
IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)
H.- C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)

Parallel Construction of k-Nearest Neighbor Graphs
for Point Clouds †

M. Connor1 and P. Kumar1

1Department of Computer Science
Florida State University

Abstract
We present a parallel algorithm for k-nearest neighbor graph construction that uses Morton ordering. Experiments
show that our approach has the following advantages over existing methods: (1) Faster construction of k-nearest
neighbor graphs in practice on multi-core machines. (2) Less space usage. (3) Better cache efficiency. (4) Ability
to handle large data sets. (5) Ease of parallelization and implementation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: k-NN Graphs

1. Introduction

In this paper we present a practical algorithm for the follow-
ing problem: Given a point cloud P of n points in Rd and a
positive integer k ≤ n− 1, compute the k-nearest neighbors
of each point in P. More formally, let P = {p1, p2, . . . , pn}
be a point cloud in Rd where d ≤ 3. For each pi ∈ P,
let NNk(pi) be the k points in P closest to pi. The k-
nearest neighbor graph (k-NNG) is a graph with ver-
tex set {p1, p2, . . . , pn} and edge set E = {(pi, p j) : pi ∈
NNk(p j) or p j ∈ NNk(pi)}. The well known all-nearest-
neighbor problem corresponds to the k = 1 case. For the pur-
pose of this paper we are constraining ourselves to Euclidean
distance, as well as low dimensions.

In point based graphics, computation of k-NNG forms a
basic building block in solving many important problems
including normal estimation [MN03], surface simplifica-
tion [PGK02], finite element modeling [CRT04], shape mod-
eling [PKKG03], watermarking [CWMG04] and surface re-
construction [ABCO∗01, FCOS05]. With the growing sizes
of point clouds, the emergence of multi-core processors in
mainstream computing and the increasing disparity between
processor and memory speed; its only natural to ask if one

† The source code associated with this paper is available from
http://compgeom.com/∼stann. Work on this paper was
partially supported by the NSF CAREER award CCF-0643593.

can gain from the use of parallelism for the k-NNG construc-
tion problem.

The naive approach to solve the k-NNG construction
problem uses O(n2) time and O(nk) space. Theoret-
ically, the k-NNG can be computed in O(n logn + nk)
[CK95]. The method is not only theoretically optimal and
elegant but also parallelizable. Unfortunately, in practice,
most practitioners choose to use variants of kd-tree im-
plementations [MN03, Paj05, CRT04] because of the high
constants involved in theoretical algorithms [Vai89, CK95,
Cla83, DE96]. In low dimensions, one of the best kd-tree
implementations is by Arya et.al. [AMN∗98]. Their kd-tree
implementation is very carefully optimized both for memory
access and speed, and hence has been the choice of prac-
titioners for many years to solve the k-NNG problem in
point based graphics [MN03, PKKG03, CRT04]. In our ex-
periments we use this implementation as a basis of compar-
ison, and results indicate that for k-NNG construction our
algorithm has a distinct advantage.

The k-NNG construction problem has also been stud-
ied in the external memory setting or using the disk ac-
cess model recently [SSV07]. The design and implemen-
tation of our algorithm is more tuned toward the cache-
oblivious model [FLPR99] and hence differs significantly
from [SSV07]. While our algorithm was not specifically
designed for external memory, through the use of large
amounts of swap space experiments have shown it can han-
dle very large data sets.

c© The Eurographics Association 2008.

25

http://www.eg.org
http://diglib.eg.org

M. Connor & P. Kumar / Parallel Construction of k-Nearest Neighbor Graphs for Point Clouds

Our algorithm mainly consists of the following three high
level components:

• Preprocessing Phase: In this step, we sort the input
points P using Morton ordering (a space filling curve).

• Sliding Window Phase: For each point p in the sorted
array of points, we compute its approximate k-nearest
neighbors by scanning O(k) points to the left and right
of p. Another way to think of this step is to slide a window
of length O(k) on the sorted array and find the k-nearest
neighbors restricted to this window.

• Search Phase: We refine the answers of the last phase by
zooming inside the constant factor approximate k-nearest
neighbor balls using properties of the Morton order.

