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Abstract
In recent years there has been considerable interest in modeling realistic subsurface light scattering in materials
such as marble, human skin, or clouds. Many of these models provide a solution for the transport equation in a
homogeneous or layered scattering media. The model we present here exploits a diffusion mechanism to provide
a simpler solution to the transport equation. Treating light flux as current we can use circuit analysis techniques
and linear systems to solve directly for the steady state transport equation and ignore the transient values. Thus
our model can simulate light transport in heterogeneous materials and complex geometry.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computing Methodologies]: Computer Graph-
icsPicture/Image Generation; I.3.7 [Computing Methodologies]: Computer GraphicsThree-Dimensional Graphics
and Realism

1. Introduction

Subsurface scattering and substrate rendering is arguably
one of the most challenging aspects of realistic image syn-
thesis today. This effect is what makes organic material, such
as skin, look soft [JMLH01]. Similarly, substrate effects al-
lows for the rendering of patinas and weathering [DH96].
Photorealism will certainly require that scattering and sub-
strate effects be included for convincing visuals.

Previous research in this area has yielded various mod-
els of light transport, each suited for modeling scatter-
ing and substrate transport in different types of materials
[BR98, Bli82, DH96, HK93, JMLH01, Max94, Sta95].

Very realistic looking images have been obtained through
these models. Unfortunately, many of them have limita-
tions such as restrictions to simple geometries [BR98,Bli82,
Max94], homogeneous materials [JMLH01, Max94, Bli82]
or are limited to one dimensional transport theory or BRDFs
[BR98, Bli82, DH96, HK93, KPHE02, REHL03].

It should be noted that the methods reported previously
do not allow one to model and conceive virtual and real-
istic materials to achieve a diversity of light scattering ef-
fects. Consider the task of rendering organic material such
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as a tomato (see Figure 7). One can perhaps assume homo-
geneity and select a suitable value for the scattering and ex-
tinction coefficients for the model proposed in [JMLH01].
However, a tomato is hardly homogeneous. It is composed
of the pericarp, which is a highly scattering vascular tissue;
the exocarp, thin outer skin; placental tissue, a gelatinous
membrane surrounding the seeds with low absorption and
scattering properties; and the seeds, which are opaque. Fur-
thermore, these tissues are not layered in any regular or peri-
odic fashion, hence a continuous solution cannot be derived.

In this paper we realize a transport model that incor-
porates material modeling and addresses the issues raised
above. The salient features of our transport model are listed
below:

• Light transport in the material is conservative. In other
words all light energy is accounted for by either genera-
tion from a source, absorption as heat, or scattering into
or out of the system.

• The medium is highly scattering (optically thick) and
hence can be modeled using a diffusion approximation.

• Transients in the medium are not necessary for rendering.
The only data we are often interested in is obtained from
solution of the steady state.

These assumptions will naturally lead to a diffusive in-
terpretation of the light transport. A diffusive approximation
will certainly be less accurate than more realistic complete
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simulations which often rely on Monte Carlo solutions of
integral Equations [Cha60,Kaj86,Pra88]. It should be noted
that the complete solutions are often very computationally
expensive and the handling of boundary conditions can be
often intractable. On the other hand, a diffusive approxima-
tions can be more accurate than heuristic methods including
the Kubelka-Munk method [DH96].

Diffusion is the primary means of light propagation in a
highly scattering subsurface. Thus, in the computer graph-
ics literature diffusion has been used to model subsurface
scattering [JMLH01, Sta95]. However, we employ a simpler
scattering framework and show how inhomogeneity can be
included. In essence we employ a restricted model of trans-
port where flux (or light) propagates along a 3D grid of
cells. Although this may seem restrictive it should be noted
that in the limiting case our cell transport diffusion model
will model the complete diffusion process and hence subsur-
face scattering in its entirety. While it is possible to bias a
phase function in diffusion to forward or backward scatter
our model prefers neither direction.

