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Abstract

We present a fast and interactive segmentation method for medical images that allows a smooth reconstruction of
an object’s surface from a set of user drawn, three-dimensional, planar contours that can be arbitrarily oriented.
Our algorithm uses an interpolation based on variational implicit functions.
Because variational interpolation is computationally expensive, we show how to speed up the algorithm to achieve
an interactive calculation time while preserving the overall segmentation quality. The performance improvements
are based on a quality preserving reduction of the number of contour points and a fast voxelization strategy
for the resulting implicit function. A huge speedup is achieved by the parallelization of the algorithms, utilizing
modern 64-bit multi-core CPUs. Finally, we discuss how to make the interpolation algorithm more robust to self-
intersecting and reduced contours.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Curve, surface, solid, and
object representations—

1. Introduction

In medical imaging automatic segmentation is a challenging
task and it is still an unsolved problem for many medical ap-
plications, due to the wide variety of image modalities, scan-
ning parameters and biological variability. In contrast, man-
ual segmentation is time-consuming and thus not applicable
in clinical routine. Therefore, semi-automatic segmentation
methods, i.e., methods which require user interactions, can
be used in cases where automatic algorithms fail.

Based on a set of three-dimensional, planar contours a
smooth surface of an object can be reconstructed using vari-
ational implicit functions, resulting in an implicit represen-
tation of an object’s surface. This is called a variational in-
terpolation. For a variational interpolation, the contours do
not have to be parallel. This allows the user to manually seg-
ment an object in a few arbitrarily oriented slices. The algo-
rithm guarantees that all contours given by the user are part
of the surface and it also extrapolates beyond the contours in
a plausible way (see Fig. 1).

Unfortunately, variational interpolation is computation-

ally expensive and there are some special cases which are
not handled correctly using a straight forward implementa-

(a) (b)

Figure 1: Example for segmentation of a liver metastasis
in CT using 17 parallel contours: (a) shows a user drawn
contour in one slice, (b) shows the interpolation result in
3D. Also notice the “cap” on top of the segmentation in (b),
where the segmentation is smoothly closed, even though no
contours where drawn there.
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tion. However, for replacing a manual segmentation, the al-
gorithm needs to be both fast and robust.

In this paper we discuss the variational interpolation for
a segmentation of medical images with respect to applica-
tions in tumor and liver segmentation from CT scans. More-
over, we show how to speed up the algorithm to achieve an
interactive calculation time while preserving the overall seg-
mentation quality. The performance improvements are based
on a quality preserving reduction of the number of contour
points and a fast voxelization strategy for the resulting im-
plicit function. A huge speedup is achieved by the paral-
lelization of the algorithms, utilizing modern 64-bit multi-
core CPUs. In addition, we discuss how to make the interpo-
lation algorithm more robust to self-intersecting and reduced
contours.

2. Related work

A wide range of interactive segmentation methods exist that
can roughly be classified into voxel-based and surface-based
methods.

Voxel-based methods try to detect voxels that belong to an
object. One such algorithm is the interactive watershed algo-
rithm by Hahn and Peitgen that allows the user to influence
the result by defining include and exclude markers [HP03].
Another interesting algorithm of this class is the random
walker algorithm developed by Grady, where the user de-
fines for some of the voxels whether they belong to the back-
ground or to the object [Gra06].

Surface-based methods use some kind of surface recon-
struction. User interaction is typically performed by draw-
ing contours along the border of an object. Because of the
interaction, this is typically a 2D approach. If the surface
has been generated, a segmentation can be computed by
filling all voxels inside the surface. A wide-spread 2D al-
gorithm is live-wire introduced by Barrett and Mortensen,
where the user sets points that are dynamically connected
by a path that is aligned at edges in the image [BM97]. The
main drawback of this algorithm is that the segmentation has
to be done on each slice. As a solution, a shape-based in-
terpolation between adjacent contours can be performed to
speed up the segmentation process as proposed by Schenk
et al. [SPP00]. Wolf et al. have proposed an interpolation
of arbitrarily oriented 2D segmentations based on Coons-
Patches [WEV∗03].