In order to take advantage of the widespread availability
of multi-core machines, the algorithm was designed to be
easily parallelizeable and cache efficient. The first phase is
implemented using parallel distribution sort. The second and
third phase are run in loops where multiple cores process
multiple searches simultaneously.

The remainder of the paper is organized as follows. In the
next section we describe our algorithm in more detail. Sec-
tion 3 describes the experimental setup we use. Section 4
presents our experimental results. Section 5 concludes the
paper.

2. Methodology

In this section we describe our algorithm in detail. Before we
start the description, we need to describe the Morton order
on which our algorithm is based on.

2.1. Morton Ordering

Morton-order or Z-order is a space-filling curve with good
locality preserving behavior. It is often used in data struc-
tures for mapping multidimensional data to one dimension.
The z-value of a point in multiple dimensions can be calcu-
lated by interleaving the binary representations of its coordi-
nate values. Our preprocessing phase consists of sorting the
input data using their z-values without explicitly computing
the z-value itself.

The Morton order curve can be conceptually achieved by
recursively dividing a d-dimensional cube into 2d cubes,
then ordering those cubes, until at most 1 point resides in
each cube. In 2 and 3 dimensions, the resulting trees are
sometimes referred to as quadtrees and octrees respectively.
Although, we use quadtrees to explain our algorithm, the al-
gorithm itself extends easily to higher dimensions. Two sim-
ple properties of Morton order, shown in Figure 1 and Fig-
ure 2, will be used to prune points in our k-NNG construction
algorithm.

Timothy Chan showed that the relative Morton order of
two integer points can be easily calculated by determining

Figure 1: The Morton order curve preceding the lower right
corner of a box, and following the upper left corner, will
never intersect the box.

Figure 2: The smallest quadtree box containing two points
will also contain all points lying between the two in Morton
order.

which pair of coordinates have the first differing bit in bi-
nary notation in the largest place. He further showed that
this can be accomplished using only a few binary opera-
tions [Cha06]. While this method only applies to integer
types, it can be extended to floating point types as shown
in Algorithm 1. The algorithm takes two points whose coor-
dinates are a floating point type. The relative order of the two
points is determined by the pair of coordinates who have the
first differing bit with the highest exponent. The XORMSB
function computes this by first comparing the exponents of
the coordinates, then comparing the bits in the mantissa if the
exponents are equal. Note that the MSDB function on line 13
returns the most significant differing bit of two integer ar-
guments. This is calculated by first XORing the two values,
then shifting until we reach the most significant bit. The EX-

c© The Eurographics Association 2008.

26

M. Connor & P. Kumar / Parallel Construction of k-Nearest Neighbor Graphs for Point Clouds

PONENT and MANTISSA functions return those parts of the
floating point number in integer format. This algorithm al-
lows the relative Morton order of floating points to be found
with only a constant factor more of work.

Algorithm 1 Floating Point Morton Order Algorithm
Require: d-dimensional points p and q
Ensure: true if p < q in Morton order

1: procedure COMPARE(point p , point q)
2: x← 0; dim← 0
3: for all i = 0 to d do
4: y← XORMSB(pi,qi)
5: if x < y then
6: x← y; dim← i
7: end if
8: end for
9: end procedure

10: procedure XORMSB(double a , double b)
11: x←EXPONENT(a); y←EXPONENT(b)
12: if x = y then
13: z← MSDB(MANTISSA(a),MANTISSA(b)))
14: x← x− EXPONENT(z)
15: return x
16: end if
17: if y < x then return x
18: else return y
19: end procedure

2.2. The k-NNG Construction Algorithm

The k-NNG construction algorithm proceeds as follows. The
point set P is sorted according to the Morton order com-
parison operator. In our implementation this is done using
a parallel distribution sort. An approximate nearest neigh-
bor ball is then found for each point by scanning a small
number of adjacent points in the sorted array. We then re-
fine this approximate ball by recursively searching the im-
plicit quad-tree. Quadtree boxes can be defined by a range of
points in the sorted array. The recursive search has two stop
conditions. For the first condition, the minimum enclosing
quadtree box is calculated for the entire range. If this box
does not intersect the current nearest neighbor ball, then no
further recursion is needed within the range. For the second
condition, the midpoint in the range is compared to the upper
and lower corner of the box which circumscribes the current
nearest neighbor ball. If the midpoint in the range lies out-
side the box, either the upper or lower half of that range can
be eliminated.