Diffusion methods can be realized from a system of partial
differential equations. However, other more intuitive meth-
ods exist. The steady state behavior of an impedance net-
work (an electrical circuit) could also provide a diffusive re-
alization of light transport. In essence, we create an optical
network. We consider the dual of light propagated though the
scattering media as current or “flux” through the electric cir-
cuit. Voltage sources model the initial boundary conditions
of the light incident on the material, grounding elements in-
side cells simulate absorption and intercellular impedances
model the directions and relative amount of flux that can be
scattered from and into a cell.

Furthermore, modeling subsurface scattering as an elec-
tric circuit provides additional benefits that have not, to our
knowledge, been previously addressed together in a scatter-
ing model to date:

• Inhomogeneous materials are easily modeled. As an ex-
ample later in this paper we create an inhomogeneous
light scattering model for a tomato and a human foot
based on Magnetic Resonance (MR) data. The scalar field
can be used as a reference to a transfer function to map
MR intensities to scattering properties†.

• User defined inhomogeneous substrates can be easily
built. Once the scattering properties of a particular ma-
terial have been studied and converted to its dual in an
electric circuit, it can be used like a building block in com-
bination with other blocks to generate a new material.

• Some models that exist today must rely on thin materials,
or only allow connections in specific directions. No re-
strictions need to be made on the geometry of our model.

† Although we describe a regular subdivision it should be noted
that our technique can be applied to any subdivision of space.

Connections can exist in any direction and across cells if
necessary.

• Use of an electric circuit provides us with many fast and
robust numerical solution techniques.

• Rendering now is post-processing activity after a steady
state solution is obtained, thus simpler algorithms than
photon mapping can be used for rendering.

1.1. Paper Overview

The rest of our paper is as follows. First in Section 2 we
discuss previous works including different subsurface light
scattering models. Next in Section 3 we provide an introduc-
tion to our cell transport theory and tie our circuit model with
previous models by showing how voltage can be derived
from irradiance. Following this in Section 4 we describe the
computational methods we employed. Finally in Section 5
we show the complex scattering behavior our model can sim-
ulate by varying the composition of the scattering substrate.
Furthermore we show how MRI density values can be used
to set constraints on the optical network. We present our final
results in Section 7.

2. Previous Work

S. Chandrasekhar first presented the equation of transport in
his classic work Radiative Transfer [Cha60] (see Equation
5). This equation essentially accounts for all radiance flow-
ing through a surface by accounting for absorption, outscat-
tering, inscattering and a source term. Any effort to model
subsurface scattering or substrate transport of light is in re-
ality an attempt to solve this equation. Kajiya was one of
the first to use this mathematical machinery and proposed a
stochastic approach of path tracing and Monte Carlo meth-
ods [Kaj86].

Blinn created the first subsurface scattering model in com-
puter graphics. His goal was to realistically model light scat-
tering effects caused by the rings of Saturn [Bli82]. Blinn’s
model uses various Henyey-Greenstein functions and phys-
ically based measurements to create probability distribu-
tions for particle scattering directions. Although the result-
ing model is elegant and generates impressive images, it is
limited to thin surfaces of low albedo and does not account
for higher order scattering events. On a similar note Ka-
jiya and Von Herzen present the classic volume ray tracing
algorithm [KV84] while Rushmeier and Torrance present
a radiosity based solution for a similar scattering prob-
lem [RT87].

Baranoski and Rokne developed model similar to Blinn’s
for light transport in plant tissue [BR98]. However, the phase
functions are more complex than that of Blinn’s and are ob-
tained from large number of physically based measurements.
Once again only thin materials can be modeled.

Hanrahan and Kruger developed a bidirectional re-
flectance distribution function (BRDF) and a transport
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model for subsurface scattering that is a complete solution
to the total first order scattering [HK93]. Unfortunately it is
limited to flat, uniformly lit, homogeneous slabs and is based
on one dimensional transport theory along a ray (i.e. does not
take into account scattering from neighboring areas). Higher
order scattering terms can be determined through the use of
a Neumann series expansion.