Our method is based on planar contours as well, but, in
contrast to many other algorithms, the contours can be ar-
bitrarily oriented. The contours can be drawn freehand, by
using algorithms like live-wire or combinations. Based on
these contours a smooth, three-dimensional surface is gen-
erated that contains the user drawn contours using varia-
tional interpolation. Variational interpolation has first been
suggested for segmentation by Turk and O’Brien [TO99].
However, to our knowledge, the only work in the context of

medical imaging that uses variational interpolation was pub-
lished by Freedman et al., who have used it for an automatic
model-based segmentation of the prostate [FRZ∗05].

3. Variational interpolation

In computer graphics, implicit functions are a well known
way to model objects. Using an implicit function, the surface
of an object is defined by all points in space that evaluate
to 0 when inserted into the implicit function. If the implicit
function is created based on generalized thin-plate splines, it
is called a variational implicit function [TO02]. Variational
implicit functions are C1-continuous, i.e., they are rather
smooth. Using variational implicit functions, the interpola-
tion problem can be solved in any dimension [TO99]. We
call this variational interpolation, while in 2D it is called
thin-plate interpolation. This means, given a set of so called
constraint points, which are points on the surface of the ob-
ject, an implicit surface can be created using variational in-
terpolation that passes through each constraint point. This
was used by Turk and O’Brien to model shape transforma-
tions, i.e., transformations between different 3D objects over
time, which is achieved by a 4D interpolation [TO99]. In this
paper we will focus on the 3D interpolation.

The variational interpolation defines an implicit function
f (x) that fulfills all constraints while it minimizes an energy
function E that measures the smoothness of f (x). For a C1-
continuous interpolation in 3D, E is defined as

E =
∫

Ω

f 2
xx + f 2

yy + f 2
zz +2( f 2

xy + f 2
xz + f 2

yz)dx (1)

with Ω being the region of interest in which the interpolation
shall be computed. f (x) is called the thin-plate solution. Us-
ing an appropriate radial basis function φ(x), the interpola-
tion function f (x) can be written as

f (x) = P(x)+
k

∑
j=1

w jφ(x− c j) (2)

where c j = (cx
j,c

y
j,c

z
j) are the locations of the constraints, w j

are the weights of each constraints and P(x) is a degree one
polynomial that accounts for the linear and constant portions
of f (x). According to Carr et al. [CBC∗01], a commonly
used radial basis function in 3D that minimizes Eq. 1, is the
biharmonic spline

φ(x) = ‖x‖ (3)

We use the triharmonic spline in this paper, which is another
commonly used three-dimensional radial basis function. It is
defined by

φ(x) = ‖x‖3 (4)

The triharmonic spline results in a C2-continuous and thus
smoother interpolation [Roh01].

f (x) must fulfill the constraints ci whose values are given
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by hi, i.e.,

hi = f (ci) = P(ci)+
k

∑
j=1

w jφ(ci− c j) (5)

If a constraint ci is located on the surface of the object, hi
equals 0, which is called a boundary constraint. This results
in the following linear system, with φi j = φ(ci− c j).

φ11 φ12 · · · φ1k 1 cx
1 cy

1 cz
1

φ21 φ22 · · · φ2k 1 cx
2 cy

2 cz
2

...
...

. . .
...

...
...

...
...

φk1 φk2 · · · φkk 1 cx
k cy

k cz
k

1 1 · · · 1 0 0 0 0
cx

1 cx
2 · · · cx

k 0 0 0 0
cy

1 cy
2 · · · cy

k 0 0 0 0
cz

1 cz
2 · · · cz

k 0 0 0 0





w1
w2
...

wk
p0
p1
p2
p3


=



h1
h2
...

hk
0
0
0
0


(6)

Solving Eq. 6 gives us the weights w j for f (x). According to
Turk and O’Brien, the matrix in Eq. 6 is symmetric and pos-
itive semi-definite, so it is guaranteed that the linear system
always has a unique solution.