The function CONSTRUCT, described in Algorithm 2,
takes as input a point set P and an integer k, and returns a
matrix A, where where each element ai j ∈ A is the index of
the j-th nearest neighbor of pi ∈ P. We will indicate the i-th
row of A as ai. The function nn (Line 3, Algorithm 2) com-
putes the distances from pi ∈ P to every point in a range. The

answer ai is updated as needed. The function r(pi) (Line 13)
returns the maximum distance of pi ∈ P to the elements of
ai. The recursive function CSearch is based on the space fill-
ing curve algorithm described by Chan [Cha06, LL]. It re-
fines an approximate nearest neighbor solution for a point
pi ∈ P to an exact answer. Lines 7 to 10 take advantage of
the fact that for small ranges, it is more efficient to do a lin-
ear scan of the points instead of recursing. The constant v
depends on the cache line length of the system using the al-
gorithm, and should be calculated as the maximum number
of points that reside in one cache line. For large ranges, first
the middle point in the range is compared to the current near-
est neighbor ball and added to the answer queue if needed.
This corresponds to line 12 in Algorithm 2. Finally, the two
previously mentioned stop conditions are checked in lines 13
to 22 in Algorithm 2. Function B(i, j) computes the mini-
mum enclosing quadtree box for two points i and j. Since the
quadtree box divisions occur on powers of 2, the quadtree
box is determined by s, the place of the highest order dif-
fering bit between the coordinate pairs of i and j. In each
dimension, the two edges of the quadtree box are located at
position 2s and 2s+1. Function d computes the distance from
point q to B(i, j) as the sum of the square distances between
the coordinates of q and the nearest edge of the quadtree box.

Algorithm 2 KNN Graph Construction Algorithm
Require: Point set P of size n. Morton order compare oper-

ator COMPARE
Ensure: for all pi in P, ai contains k points from P with

minimum distance to pi
1: procedure CONSTRUCT(P , int k)
2: P← Sort(P, COMPARE)
3: for all pi in P do: ai ← nn(pi, pi−k...i+k)
4: for all pi in P do: CSEARCH(pi,1,n)
5: end procedure
6: procedure CSEARCH(point pi , int l , int h)
7: if (h− l) < ν then
8: ai ← nn(pi, pl . . . ph)
9: return

10: end if
11: m← (h+ l)/2
12: ai ← nn(pi, pm)
13: if d(pi,B(pl , ph))≥ r(pi) then return
14: if COMPARE(pi, pm) then
15: CSEARCH(pi, l,m−1)
16: if COMPARE (p#r(pi)$

i , pm)
17: then CSEARCH(pi,m+1,h)
18: else
19: CSEARCH(pi,m+1,h)
20: if COMPARE(p−#r(pi)$

i , pm)
21: then CSEARCH(pi, l,m−1)
22: end if
23: end procedure

c© The Eurographics Association 2008.

27

M. Connor & P. Kumar / Parallel Construction of k-Nearest Neighbor Graphs for Point Clouds

2.3. Parallel Construction

Parallel implementation of this algorithm happens in three
phases. For the first phase, a parallel distribution sort is used
in place of a standard sorting routine. Second, the sorted ar-
ray is split into p chunks (assuming p processors to be used),
with each processor computing the initial approximate near-
est neighbor ball for one chunk independently. Finally, each
processor performs the recursive step of the algorithm on
each point in it’s chunk.

2.4. Handling large data sets

Many applications of k-NNG construction require large point
clouds to be handled that do not fit in memory. One way
to handle this problem is to make disk-based data struc-
tures [SSV07]. We use an alternative solution by simply in-
creasing the swap space of the operating system and running
the same implementation that we did in internal memory.
Many operating systems allow on the fly creation and dele-
tion of temporary swap files (Windows, Linux) which can
be used to run our code on very large data sets (100 million
or more points). Unfortunately, we were unable to compare
our results to the previously mentioned disk-based meth-
ods [SSV07] directly (their code was not available). How-
ever, we were able to calculate k-NNG for much larger data
sets (up to 182 million points as seen in Table 1).