Jensen et al. [JMLH01] introduced a fast Monte-Carlo
subsurface scattering model that combined the diffusion ap-
proximation presented by Ishimaru [Ish78] and the single
order scattering BRDF from Hanrahan and Kruger. Further-
more, the authors used a dipole source to satisfy the bound-
ary condition in Ishimaru’s diffusion approximation. As a
result, Jensen et al. propose the use of the bidirectional sur-
face scattering distribution function (BSSRDF) which is like
a BRDF but allows flux to exit a substrate in a different loca-
tion than it entered. It should be noted that the model which
uses the dipole formulation is limited to homogeneous ma-
terials only.

Jensen proposed a variant of photon mapping for highly
scattering materials in [Jen01]. In this model diffuse photons
are discretely traced through the substrate where at each time
step a photon is either scattered, absorbed or left untouched
for the next time step. The exiting diffuse light is estimated
by gathering photons in the region that is to be lighted. This
technique could be made to handle non-homogeneous ma-
terials, but would require variable stepsizes depending on
the scattering properties of the current material the photon
is being traced through. Also, during the gathering step one
must account for the contribution of photons differently de-
pending on the scattering properties of the material that that
photon resides.

Max [Max94] presented an enhancement to the discrete
ordinates method which accounts for multiple scattering. In
this method each voxel can scatter flux into a finite number
of directions entire solid angles. Max et al. [MSM∗04] en-
hances this method by taking advantage of hardware accel-
erated techniques and accounting for regions in clouds with
little scattering.

Jos Stam presented an implementation of multiple scat-
tering as a diffusion processes in [Sta95]. Stam’s diffusion
model was also derived from Ishimaru [Ish78] but solved
the diffusion process through a multi-grid finite difference
scheme and a finite-element blob method. Ishimaru shows
that one can use the diffusion approximation to accurately
simulate light propagation through materials when scattering
events are frequent. These occur in optically thick materials
like skin or milk. Since we also use a diffusion approxima-
tion it should be noted that this transport model is similar
to ours. However, in our model we treat light flux as poten-
tials across neighboring voxels rather than continuous flux
throughout the substrate.

Kniss et al. [KPH∗03] has developed a model that uses

forward scattering and volumetric light attenuation to im-
prove the quality of volume shading. A model of this nature
is useful in materials where forward scattering dominates,
such as highly translucent material, clouds or even atmo-
spheric effects [KPHE02, REHL03].

Researchers in biomedical engineering have also exam-
ined the transport of electromagnetic radiation and waves
in human tissue [PH97, Pra88]. In [Pra88] a diffusion ap-
proximation, the Delta-Eddington model, was used to model
light transport. Specific boundary conditions were used to
model various tissue arrangements and configurations. Also,
measurements were included in the model for more accu-
rate modeling of the transport phenomena. It should be noted
that circuits are often used to model light propagation in me-
dia [PH97].

Finally there has been a significant amount of work done
to simulate subsurface scattering on modern graphics hard-
ware [MKB∗03, DS03] through simplifications of the scat-
tering model or through implementation of numerical meth-
ods on the graphics processing unit.

3. Theory

To recapitulate, our transport model is realized as a steady
state diffusion process and can be conceived as an electri-
cal circuit. As a result inhomogeneous materials, complex
geometries and measurements can be easily included. In
essence, our approach provides a bread-board for construct-
ing complex materials and render them expediently.

This section provides necessary justification for our
model as well as an introduction to basic circuit theory
which we will use to derive our linear system of equations
in a later section.

3.1. Cell Transport Model

Our model assumes that the solution for light propagation
through highly scattering media is the same as voltage prop-
agation through a resistive network. This section will show
how light is related to current and how the solution of a re-
sistive network is the same as the solution to the transport
equation.

