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Figure 1: Comparison of (a) a visualization of a raw 3D ultrasound scan of a phantom dataset and (b) a visualization of the
same dataset filtered with the lowest-variance streamline method.

Abstract
Ultrasound as an acoustic imaging modality suffers from various kinds of noise. The presence of noise especially
hinders the 3D visualization of ultrasound data, both in terms of resolving the spatial occlusion of the signal by
surrounding noise, and mental decoupling of the signal from noise. This paper presents a novel type of structure-
preserving filter that has been specifically designed to eliminate the presence of speckle and random noise in
3D ultrasound datasets. This filter is based on a local distribution of variance for a given voxel. The lowest
variance direction is assumed to be aligned with the direction of the structure. A streamline integration over the
lowest-variance vector field defines the filtered output value. The new filter is compared to other popular filtering
approaches and its superiority is documented on several use cases. A case study where a clinician was delineating
vascular structures of the liver from 3D visualizations further demonstrates the benefits of our approach compared
to the state of the art.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image processing and computer vision]:
Enhancement—

1. Introduction

Medical ultrasound enjoys popularity as the most preferred
imaging modality in a number of diagnosis and treatment
scenarios [ØGG05]. This acoustic-reflectance based modal-
ity has valuable characteristics in terms of practical bedside
usage and low price [GHW∗03]. Most importantly, as a live
modality, it has an unbeatable temporal resolution and its
spatial resolution can be superior to standard 3D modalities,
e.g., computed tomography and magnetic resonance imag-

ing. Moreover, measuring acoustic phenomena with ultra-
sound can provide useful information about flow, elasticity,
or strain of imaged tissue [GHH∗02]. Very important for pa-
tient safety is that no ionizing radiation is associated with
ultrasound examination, and its usage within mechanical-
index limits is considered safe. Furthermore, by adding con-
trast agents using low mechanical index, new diagnostic and
therapeutic possibilities have opened up [PG07, PG11].

The gravest disadvantage of ultrasound imaging is the
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high presence of various types of noise that impede the im-
age interpretation. They have been intensively studied and
can be categorized into two distinct categories: random and
structured. Structured noise can be further categorized into
subcategories such as acoustic scattering (speckle), shadow-
ing, or dropout. With regard to 2D ultrasound images, most
of these noise types can be distinguished by the sonogra-
pher with a substantial experience. Moreover, speckle noise
is often considered as a useful source of information, and
there are debates whether to keep speckle in diagnostic 2D-
ultrasound imaging.

3D ultrasound visualization is very different from the
2D case, however. In 3D renderings, random and structured
noise impede the visual reconstruction of imaged structures,
occlude it, modify it, and are the origin of normal perturba-
tion that becomes a dominant effect when calculating local
illumination. Therefore, for 3D visualization the goal is to
eliminate the noise entirely and give prominence to the sig-
nal. Noise removal filters, however, can potentially modify
the signal up to such an extent that it is no longer diagnosti-
cally relevant. Finding a clear separation between signal and
noise is not trivial, and cannot be handled by common linear
and non-linear filters.

The scope of the presented work is a novel structure-
preserving filtering approach that is based on a local vari-
ance distribution, and is designed specifically for the 3D ul-
trasound visualization pipeline. Figure 1 demonstrates the
method on a phantom model of the myocardium [FLM11].
Unlike traditional filters, its operator mask is a curve that
locally aligns to the structure. This eliminates structure thin-
ning or removal of structural details, as is typical for other
filter-types reviewed in Section 2. Details on algorithmic de-
scription of the new filter are provided in Section 3. The fil-
tering is demonstrated on several ultrasound phantom and
anatomical datasets in Section 4, and its structure-preserving
behavior is evaluated in Section 5. Finally, the paper draws
conclusions on conducted research in Section 6.

2. Related work

A large body of research has been devoted to pre-
processing and data enhancement for ultrasound. Sakas et
al. [SSG95] listed techniques with a good trade-off between
loss of information and quality. A recent survey by Birke-
land et al. [BSH∗12] provides a concise overview over the
ultrasound visualization pipeline, where several approaches
include a pre-filtering step prior to rendering. In this section,
we review only the most relevant works related to noise re-
duction in ultrasound.