In Linux, new user space memory allocations (using new
or malloc) of large sizes are handled automatically using
mmap which is indeed a fast way to do IO from disks. Once
the data is memory mapped to disk, both sorting and scan-
ning preserve locality of access in our algorithm and hence
are not only cache friendly but also disk friendly. The last
phase of our algorithm is designed to be disc friendly as
well. Once an answer is computed for point pi by a single
processor, the next point in the Morton order uses the local-
ity of access from the previous point and hence causes very
few page faults in practice.

3. Experimental Setup

To demonstrate the practicality of our algorithm, we ran
our implementation on a number of different data sizes.
The source code that was used in these tests is availible at
http://www.compgeom.com/~stann.

The system that we experimented on is equipped with 2
Quad-core 2.66Ghz Intel Xeon CPUs, and a total of 4GB
of DDR memory. Each core has 2MB of total cache. SUSE
Linux with kernel 2.6.22.17-0.1-default was running on the
system. We used gcc version 4.2.1 for compilation of all
our code (with -O3). The machine has a 150GB Western
digital Raptor drive on which we created a temporary swap
partition of 40GB.

ANN [Mou98] had to be modified to allow a fair com-
parison. Nearest neighbor graph construction using ANN is

done in two phases. The preprocessing stage is the creation
of a kd-tree using the input data set. Then, a nearest neigh-
bor query is made for each point in the input data set. For
our experiments, we modified the source code for the query
to allow multiple threads to query the same data structure
simultaneously. We did not modify the kd-tree construction
to use a parallel algorithm. However, it is worth noting that
even if a parallel kd-tree construction algorithm was imple-
mented, it would almost certainly still be slower than paral-
lel sorting (the preprocessing step in our algorithm). In the
interests of a fair comparison, the empirical results section
includes several examples of k-NNG construction with this
preprocessing time removed, as well as examples where only
one processor was used.

Except where noted, random data sets were generated
from 3-dimensional points uniformly distributed between
(0,1], and scaled to a (0,224) integer grid. Graphs using ran-
dom data sets were generated using five sets of data, and
averaging the result. Results from random data sets with dif-
ferent distributions(such as gaussian, clustered gaussian, and
spherical) were not significantly different from the uniform
distribution. Also included were several non-random data
sets, consisting of surface scans of objects. In all graphs, our
algorithm will be labeled ‘knng’. A hyphenated entry indi-
cates the number of threads that were used.

Dataset Size ANN STANN
(points) (s) (s)

Screw 27152 .06 .04
Dinosaur 56194 .11 .07
Ball 137602 .31 .14
Isis 187644 .46 .18
Blade 861240 2.9 .86
Awakening 2057930 8.6 2.1
David 3614098 16.7 3.7
Night 11050083 62.2 12.4

Table 1: Construction times for k = 1-nearest neighbor
graphs constructed on non-random 3-dimensional data sets
with integer coordinates. Each graph was constructed using
8 processors. All timings are in seconds.

4. Experimental Results

4.1. Construction Time Results

As shown in Figure 3 and Table 1, our algorithm preforms
very favorably against k-NNG construction using ANN. Fig-
ure 4 is an example of construction time for a random, non-
uniform distribution. Other distributions were also similar to
these cases, and so more graphs were not included. Figure 5
shows that as k increases, the advantage runs increasingly
toward our implementation. Figure 6 shows the performance
with points using 64 bit doubles for coordinates.

c© The Eurographics Association 2008.

28

http://www.compgeom.com/~stann

M. Connor & P. Kumar / Parallel Construction of k-Nearest Neighbor Graphs for Point Clouds

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e(
se

co
nd

s)

Number of Million Points (N)

knng-8
ANN-8

Figure 3: Graph of 1-NN graph construction time vs. num-
ber of data points. Each algorithms were run using 8 pro-
cessors in parallel. Data files were uniformly random 3-
dimensional data sets with integer coordinates.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e(
se

co
nd

s)

Number of Million Points (N)

knng-8
ANN-8

Figure 4: Graph of 1-NN graph construction time vs. num-
ber of data points. Each algorithms were run using 8 proces-
sors in parallel. Data files were 3-dimensional random with
gaussian distribution and integer coordinates.