3.1. Segmentation using variational interpolation

As already proposed by Turk and O’Brien, variational in-
terpolation can be used for segmentation of medical im-
ages based on a set of contours [TO99]. In medical imaging,
three-dimensional anatomical data is often acquired as a set
of parallel slices using CT or MR. An object can be manually
segmented by drawing contours along its border in all slices.
Using variational interpolation, this only has to be done on
a few slices (see Fig. 1). In addition, variational interpola-
tion allows the contours to be drawn in arbitrary views (e.g.,
axial, coronal and sagittal), which makes a more accurate
segmentation possible, as shown in Fig. 2. Another advan-
tage is that the user can simply add, remove or edit contours
if the segmentation is not yet sufficient.

The points of the contours are boundary constraints cS
i .

But for defining the implicit function, we need additional
constraints that define which points should be located inside
or outside of the object. Turk and O’Brien distinguish be-
tween interior, exterior and normal constraints (see Fig. 3)
[TDOY01]. The latter allow defining the normal in each
boundary constraint. Hence, normal constraints are the best
choice for segmentation based on a set of contours, because
the contours are interpolated more accurately this way.

The location of a normal constraint cN
i is computed by

adding the normal to the corresponding boundary constraint
cS

i , which is done for all boundary constraints (i.e., for all
points of all contours). If a normal constraint is located in-
side the object, hN

i is set to a positive value (typically 1). If it
is located outside of the object, hN

i is set to a negative value
(typically −1). The normal ni in a point cS

i on a contour can
easily be computed using the adjacent points and the normal

Figure 2: Example for segmentation of a liver in CT using
14 orthogonal contours.

(a) (b) (c)

Figure 3: Different types of constraints for variational in-
terpolation: (a) interior, (b) exterior and (c) normal con-
straints. Boundary constraints are indicated by blue circles.

nC of the plane in which the contour is defined:

ni =
(nC× (cS

i+1− cS
i ))+(nC× (cS

i − cS
i−1))∥∥∥(nC× (cS

i+1− cS
i ))+(nC× (cS

i − cS
i−1))

∥∥∥ (7)

For deciding whether cN
i is located inside or outside of the

contour, we have to perform a point-in-polygon test. In our
implementation we use a simple ray casting approach with a
binning strategy for efficient calculation.

If there is only one contour or all contours are in the same
plane, we add one additional contour for the first input con-
tour that is slightly shifted in the normal-direction of the
plane in which the contours are defined. Otherwise the so-
lution of Eq. 6 results in the plane of the contours.

The final step of the segmentation process is a voxeliza-
tion of the resulting implicit function. A naive solution to
this is an evaluation of Eq. 2 for each voxel. Because of
the discretization, no voxel will lie exactly on the surface,
i.e., f (xV ) will never be 0 with xV being the position of the
voxel’s center. Instead, we have to evaluate Eq. 2 for each of
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Example Threads CLAPACK ACML MKL

Metastasis
n = 6246

1 52.75s 12.26s 10.01s
2 - 7.41s 5.74s
4 - 5.07s 3.57s
8 - 5.28s 2.89s

Liver
n = 13796

1 548.74s 119.44s 103.97s
2 - 68.38s 55.98s
4 - 45.68s 31.84s
8 - 41.47s 23.42s

Table 1: Computation times for solving the linear system
described in Eq. 6 using different LAPACK implementations.
The metastasis example is shown in Fig. 1, the liver exam-
ple is shown in Fig. 2. n is the size of the matrix (boundary
constraints + normal constraints + 4).

the eight corner points f (xV
i ) of the voxel. A voxel is located

on the surface if there is at least one corner point that is in-
side ( f (xV

i )> 0) and at least one corner point that is outside
of the object ( f (xV

i )< 0).

4. Speeding up computations

As described in the previous section, a segmentation algo-
rithm that uses variational interpolation consists of two com-
putationally intensive steps. The first step is solving the lin-
ear system given in Eq. 6. The second step is the voxelization
of the resulting implicit function. In the following we will
discuss the computation of those two steps. Furthermore, we
will describe how to speed up computations while preserv-
ing the overall segmentation quality by reducing the number
of constraints.