The following works are performing enhancement based
on local data homogeneity. Kuwahara et al. [KHEK76] de-
scribed a filter which divides the neighborhood of a point P
into blocks and the filtered value in P was the mean value

of the most homogeneous block, i.e., block with lowest vari-
ance. Karaman et al. [KKB95] presented an adaptive filter-
ing technique for speckle removal for B-mode ultrasound.
Smoothing operators (mean or median) are applied in re-
gions where the tissue is assumed homogeneous. These re-
gions are obtained by region growing which is constrained
only by statistical properties and the distance from the cen-
tral pixel. Yanhui et al. [YCJY09] performed directional av-
eraging based on 2D homogeneity. Pixels, which have their
homogeneity above a certain threshold, remain unchanged.
Other pixels are processed by their directional average filter.
An edge detection is followed by directional filtering along
the edge with the highest edge-value (vertical or horizontal).
Farzana et al. [FTM∗10] used a combination between the
Euclidean distance between the origin pixel O and a neigh-
borhood pixel J, and a homogeneity parameter of O. This pa-
rameter is obtained from blocks of O’s neighborhood which
have homogeneity above a certain threshold. Bilateral filters
combine pixels based on their geometric closeness and pho-
tometric similarity [TM98]. Viola et al. [VKG03] presented
hardware-based implementations of the median, bilateral fil-
ter, and the Kuwahara filter.

Statistical analysis of data has been facilitated for filter-
ing and segmentation purposes in a number of works. Cz-
erwinski et al. [CJO95] proposed an adaptation of a median
filter to solve the problem of boundary-preserving speckle
reduction in ultrasound. They took a set of short lines pass-
ing through the center of a square-shaped kernel. Along
each line, they computed the median. Finally, they kept the
largest median value for the pixel in the center of the ker-
nel. In their follow up work, they described how lines can
be detected in ultrasound images [CJO98]. They also dis-
cussed different methods for hypothesis testing that the ac-
tual line is going through the edge in the picture. Coupé et
al. [CHKB09] adapted the nonlocal means filter [BCM05]
based on Bayesian statistics. Instead of a simple distance
weighting used in the original nonlocal means filter, they
used the Pearson Distance between two random variables X
and Y that is based on their correlation 1−ρXY .

Statistical properties were also used for determining tissue
similarity in general. Patel et al. [PHBG09] used statistical
moments (variance in combination with mean) for segmen-
tation of noisy datasets. They used statistical moments to de-
termine similarity between tissues. Their approach could be
adjusted for automatic design of the operator mask. Fattal
and Lischinski [FL01] used a variational approach for opac-
ity classification of 3D ultrasound datasets.

Several works pursued adaptive filter design. Chinrungru-
eng and Suvichakorn [CS00] employed polynomial surface
fitting to the intensities. They reported results which were at
least as good as results produced by a median filter but could
be obtained for less computation time. Caan et al. [CKP∗10]
described an adaptive filtering kernel which depends on the
space-variant level of noise and some similarity measures
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Figure 2: Determination of the line segment n=3 with the lowest variance of intensities at two points P1 and P2 (a). Streamline
integration seeded in point P (b). Forward integration is shown in blue and backward integration in pink.

to the central pixel. The adaptation was done as a weighted
Gaussian filtering where the weights were related to the sim-
ilarity of the neighborhood tensors. Eom [Eom11] deter-
mined the shape and the orientation of the filter based on
distance and angle maps, i.e., distance of a pixel to the near-
est edge. The filter was then aligned to the edge tangent at
the closest point of the closest detected edge.

Su and Seul proposed filtering with wavelets [SS01].
They replaced small wavelet coefficients by zero and kept
or shrank other coefficients. Anisotropic diffusion is a fre-
quently applied filtering method which smooths inside re-
gions but not the edges itself [PM87]. The edges are defined
by local gradients. Michailovich and Tannenbaum [MT06]
conducted a study where they compared performances of
three nonlinear filters: wavelet denoising, total variation fil-
tering [ROF92] and anisotropic diffusion; and demonstrate
their applicability for speckle removal in medical ultrasound.

This short review of filtering methods illustrates the large
body of existing work that has addressed the problem of
ultrasound denoising. Still, to the best of our knowledge,
there is no work that took an approach similar to our lowest-
variance streamline filtering, and is specifically designed to
improve 3D ultrasound visualization. It is too preliminary to
claim that our technique outperforms any other form of fil-
tering. In this paper though, we have conducted first compar-
ative steps and relate our work to a selection of the most fre-
quently used structure-preserving and denoising approaches.