4.2. Memory Usage and Cache Efficiency Results

Figure 7 shows the estimated memory usage, per point, for
both algorithms. Memory usage was determined using val-
grind [NS07]. As shown in Figure 8, our algorithm has
greater cache efficiency than ANN’s kd-tree implementa-
tion. This implies that we will derive greater benefit from
more available processing power. This is demonstrated in
Table 2. Construction was done using one data set, while
varying the number of processors. In the first pair of columns
we see the improvement in total construction time as the
number of processors is varied. We can see that moving from
one to eight processors improves our construction time by
68%, while only improving ANN by 30%. Since ANN’s kd-
tree construction is not done in parallel, if we remove prepro-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e(
se

co
nd

s)

Points in Neighbor Ball

knng-8
ANN-8

Figure 5: Graph of k-NN graph construction time for vary-
ing k. Each algorithms were run using 8 processors in par-
allel. Data files were uniformly random 3-dimensional data
sets with integer coordinates.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
se

co
n

d
s)

Number of Millions of Points(N)

knng-8
ANN-8

Figure 6: Graph of 1-NN graph construction time vs. num-
ber of data points, with the preprocessing time removed.
Each algorithms were run using 1 processor. Data files were
3-dimensional random with uniform distribution and dou-
bles for coordinates. The graph using floats for coordinates
is similar to this graph.

cessing time and only time the actual queries, we see in the
second pair of columns that ANN’s query time is improved
by 71%, while ours is improved by 88%. Figure 9 shows this
behavior for data sets of varying size.

5. Conclusions

We have presented an efficient k-nearest neighbor construc-
tion algorithm which takes advantage of multiple processors.
While the algorithm performs best on point sets that use in-
teger coordinates, it is clear from experimentation that the
algorithm is still viable using floating point coordinates. Fur-
ther, the algorithm behaves nicely in practice as k increases,

c© The Eurographics Association 2008.

29

M. Connor & P. Kumar / Parallel Construction of k-Nearest Neighbor Graphs for Point Clouds

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16 18 20

A
llo

ca
te

d
M

em
or

y
pe

r P
oi

nt
(b

yt
es

)

Number of Million Points (N)

knng
ANN

Figure 7: Graph of memory usage per point vs. data size.
All data sets were uniformly random 3-dimensional data sets
with integer coordinates. Memory usage was determined us-
ing valgrind.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

Ca
ch

e
M

iss
es

/1
00

0

Size of Point Set (k)

ANN
knng

Figure 8: Graph of cache misses vs. data set size. All data
sets were uniformly random 3-dimensional data sets. Cache
misses were determined using valgrind which simulated a
2MB L1 cache.

as well as for data sets that are too large to reside in inter-
nal memory. Finally, the cache efficiency of the algorithm
should allow it to scale well as more processing power be-
comes available.

References

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D.,
FLEISHMAN S., LEVIN D., SILVA C. T.: Point set sur-
faces. In VIS ’01: Proceedings of the conference on Visu-
alization ’01 (Washington, DC, USA, 2001), IEEE Com-
puter Society, pp. 21–28.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e(
se

co
nd

s)

Number of Million Points(N)

knng-1
knng-4
knng-8
ANN-1
ANN-4
ANN-8

Figure 9: Graph of 1-NN graph construction time vs. num-
ber of data points, with the preprocessing time removed.
Graphs are listed by algorithm name and the number of pro-
cessors used. Note that the knng-4 and ANN-8 graphs lie
on top of each other. Data files were uniformly random 3-
dimensional data sets with integer coordinates.

Processors ANN STANN ANN STANN
(s) (s) (s) (s)

1 88.0 28.4 36.1 21.7
2 71.0 18.0 24.1 10.9
4 64.0 11.6 16.0 5.4
8 61.0 8.9 10.6 2.7

Table 2: Construction time for 1-nearest neighbor graph of
the Night data set using varying number of processors. The
first pair of columns are total construction time, the second
pair have preprocessing time (which ANN does not do in
parallel) removed.