4.1. Solving the linear system

Turk and O’Brien use an LU decomposition to solve Eq. 6,
which needs about 2

3 n3 operations, where n is the size of
the matrix that is given by the total number of constraints
+ 4 (because of the linear and constant portions). Fortu-
nately, because the matrix in Eq. 6 is symmetric, a more ef-
ficient algorithm developed by Bunch and Kaufman can be
used [BKP76] which only takes about 1

3 n3 operations. The
Bunch-Kaufman algorithm has a complexity comparable to
a Cholesky decomposition, but it is more stable for matrices
that are not positive definite. The algorithm is available as
part of the LAPACK library, which we use for solving the
linear system.

There are different LAPACK implementations avail-
able. The “basic” implementation CLAPACK (http://www.-
netlib.org/clapack) is a rather slow implementation, be-
cause it does not take advantage of modern CPU features,
such as multiple cores and 64-bit as well as vector in-
struction sets like SSE. Optimized implementations that
are much faster compared to CLAPACK are available in

Example Threads Voxelization
Metastasis
n = 6246
m = 1058508
m̃ = 23541

1 4.15s
2 2.49s
4 1.92s
8 2.13s

Liver
n = 13796
m = 10711151
m̃ = 169300

1 62.45s
2 33.64s
4 28.95s
8 32.18s

Table 2: Computation times for voxelization of the implicit
function using the marching cubes scheme. m is the number
of voxels of the corresponding dataset, while m̃ is the number
of voxels on the surface of the object.

terms of the Intel Math Kernel Library (MKL) (http://-
software.intel.com/en-us/intel-mkl), the AMD Core Math
Library (ACML) (http://developer.amd.com/cpu/Libraries/-
acml) and the Accelerate Framework (only available on Mac
OS X since 10.3) (http://developer.apple.com/performance/-
accelerateframework.html). We have compared the 64-bit
versions of CLAPACK 3.0, ACML 4.3.0 and MKL 10.2.2
using the Bunch-Kaufmann based solver for the linear sys-
tem. The function that implements this algorithm in dou-
ble precision is called dsysv in LAPACK. The results are
shown in Tab. 1. All measurements were performed on an 8-
core system (2x Intel Xeon X5550, Turbo Boost and Hyper-
Threading disabled, 12 GB RAM, Windows 7 64-bit). We
use Intel’s MKL in this paper, because it is the fastest li-
brary, at least on an Intel CPU. The ACML is much faster
than CLAPACK as well and it might be even faster on AMD
CPUs.

4.2. Voxelization

As already mentioned, a naive voxelization of the implicit
function f (x) has to evaluate Eq. 2 for each corner point of
each voxel. Let n be the total number of constraints plus the
linear and constant portions (i.e., the size of the matrix in
Eq. 6) and let m be the total number of voxels, the number
of operations necessary for a voxelization is O(nm) for the
naive algorithm. This can be optimized by calculating each
corner value only once and not for each voxel and by restrict-
ing the voxelization to a specific axis-aligned bounding box
around the contours. Unfortunately, the real bounding box is
only given by the implicit function, so it is not known until
all voxels are evaluated.

We use a voxelization method that generates the surface
of the object given by f (x), which only needs O(nm̃) op-
erations, where m̃ is the number of voxels on the surface
of the object. It is based on a scheme similar to the march-
ing cubes algorithm [NY06]. In real world examples m̃�m
holds. Therefore, this method is much faster compared to the
naive approach. For example, only about 2.22% (metastasis)
and 1.58% of the voxels (liver) are located on the surfaces
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of the examples used in this paper (see Tab. 2). For voxeliza-
tion a starting point is needed that is known to be located
on the surface of the object. This is true for each boundary
constraint. As a consequence, the voxel in which a contour’s
first boundary constraint is located is used. If the start point
is not exactly located on the surface, e.g., due to numerical
issues, its neighboring voxels are tested as well. Because the
contours might define several objects, we need to use one
start point for each contour. If a start point is already part of
a voxelized surface, it is rejected. Otherwise, the voxeliza-
tion of the already processed surface would be repeated.

The surface of the segmented object (or objects) is filled in
a successive step using a scan-line algorithm in x-direction
for each “row” (y-coordinate) of each slice (z-coordinate).
Because start and end-voxels for the scan-line are known by
their configuration (i.e., the values of the implicit function in
each corner of the voxel), f (x) does not need to be evaluated
when filling the object.