3. Filtering Method

Speckle noise in 3D ultrasound poses a challenge to vol-
ume visualization since it obstructs interpretation and iden-

tification of structures. To improve the quality of 3D render-
ing, it is desired to perform a speckle-removal procedure. In
data processing for the medical domain, it is very important
to preserve the boundaries of structures. This is a problem of
many filtering techniques: even though the boundaries and
edges are preserved, they move or change shape.

There have been attempts to preserve edges by using bi-
lateral filters using weighted averaging taking into account
the distance and intensity similarity between voxels. This
approach is however sensitive to noise since the intensity
similarity factor is based only on differences (local property
of two points). Our approach pursues a different strategy. We
are performing a selective averaging, but the selection which
voxels will be taken into account is novel with respect to
previous work. The filtering happens in two stages each of
which can be parallelized:

1. Determine the tangent direction For each point P in
the volume (a voxel in our context), select the direction
which has the highest probability of all directions x to be
tangent to a fictive surface going through P. The outcome
of this stage is a 3D vector field.

2. Integrate For each point P, construct a short streamline
seeded in P by integration of the vector field produced in
the previous stage. The streamline defines the shape of
the filtering operator mask.

With many speckle removal techniques available, our
method is, to the best of our knowledge, the only technique
which utilizes the principle of streamline integration to snap
the filtering kernel to object boundaries. In this manner, we
ensure after filtering, the boundaries have moved minimally
and have preserved their intensity. In Sections 3.1 and 3.2,
we describe each of the stages.
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3.1. Local Direction of Lowest Variance

The ultrasound-inherent speckle noise poses a challenge to
any local processing technique of this modality. When de-
termining the tangent directions it is therefore necessary to
evaluate a larger neighborhood, in order to find the direction
of a boundary going through a voxel in noisy data. We are
evaluating variance in patterns within a local neighborhood,
since this is a robust measure used also in previous work for
data classification [PHBG09].

We assume that values along a line segment entirely inside
one tissue material will have lower variance of intensities
than a line segment which is crossing several materials. To
find the orientation of a line segment with lowest variance for
every voxel, we proceed as follows. We align line segments
centered in a point P to a discrete set of directions. These
directions are obtained by rotating an initial line segment in
the XY and XZ plane around P by an angle δ. This assures
a minimal angular sampling rate of δ, in our implementation
5◦.

Each line segment is defined by the position P and the
direction vector x. Since both vectors x and -x could de-
fine the same line, we consistently select x with a positive
y-coordinate. Then we calculate variance of the set of sam-
ples for each of the line segments. The direction xmin which
corresponds to the line segment with the lowest variance will
be copied to the output 3D vector field at the position of P.
Formally, we define xmin as follows:

xmin | ∀x, Var
k∈−n..n

{ f (P+ k∆x)} ≥ Var
k∈−n..n

{ f (P+ k∆xmin)}

where Var{.} is the variance of a set of values, f (P) is the
voxel intensity at point P, ∆ is a positive step size and n in-
dicates how many samples are taken along the line segment
in the positive and in the negative negative sense. In our ap-
proach, we used n = 5, where each ∆x amounts to the size of
a single voxel. The principle is shown in Figure 2a simpli-
fied in 2D. The xmin is shown in blue, all other line segments
are shown in black.

3.2. Streamline Integration and Filtering

In the first stage, we obtained a 3D vector field where each
vector represents the direction of the line segment with min-
imal variance. At this point, we continue with the construc-
tion of the operator mask for each voxel P separately. This
procedure is similar to streamline integration with P being
the seed point. See also the illustration in Figure 2b.

1. Forward integration constructs a part of the operator
mask while integrating xmin from the underlying vector
field. In Figure 2b, this part of integration is marked in
blue.

2. Backward integration uses the inverted vector field, i.e.,

−xmin to construct the second part of the operator mask,
in Figure 2b illustrated with pink.

Both the backward- and the forward-integration parts are
employing the Runge-Kutta 4 integration scheme [Run95,
Kut01]. In this way, we obtain 2m+ 1 samples where m is
the number of integration steps. The filtered value f̂ (P) at
point P is then determined as the arithmetic mean of these
samples:

f̂ (P) =
1

2m+1

m

∑
i=−m

f (Pi)

With Pi being the ith integration step of the streamline and
i > 0 being the forward integration, i = 0 the seed point sam-
ple, and i < 0 backward integration. For the results presented
in this paper, we used m = 5.

