaded to the video memory, if they are not resident

the video memory. We would like to study how to avoid this

kind of data transferring to improve the performance further

in our future work. In our current implementation, the cells

are stored in the separate 3D textures. We also would like

to pack the cells and store them in a single 3D textures to

decrease the number of texture objects switching. The size

of the dataset that can be rendered by our method is lim-

ited by the size of the system memory. We would like to

extend our method to PC clusters to interactively render the

datasets such as the full resolution photographic Visible Hu-

man datasets.

Acknowledgement

This work has been supported by an NSF grant CCR-

0306438. The Visible Human datasets are courtesy of the

National Library of Medicine. The Korean Visible Human

dataset is courtesy of HuminTec Inc., Korea.

References

[EMRY02] EBERT D. S., MORRIS C. J., RHEINGANS P.,

YOO T. S.: Designing effective transfer functions for vol-

ume rendering from photographic volumes. IEEE Trans-

actions on Visualization and Computer graphics 8 (Apr.

2002), 183–197. 7

[GBKG04] GRIMM S., BRUCKNER S., KANITSAR A.,

GROLLER E.: Memory efficient acceleration structures

and techniques for cpu-based volume raycasting of large

data. IEEE Symposium on Volume Visualization and

Graphics (Oct. 2004), 1–8. 2

[GPKM03] GHOSH A., PRABHU P., KAUFMAN A.,

MUELLER K.: Hardware assisted multichannel volume

rendering. Proceedings of the Computer Graphics Inter-

national Conference (July 2003), 2–7. 2

[GWGS02] GUTHE S., WAND M., GONSER J., STRA-

BER W.: Interactive rendering of large volume data sets.

Proceedings of IEEE Visualization ’02 (Oct. 2002), 53–

60. 2

[KMM∗01] KNISS J., MCCORMICK P., MCPHERSON

A., AHRENS J., PAINTER J., KEAHEY A., HANSEN C.:

Interactive texture-based volume rendering for large data

sets. IEEE Computer Graphics and Applications 21 (July

2001), 52–61. 1, 2

[KW03] KRUEGER J., WESTERMANN R.: Acceleration

techniques for gpu-based volume rendering. Proceedings

of IEEE Visualization ’03 (Oct. 2003), 38–46. 4

[Lev90] LEVOY M.: Efficient ray tracing of volume data.

ACM Transactions on Graphics 9, 3 (July 1990), 245–

261. 1

[LL94] LACROUTE P., LEVOY M.: Fast volume render-

ing using a shear–warp factorization of the viewing trans-

formation. Proceedings of SIGGRAPH ’94 (July 1994),

451–458. 1

[MGAK03] MARK W. R., GLANVILLE R. S., AKELEY

K., KILGARD M. J.: Cg: A system for programming

graphics hardware in a c-like language. Proceedings of

SIGGRAPH ’03 (2003), 896–907. 6

[MJC02] MORA B., JESSEL J. P., CAUBET R.: A new

object-order ray-casting algorithm. Proceedings of IEEE

Visualization ’02 (Oct. 2002), 203–210. 1

c© The Eurographics Association 2005.

W. Hong & F. Qiu & A. Kaufman / GPU-based Object-Order Ray-Casting for Large Datasets

[MOM∗01] MURAKI S., OGATA M., MA K.-L.,

KOSHIZUKA K., KAJIHARA K., LIU X., NAGANO Y.,

SHIMOKAWA K.: Next generation supercomputing using

pc clusters with volume graphics hardware devices. IEEE

Supercomputing ’01 (Nov. 2001), 51–58. 1, 2

[PHK∗99] PFISTER H., HARDENBERGH J., KNITTEL J.,

LAUER H., SEILER L.: The volumepro real-time ray-

casting system. Proceedings of SIGGRAPH ’99 (July

1999), 251–260. 2

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN

C., SLOAN P.-P.: Interactive ray tracing for isosurface

rendering. Proceedings of IEEE Visualization ’98 (Oct.

1998), 233–238. 1, 2

[SMW∗04] STRENGERT M., MAGALLON M.,

WEISKOPF D., GUTHE S., ERTL T.: Hierarchical

visualization and compression of large volume datasets

using gpu clusters. Eurographics Symposium on Parallel

Graphics and Visualization ’04 (2004), 41–48. 1, 2

[Wes90] WESTOVER L.: Footprint evaluation for volume

rendering. Computer Graphics 24, 4 (Aug. 1990), 367–

376. 1

[WG92] WILHELMS J., GELDER A. V.: Octrees for faster

isosurface generation. ACM Transactions on Graphics 11

(July 1992), 201–227. 2

c© The Eurographics Association 2005.