3.1.1. Irradiance is Related to Voltage

Irradiance (flux per unit area) is the integration of incoming
radiance over all directions, its units are W/m2. Hence, we
can write irradiance as power per unit area:

dφ
dA

= E =
p

dA
. (1)

Likewise in circuit theory we can write power as a product
of voltage and current:
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p =
dw
dt

=
dw
dq

· dq
dt

= vi. (2)

From Ohm’s law we can rewrite this equation in terms of
voltage only:

p =
v2

R
. (3)

Resistor R has no physical significance in our optical net-
work other than the initial value of the voltage and hence
can be chosen arbitrarily. This leads us to understand the re-
lationship between voltage and irradiance as:

E ∝ v2

dA
⇒ v ∝

√
E ·dA. (4)

3.1.2. Transport Equation in terms of Kirchoff Current
Laws

In this section we show how the Transport Equation can be
realized as a diffusion equation, and then how the diffusion
equation can be realized in terms of Kirchoff Current Laws.

Ishimaru shows that single scattering and first order so-
lutions are applicable when the volume density (ratio of the
volume occupied by particles to the total volume of the me-
dia) is much less than 0.1% [Ish78] (such as Blinn’s Sat-
urn rings). The diffusion approximation gives good solutions
when the density is much greater than 1% which exists in
highly scattering media, such as blood [Joh70].

Intensity in a random medium can be divided into two
parts, the reduced incident intensity Iri and the diffuse in-
tensity Id . Reduced incident intensity is the part of the flux
that remains after scattering and absorption. We denote it by
Iri(r,~s) where r is the point at which the flux is measured
and~s is the unit vector in which it is propagating. Its behav-
ior satisfies the equation

dIri(r,~s)
ds

= −ρσt Iri(r,~s)

which simply shows that the value of Iri decays exponen-
tially as we travel away from its origin where ρ is the particle
density and σt is the extinction cross section. This behavior
is similar to ray techniques used in volume rendering. (Note
that terms are described in Table 1).

The diffuse intensity must satisfy the equation of transfer:

dId(r,~s)
ds

= −ρσt Id(r,~s)+
ρσt

4π

∫

4π
ρ(~s,~s′)Id(r,~s)dω′+

εri(r,~s)+ ε(r,~s).
(5)

p(ŝ, ŝ′) the phase function of the angle between
ŝ and ŝ′.

µ the mean cosine of the scattering angle
ρ particle density
σa absorption cross section
σs scattering cross section
σt extinction cross section (σa +σs)
σtr transport cross section (σs(1−µ)+σa)
Id(r, ŝ) diffuse intensity
Iri(r, ŝ) reduced incident intensity
ε(r, ŝ) source function
εri(r, ŝ) source function due to reduced incident

intensity
Ud(r) average diffuse intensity
Uri(r) average reduced intensity
κ (ρσtr)

−1

α 3ρσa

Table 1: Table of terms

In this case εri is the reduced source term which can be
calculated from the reduced intensity and ε is simply an in-
ternal source term (if one exists).

By expanding Id into the first two terms of its Taylor’s
series expansion and substituting back into Equation 5 we
end up with the steady state diffusion approximation (see
the details of the derivation in [Ish78] pp 175-178):

∇2Ud(r)−κ2Ud(r) = −3ρ2σsσtrUri(r)−
3

4π
ρσtrE(r)

+
3

4π
∇·

∫

4π
εri(r,~s)~sdω

+
3

4π
∇·

∫

4π
ε(r,~s)~sdω.

(6)

Where, Ud and Uri are the uniform diffuse and reduced
intensities respectively. By collecting the scattering terms,
we write this equation in a more general form,

∇2u−au = ε (7)

where

u diffusion term
a absorption coefficient
ε source term.

We present Equation 7 in finite difference form. Assuming
we divide our volume up into equal Cartesian cubes of width
h:
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εi jk = −aui jk+
.x(ui jk)+/x(ui jk)+.y(ui jk)+/y(ui jk)+.z(ui jk)+/z(ui jk)

h2

(8)

Where the forward and backward different operators .x
and /x are defined as

.x(ui, j,k) = ui+1, j,k −ui, j,k
/x(ui, j,k) = ui−1, j,k −ui, j,k.