4. Results

We applied our technique to various 3D ultrasound and
MRI data sets. Figure 1 shows the effect of the variance-
streamline filtering applied to an ultrasound scan of a my-
ocardium phantom. The phantom is manufactured from a
synthetic polymer called PVA (polyvinyl alcohol) which has
in crystallized form acoustic properties similar to the my-
ocardium [FLM11]. We also filtered series of ultrasound
volumes capturing a human cardiac cycle. Figure 3 shows
additional pairwise comparisons of filtered and non filtered
datasets: 3D cardiac volumes (pairs I and II), 3D liver ul-
trasound (III) and liver MRI (IV). The amount of speckle
and noise significantly decreased, in particular in terms of
smoothed myocardium walls and liver vessels. The noise
level in the MRI dataset decreased significantly as well,
while the edges remained clear.

In addition, we tested the technique by filtering the stair-
case artifacts on voxelized meshes. We applied several fre-
quently using filtering approaches to the voxelized mesh:
mean filter, Kuwahara filter, median filter. The mean filter
creates fuzzy borders. The median filter and the Kuwahara
filter preserve sharp edges, but do not remove the artifacts.
Our method preserves borders and removes a large portion
of the artifacts. The original mesh, as well as the voxeliza-
tion and filtered datasets are compared in Figure 4.

In some cases, small features are of diagnostic impor-
tance, for example if a doctor is searching for aneurisms. We
have not yet investigated the effect of our filtering on such
structures, and therefore we cannot state that our filtering is
safe to use in such cases.

We implemented this method as a preprocessing step in
CUDA. While the second stage of the filtering process can
be executed during rendering, the 3D vector field has to be
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I.A I.B
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III.A III.B
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Figure 3: Comparison of non-filtered and filtered datasets from medical ultrasound and MRI: I. and II. 3D cardiac ultrasound,
III. 3D ultrasound of liver, and IV. MRI of liver.

precomputed as thew computation takes approximately five
seconds on modern graphics hardware for a volume of size
2563.

5. Case Study

In data processing and in visualization, it is highly im-
portant to maintain structures so that they represent the
anatomic situation as precisely as possible. An uncareful
preprocessing could cause vessel thinning or sometimes
even removing of thin branches. Vessels are, however, very
important because, e.g., in the liver they are influencing pre-
operative planning decisions and are also useful for localiz-
ing pathologies. Anatomical partitioning of the liver is de-
termined by the liver vessel tree [Cou57].

To assess the quality of our technique, especially its us-
ability for filtering vessels in medical ultrasound datasets,
we conducted a quantitative evaluation with a medical doc-
tor specialized in gastroenterology. During the interpretation
of ultrasound visualization, the clinician mentally “removes”
the speckle and other kinds of noise. To compare the result
of speckle removal from a visualization of non-filtered data,
which is mentally filtered by a clinician, and filtered data
with denoising filters, we conducted the following task.

We presented the clinician a series of visualizations of
liver ultrasound without the pre-filtering. The visualizations
were printed in an A4 format and put into an adhesive trans-
parent foil. The medical doctor used a marker to outline

the vessel tree in the liver. For each of three liver datasets,
she received visualization of the original dataset and five
pre-filtered versions using different techniques: median fil-
ter 3× 3× 3, Kuwahara filter 3× 3× 3, anisotropic diffu-
sion with two distinct parameter settings, and our method.
Concerning the anisotropic diffusion, it is difficult to auto-
matically find a good parametrization (time step, κ, and the
number of iterations) [Fri06]. Therefore, we produced re-
sults with a series of combinations and selected two best set-
tings concerning structure preserving (diffusion I) and level
of noise (diffusion II). Moreover, the same parameter setting
might be suitable only for the dataset it was chosen for.