[AMN∗98] ARYA S., MOUNT D. M., NETANYAHU
N. S., SILVERMAN R., WU A.: An optimal algorithm
for approximate nearest neighbor searching in fixed di-
mensions. J. ACM 45 (1998), 891–923.

[Cha06] CHAN T. M.: Manuscript: A minimalist’s imple-
mentation of an approximate nearest neighbor algorithm
in fixed dimensions, 2006.

[CK95] CALLAHAN P. B., KOSARAJU S. R.: A decom-
position of multidimensional point sets with applications
to k-nearest-neighbors and n-body potential fields. J.
ACM 42, 1 (1995), 67–90.

[Cla83] CLARKSON K. L.: Fast algorithms for the all
nearest neighbors problem. In FOCS ’83: Proceedings
of the Twenty-fourth Symposium on Foundations of Com-
puter Science (Tucson, AZ, November 1983). Included in
PhD Thesis.

c© The Eurographics Association 2008.

30

M. Connor & P. Kumar / Parallel Construction of k-Nearest Neighbor Graphs for Point Clouds

[CRT04] CLARENZ U., RUMPF M., TELEA A.: Finite
elements on point based surfaces. In Proc. EG Symposium
of Point Based Graphics (SPBG 2004) (2004).

[CWMG04] COTTING D., WEYRICH T., M.PAULY,
GROSS M.: Robust watermarking of point-sampled ge-
ometry. In SMI ’04: Proceedings of the Shape Modeling
International 2004 (Washington, DC, USA, 2004), IEEE
Computer Society, pp. 233–242.

[DE96] DICKERSON M. T., EPPSTEIN D.: Algorithms
for proximity problems in higher dimensions. Compu-
tational Geometry Theory & Applications 5, 5 (January
1996), 277–291.

[FCOS05] FLEISHMAN S., COHEN-OR D., SILVA C. T.:
Robust moving least-squares fitting with sharp features.
ACM Trans. Graph. 24, 3 (2005), 544–552.

[FLPR99] FRIGO M., LEISERSON C. E., PROKOP H.,
RAMACHANDRAN S.: Cache-oblivious algorithms. In
FOCS ’99: Proceedings of the 40th Annual Symposium
on Foundations of Computer Science (Washington, DC,
USA, 1999), IEEE Computer Society, p. 285.

[LL] LOPEZ M. A., LIAO S.: 197 session c6.1 12th cana-
dian conference on computational geometry finding k-
closest-pairs efficiently for high dimensional data.

[MN03] MITRA N. J., NGUYEN A.: Estimating surface
normals in noisy point cloud data. In SCG ’03: Pro-
ceedings of the nineteenth annual symposium on Com-
putational geometry (New York, NY, USA, 2003), ACM,
pp. 322–328.

[Mou98] MOUNT D.: ANN: Library for Approximate
Nearest Neighbor Searching, 1998. http://www.cs.
umd.edu/~mount/ANN/.

[NS07] NETHERCOTE N., SEWARD J.: Valgrind: a frame-
work for heavyweight dynamic binary instrumentation. In
In PLDI (2007), pp. 89–100.

[Paj05] PAJAROLA R.: Stream-processing points. In Pro-
ceedings IEEE Visualization, 2005, Online. (2005), Com-
puter Society Press.

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Ef-
ficient simplification of point-sampled surfaces. In VIS
’02: Proceedings of the conference on Visualization ’02
(Washington, DC, USA, 2002), IEEE Computer Society,
pp. 163–170.

[PKKG03] PAULY M., KEISER R., KOBBELT L. P.,
GROSS M.: Shape modeling with point-sampled geom-
etry. ACM Trans. Graph. 22, 3 (2003), 641–650.

[SSV07] SANKARANARAYANAN J., SAMET H., VARSH-
NEY A.: A fast all nearest neighbor algorithm for appli-
cations involving large point-clouds. Comput. Graph. 31,
2 (2007), 157–174.

[Vai89] VAIDYA P. M.: An o(n log n) algorithm for the
all-nearest-neighbors problem. Discrete Comput. Geom.
4, 2 (1989), 101–115.

c© The Eurographics Association 2008.

31

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/