As shown previously it is possible to represent irradiance
in terms of voltage or current, knowing this we treat ui, j,k
as a current flowing through the center of a finite volume
centered at position (i, j,k). To model the potential for cur-
rent to spread to neighboring finite elements we connect the
nodes through discrete resistors whose values represent the
likelihood of current to pass through the space between the
two points, much like a phase function. We represent absorp-
tion as a grounded resistor attached to a node, and the source
term as a DC voltage source attached through a resistor to
the node.

Thus we can rewrite Equation 8 as a current equation in
terms of node voltages and resistances for every cell (i, j,k):

Vi, j,k
Rgi, j,k

= −∆V V si, j,k
Rsi, j,k

+

1
h2

(

∆V Vi+1, j,k
Ri+, j,k

+
∆V Vi−1, j,k

Ri−, j,k
+

∆V Vi, j+1,k
Ri, j+,k

+

∆V Vi, j−1,k
Ri, j−,k

+
∆V Vi, j,k+1

Ri, j,k+
+

∆V Vi, j,k−1
Ri, j,k−

)

(9)

where ∆V v ≡ v −Vi, j,k and Ri+, j,k is defined as the re-
sistor connecting nodes (i, j,k) and (i + 1, j,k), similarly,
Ri−, j,k indicates the resistor connecting nodes (i, j,k) and
(i− 1, j,k) and so on. These resistor values represent pre-
ferred scattering directions in the material, where the lower
the value, the higher the scatter. Note that these resistors are
generalization of the extinction and scattering coefficient.

4. Solution Methods

This section will discuss various data structures and algo-
rithms we used to implement our transport impedance net-
work.

4.1. Storage

As presented earlier, Equation 9 is defined for every cell.
Hence an impedance grid of a reasonable size can result in a
fairly large linear system.

Fortunately, our model limits flux transport to only neigh-
boring cells so that each equation will be dependent on a
relatively small number of other equations. The result is a

very sparse linear system of equations which allows us to
use sparse matrix storage techniques.

To store our linear system we use the row-indexed sparse
matrix storage mode presented in [PTVF92]. This technique
requires approximately 2d + 2n space to store n non-zero
elements in a matrix of size d ×d.

4.2. Solving the system

Once we establish our linear system of equations we must
solve a system of the form

Ax = b. (10)

In our implementation we used an implementation of Bi-
conjugate Gradient from the IML++ library [BBC∗94]. Bi-
conjugate Gradient solves a series of recurrences which cen-
ter around multiplying a vector by A and AT during each
iteration of the numerical method.

Fortunately the use of row-indexed storage data structure
allows these multiplications to be done in O(n) where n is
the number of non-zero elements in A.

5. Circuit Response to Stimulus

We employ a discrete 15 × 15 grid to compare our model
and the diffusion approximation given by the Jensen et al.
model [JMLH01]. The optical properties that were chosen
were within range of the “Wholemilk” data recorded in the
same paper.

It may not seem practical or realistic to simulate a subsur-
face scattering model on a two dimensional grid; however,
the Jensen et al. model doesn’t really consider the transport
phenomena beneath the surface. Our BSSRDF is described
through the choice of the optical properties of the medium.

We provide the two dimensional grid with a step input
shown in Figure 1. In the model presented in [JMLH01] this
corresponds to a unit level of irradiance incident on the sur-
face, while in our model it corresponds to setting the middle
group of cells’ source voltage to approximately 1 volt.

Figure 1: Initial source values.

The response from the [JMLH01] model and our
impedance network is shown in Figure 2 which are quite
similar.
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Figure 2: Response of Jensen et al. [JMLH01] model with
σa = 0.0041 and σ′

s = 2.6 (left) vs. Response of our model
with 1.18V step input and all resistors set to 1kΩ (right).

5.1. Inhomogeneous material

We ran additional experiments on inhomogeneous data
which our model is able to handle without difficulty. One ex-
ample is a material that has a vee-like impedance grid, where
peaks occur on opposite corners and a line of low impedance
strides diagonally between the opposing corners. The re-
sponse in Figure 3 also has a local valley where the response
peaked in earlier examples (remember that low impedance
values for absorption correspond to high absorption).