Computation times can be reduced by using multiple
threads. In our implementation, one thread is used for the
evaluation of f (x) for each of the eight corners of a voxel
when scanning the surface by moving to the next neighbor-
ing voxel. Because typically four or six of the corner val-
ues have already been computed when the previous voxels
have been evaluated, the theoretical maximum speedup of
this parallelization strategy for the voxelization is between
two and four. Measurements of the voxelization times are
given in Tab. 2. We have used OpenMP for the paralleliza-
tion of the algorithm. The measurements only include the
voxelization of the surface. The time for filling the object is
negligible (� 1s).

4.3. Constraint reduction

Looking at the results in Tab. 1 and 2 shows that only the
computation times of the metastasis example might be called
“interactive”. The liver example is far too slow even with the
fastest LAPACK library and with parallel voxelization. As
already stated, the bottlenecks of a segmentation algorithm
that is based on variational interpolation are: firstly, finding
the solution of the linear system and secondly, the voxeliza-
tion. The first problem has a complexity of O(n3), the sec-
ond one O(nm̃). As described in the Sec. 4.2, we have al-
ready minimized the number of voxels m̃ that are evaluated
during voxelization. But the greatest impact on the overall
computation time is given by the number of constraints. In
particular, using only half as much constraints (i.e., contour
points) decreases the calculation time for solving the linear
system by a factor of 8. Also the voxelization would only
take half as much time. Hence, a reduction of the number of
contour points dramatically decreases the overall calculation
time.

To achieve an interactive calculation time, we remove
contour points cS

i that have no or almost no influence on

Example q n Time Overlap

Metastasis

1.0 6246 2.89 / 1.92 / 5.13s 100%
0.5 3608 0.75 / 1.18 / 2.08s 99.94%
0.2 1410 0.08 / 0.55 / 0.67s 99.32%
0.1 710 0.02 / 0.36 / 0.41s 97.05%

Liver

1.0 13796 23.42 / 28.95 / 53.28s 100%
0.5 7916 4.94 / 16.79 / 21.94s 99.50%
0.2 3170 0.5 / 7.3 / 7.82s 98.74%
0.1 1594 0.1 / 8.3 / 8.41s 97.68%

Table 3: Computation times (linear system solving / vox-
elization / overall) for different quality settings q. For all
measurements the MKL with 8 threads and the voxelization
with 4 threads were used. The volume overlap (Jaccard in-
dex) is given relative to the interpolation result with q = 1.
It is calculated by the number of intersecting voxels divided
by the number of voxels in the union of two segmentations.

(a) (b)

Figure 4: Example for reduction of the contours: (a) shows
the original contours and the result of the interpolation us-
ing all 6.246 constraints, (b) shows the result after reduc-
tion with q = 0.2 resulting in 1410 constraints. The resulting
masks are visually almost identical.

the contours’ geometry, which reduces the number of con-
straints while preserving the visual quality of the contour.
This is done in a preprocessing step. As described by Late-
cki and Lakämper we use two attributes to measure the in-
fluence of a contour point on the overall geometry [LL99]:
The angle between its adjacent edges ω

α
i and the length of
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(a) (b)

Figure 5: Example for the variational interpolation of a
self-intersecting contour: (a) before and (b) after normal
correction.

the adjacent edges ω
l
i . These weights are given by:

ω
α
i =

1− cos((ci− ci−1) · (ci+1− ci))

2
(8)

ω
l
i =

|ci− ci−1| |ci+1− ci|
|ci− ci−1|+ |ci+1− ci|

(9)

The total weight ωi of a contour point can be calculated by:

ωi = ω
α
i ω

l
i (10)

Our reduction algorithm iteratively removes the points
with the lowest weight ωi until a specific number of points is
reached. This number is given by a quality factor q ∈ (0,1]
multiplied by the initial number of points. I.e., using a qual-
ity of q = 0.5 removes about half of the points, while q = 0.2
removes about 80% of the points. Because we do not want to
remove a contour completely, the reduction stops if less than
6 points are left. Fig. 4 and Tab. 3 show results of our reduc-
tion algorithm. Calculation times for this preprocessing are
negligible (� 1s) compared to the overall computations and
are not included in Tab 3.