Our aim was to study, where the clinician observed the
vessels in the original ultrasound dataset and compare these
to the situation when this dataset is filtered with the most fre-
quently used techniques and our technique. Figure 5 show-
cases our first test case including the original, i.e., the non-
filtered dataset, and datasets filtered with five different tech-
niques, including ours. Each visualization is juxtaposed to
its corresponding line drawing made by the clinician. She
used a green marker to draw vessels and a red marker to
draw where she was not certain about the shape of the ves-
sel wall. For the filtered datasets the clinician was instructed
to solve the task of vessel delineation only using the infor-
mation extracted from the visualization. Finally, for drawing
over the non-filtered dataset, she was allowed to view the
3D rendering of the dataset in an interactive application to
get better insights about the structures. Therefore we con-
sider the vascular delineation in the non-filtered dataset as
the one, which is best representing the structural arrange-
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(a) (c)

(d) (e) (f )

(b)

Figure 4: Mesh representation of a laser scan of a bunny (a), voxelization of the mesh (b), filtered with mean filter 3× 3× 3
(c), median filter 3×3×3 (d) Kuwahara filter 3×3×3, and our method n = 5, m = 5.

ment. For benchmarking purposes the line drawing extracted
from the filtered dataset is rated according to how close it is
to the line drawing from the non-filtered dataset.

In total, we evaluated three different scenarios of human
vessel tree in the liver I, II, and III. The first test cases includ-
ing the corresponding line drawings is shown in Figure 5.
Inspired the quantitative comparison method proposed by
Cole et al. [CGL∗08], we evaluated the similarity between
line drawings extracted from the non-filtered dataset and fil-
tered datasets. We will refer to the drawings based on filtered
data “filtered drawings” and to line drawings based on orig-
inal data as to “original drawings”. To obtain a similarity
measure, we first converted each line drawing to a binary
image where 1 signifies line and 0 no line. Then we com-
puted a distance field for each filtered drawing. To determine
the similarity between an original drawing and a selected fil-
tered drawing, we used element-wise multiplication of the
distance field of the selected filtered drawing and the binary
image of the original drawing. The sum of all values in the
result image signifies the total summed error. In order to ob-
tain a relative measure, we divided the summed error by the
summed length of the corresponding filtered drawing. The
summed length of a drawing is simply the number of pixels
with value 1 in the binary mask. This relative measure is,
in other words, an expected distance of each point on a fil-
tered line drawing to the closest point on its corresponding
original drawing. The relative distances are listed in Table 1.
We can see that the variance streamline filtering has obtained
the scores with the smallest relative distance to the original
drawings (with one exception in scenario II).

Additionally, the clinician rated the techniques subjec-
tively based on the following criteria:

• Are the borders clear or fuzzy? In general, it is difficult to
define borders if they appear fuzzy.

• Are the borders jaggy? Finding and interpreting smooth
borders is easier.

• Does the filtering mehod cause that parts of the vessel are
“cut off”, but a little further, it seems that the vessel con-
tinues? Interpretation is difficult in this case.

Based on the visualizations of data, she subjectively rated
the filtering methods in the following order (best to worst):
variance-streamline filtering (our method), median filtering,
no filtering, diffusion I, diffusion II, and Kuwahara filtering.
From the evaluation we can conclude that both in our quan-
titative evaluation method and in subjective preference the
new variance-streamline filtering method was preferred over
the other techniques.

Scene Med Kuwahara Dif. I Dif. II VS
I 11.78 24.14 9.29 12.54 8.76
II 3.17 39.92 10.78 15.08 3.53
III 10.83 16.06 16.69 20.70 9.28

Table 1: Relative distance between the illustration extracted
from the non filtered dataset and filtered datasets using me-
dian (Med), Kuwahara, diffusion and variance-streamline
(VS) filtering.
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Figure 5: Comparison of the visualizations of the original dataset, median filtering 3× 3× 3, Kuwahara filtering 3× 3× 3,
diffusion I. (∆ = 3/44, 5 iterations, κ = 12), diffusion II. (∆ = 3/44, 7 iterations, κ = 14), and our method with n=5 and m=5.
Below we showcase the corresponding line drawings made by the doctor. She used a green marker except of those lines where
she was rather uncertain. The cube in the bottom right was used for registration of her drawings.

6. Conclusions

We described a novel filtering approach which utilized the
lowest variance direction to locally identify borders of struc-
tures, and based on this information, the operator mask is lo-
cally curved. This procedure is similar to streamline integra-

tion in a vector field. We showed its applicability especially
on medical ultrasound, an imaging modality that is challeng-
ing 3D visualization due to its noisiness and speckle. In addi-
tion, we evaluated how the new filtering method affects un-
derstanding of structures in ultrasound. Based on the quanti-
tative analysis and subjective judgment made by a clinician,
we can conclude that our method preserves structures and at
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the same time eliminates noise which makes the interpreta-
tion of the visualization easier.
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