Figure 3: Vee-like impedance (left) vs. response (right).

Our final inhomogeneous example sets impedance val-
ues based on MRI scalar data. We can extract a desired
isosurface and use that to apply the initial voltage (inten-
sity) source values. Figure 4 shows the original slice and the
solved intensity values from it.

Figure 4: Slice of MRI tomato data and the solved intensity
distribution throughout the material.

To set the internal impedance values we can use transfer
functions which maps tissue types to impedance values. This
is similar to efforts in volume rendering [KD98]. For exam-
ple the locule tissue has low scattering properties while the

endocarp is highly scattering. Based on the histogram we
generated an arbitrary transfer function for absorption resis-
tors by fitting a polynomial to points loosely based on the
authors’ observations on scattering properties of the tomato
tissue. Figure 5 shows the histogram and a typical trans-
fer function where high impedances refer to low absorption
rates.
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Figure 5: Histogram of tomato tissue values (left) and the
resulting transfer function (right).

We have designed our model such that it is logical to map
MRI data to the absorption and scattering properties of the
tissue in question. In general, to render an object, we first
extract the isosurface from the MRI data, then construct an
impedance grid based on the values internal to the isosur-
face. The impedance values cannot be directly derived from
the MRI data, but gives information about the tissue types
in the slice. Therefore we pick impedance values for the cir-
cuit based on a transfer function from MRI scalar data to the
known scattering properties of the tissues in the dataset.

6. Rendering

Our general rendering algorithm is as follows:

1. Extract an isosurface from the MRI dataset.
2. Build a grid to fit inside the isosurface.
3. Set the impedance values on the internal grid based on a

mapping from the MRI scalar data with the transfer func-
tion.

4. Initialize the source voltages by sampling the irradiance
across the boundary surface exposed in each cell as de-
scribed in Equation 4.

5. Solve for node voltages.
6. Render the image by treating the solved grid as a 3D lu-

minare and projecting it onto the surface of the 3D model
much like projecting a 3D texture as a light map which
illuminates the scene. The node voltages are proportional
to the intensity values exiting the material.

It should be noted that although we use MRI data to de-
rive impedance values in our model, if the material scattering
properties are known they can be used directly.

7. Results

Figures 7 and 6 show the difference between scattering and
no scattering from isosurfaces of a tomato and a human foot
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respectively, which use impedance values based on the MRI
scalar data. Figure 8 is particularly interesting since it com-
pares the difference between using constant impedance val-
ues and impedance values derived directly from the MRI
data.

Most of the linear systems converged in around 2 min-
utes on a Pentium VI 2.4 GHz machine with 2GB of RAM.
Since biconjugate gradient is an iterative technique it was
unnecessary to iterate the entire N cycles, where N is the
number of grid elements, to achieve good results. In fact on
the foot dataset which has 128× 128× 64 elements, 14 to
30 iterations were sufficient to generate acceptable visual re-
sults. The rendering step only involves projecting a 3D tex-
ture onto a 2D surface, actual rendering times were on the
order of seconds.

8. Conclusions

The use of an impedance network provides advantages not
available from other techniques that model subsurface scat-
tering and substrate transport. These advantages include the
ability to easily model homogeneous materials, build user
defined impedance networks and provide a model which
can be solved easily using numerical linear algebra tech-
niques. We also feel that our model is interesting since it
is a realization of a unification of several otherwise unre-
lated mathematical models. Despite the advantages of using
an impedance network to realize subsurface scattering there
are still some kinds of materials our model cannot handle as
well.

• Transparent materials - Since we are modeling subsur-
face scattering as a diffusion process, transparent mate-
rials would not render correctly in our model.

• Thin materials - While our model can handle thin materi-
als, there are less computationally complex models which
are better suited for this task.

For future work we will examine the use of active com-
ponents to include anisotropic scattering effects and create
more complex data to impedance transfer functions for more
complex results. We will also consider non-regular decom-
position of the space and make use of finite element tech-
niques.
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