5. Making the interpolation more robust

There are some special cases that cannot be handled cor-
rectly by the basic algorithm. These cases will be discussed
in the following.

5.1. Handling self-intersecting contours

As already described in Sec. 3.1, normal constraints allow
a better segmentation result, because the surface interpo-
lates the contours more accurately. The normal can be cal-
culated according to Eq. 7, followed by a point-in-polygon
test. However, for self-intersecting contours this test might
not detect the intersection properly, resulting in an incorrect
surface as shown in Fig. 5a.

As a solution, we calculate the normal constraint in a more
robust way. By default we assume that the normal constraint
is located outside of the contour. To ensure this, we start the
computation of the normal using three points of the contour

(a) (b)

Figure 6: Example for the variational interpolation of a
contour after reduction of the number of constraints: (a) be-
fore and (b) after inserting additional boundary constraints
(blue circles).

that are known to be convex. This is true for the point with
minimum x-, y- or z-coordinate (depending on the plane in
which the contour is defined) and its adjacent points. Based
on these minimum points we calculate the normal according
to Eq. 7. If this normal points inside the contour, we invert
the sign of the normal. Because a contour is an ordered set
of points, we can now iteratively scan it, starting from its
minimum point and calculate the normal in each point while
setting the sign according to the sign of the normal in the
minimum point. This way all normals point outside, until
two adjacent points are involved in a self-intersection, i.e.,
until the line segment defined by these points intersects one
or more other line segments of the contour. If the number
of intersections with other line segments is odd, we need
to invert the sign of this normal and all following normals
again, until the next self-intersection line segment is found.

In addition to this normal calculation, we also need addi-
tional start points for the voxelization of the surface, because
the surfaces surrounded by such contours are typically not
coherent. We use the voxels in which the intersection points
are located as additional start points, because these points
are known to be located on a “new” surface. This way we
get a consistent surface even for self-intersecting contours,
as shown in Fig. 5b.

5.2. Handling reduced contours

For a fast calculation of the interpolation, the number of
constraints is reduced as described in Sec. 4.3. This way,
collinear points are replaced by one single line segment.
Such contours are visually equal to the original contours.
However, the surface defined by the reduced contours might
be different from the original surface, because of the loss of
information, which can be seen in Fig. 6a.

We solve this by inserting additional boundary and normal
constraints on long line segments if the length of the segment
is twice as long as the average length of all segments. The
constraints are inserted such that the lengths of the resulting
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segments equal the average length (see Fig. 6b). Instead of
this “postprocessing”, long line segments could already be
avoided in the reduction step using an adjusted weight ωi
for each surface constraint.

6. Results

As shown in the examples, variational interpolation allows
an accurate and smooth segmentation of objects in medical
images (see Fig. 1 and Fig. 2).

The results in Tab. 1 show that using an optimized LA-
PACK implementation has a huge impact on the time nec-
essary for solving the linear system. Using a voxelization
strategy that successively moves along the surface of the ob-
ject allows a fast conversion from the implicit function to a
discrete image. This process can be sped up by using multi-
ple threads as shown in Tab. 2. As expected, our paralleliza-
tion strategy for the voxelization has its maximum speedup
of about 2.16 when using four threads. Using more threads
slows down the computation, because the overhead for han-
dling the threads is larger than the speedup of the parallel
computation.

Using a proper reduction of the number of constraints
yields a significant speedup in both solving the linear sys-
tem and the voxelization, while resulting in an almost sim-
ilar overall quality of the segmentation as shown in Tab. 3
and Fig. 4. In the liver example, it seems that for q = 0.1
the overhead for parallelization increases compared to the
overall computations, which results in a higher voxelization
time. The overall time measurements in Tab. 3 also include
all the robustness optimizations described in Sec. 5. As can
be seen, the overhead for improving the robustness is negli-
gible compared to the main bottlenecks of the algorithm.

Our measurements show that interactive segmentation
times can be achieved for small objects. However, in our
current implementation the voxelization is the main limiting
part of the segmentation algorithm, especially for large ob-
jects. Thus, the algorithm is not interactive for large objects
by now.

7. Limitations

Variational interpolation is computationally expensive and
needs much memory (O(n2)), because it is a global interpo-
lation. Therefore, the number of constraints is limited by the
available memory. Moreover, computation times are slow for
a large number of constraints. This can be solved by reduc-
ing the constraints resulting in interactive computation times
for small objects. However, in our current implementation
and for large objects like the liver, the voxelization becomes
the bottleneck after reduction. An improved parallelization
strategy is necessary to further speed up the segmentation.

The presented algorithm also has some limitations con-
cerning the segmentation quality. Normal constraints are

(a) (b)

(c) (d)

Figure 7: Limitations of our algorithm: (a) 2D normal con-
straints (which can be seen at the uneven silhouette), (b) con-
tradictory contours in the liver example, (c) incomplete vox-
elization of some self-intersecting contours and (d) a square-
shaped contour being interpolated to a sphere.

currently computed based on a single contour, i.e., in 2D.
However, neighboring contours influence the normal of the
surface as well (see Fig. 7a). Another issue are contradic-
tory contours, i.e., contours that define different surfaces, al-
though they should be located on the same surface. This can
happen for non parallel contours like in the liver example,
as shown in Fig. 7b. For such contours an additional prepro-
cessing step is necessary that solves such inconsistencies.
Another solution might be a morphological postprocessing
of the resulting segmentation. In some cases the correct han-
dling of self-intersecting contours fails, because the intersec-
tion point used as additional starting point for the voxeliza-
tion is located on the already found surface instead of the ad-
ditional surface (see Fig. 7c). A more advanced selection of
starting points should solve this. A conceptual drawback of
the smooth interpolation is that the resulting surface does not
always look like how the user would expect it if the number
of constraints is to low. For example, a square-shaped con-
tour that is only defined by its corner points will be interpo-
lated to a sphere using the presented algorithm (see Fig. 7d).
Finally, numerical instabilities can arise during the intersec-
tion and point-in-polygon tests, which can result in a wrong
interpolation result for self-intersecting contours.
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8. Conclusion and future work

Variational interpolation allows an accurate and robust re-
construction of the surface and thus a segmentation of an
object defined by a set of contours. A surface generated us-
ing variational interpolation is smooth, it is guaranteed that
all used contour points are part of the surface and the re-
sulting surface is plausibly extrapolated into regions where
no contours have been drawn. In addition, the algorithm can
be used for any three-dimensional modality (e.g., CT, MRI,
3D US) and the interpolation can easily be extended to more
dimensions, which allows an interpolation of an object over
several time points as well.

Although the algorithm is time and memory consuming,
calculation times can dramatically be decreased using mod-
ern CPU features and a reduction of the number of con-
straints. Furthermore, a fast, parallel voxelization method
has been presented that only evaluates the voxels on the sur-
face of the object. This way, interactive segmentation times
can be achieved for small objects. Using a proper reduction
strategy, the differences in the interpolated result are visually
not distinguishable from the result using all contour points.

Future work will focus on further reducing the voxeliza-
tion times by using an improved parallelization strategy. We
will also investigate, whether GPU based implementations
can improve computation times significantly. For handling
self-intersecting contours more robustly, we are going to im-
prove the voxelization by using more appropriate starting
points, which is also necessary for a more efficient paral-
lelization. Instead of using a global variational interpolation,
local schemes could be used for solving the interpolation
problem. For example, Morse et al. suggest compactly sup-
ported radial basis functions that only need O(n) memory
and O(n1.5) time for solving the interpolation [MYR∗05].
Also the voxelization could be sped up this way, because
these radial basis functions can be evaluated in O(logn).
Other aspects that have to be evaluated are the number of
contours and their orientation as well as the number of con-
straints that are necessary for an acceptable segmentation.

The presented algorithm will be available in MeVisLab
2.1 (http://www.mevislab.de) as part of the CSO (Con-
tour Segmentation Objects) library, where it is called CSO-
ConvertTo3DMask. But because MeVisLab only ships with
CLAPACK, this module calculates slower compared to the
results presented in this paper.
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