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Abstract
Transfer functions are an essential part of volume visualization. In multimodal visualization at least two values
exist at every sample point. Additionally, other parameters, such as gradient magnitude, are often retrieved for
each sample point. To find a good transfer function for this high number of parameters is challenging because of
the complexity of this task. In this paper we present a general information-based approach for transfer function
design in multimodal visualization which is independent of the used modality types. Based on information theory,
the complex multi-dimensional transfer function space is fused to allow utilization of a well-known 2D transfer
function with a single value and gradient magnitude as parameters. Additionally, a quantity is introduced which
enables better separation of regions with complementary information. The benefit of the new method in contrast to
other techniques is a transfer function space which is easy to understand and which provides a better separation
of different tissues. The usability of the new approach is shown on examples of different modalities.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [Image Processing and Computer Vision]:
Volumetric, Multidimensional

1. Introduction

Volume visualization is a technique which enables physi-
cians and scientists to gain insight into complex volumetric
structures. Currently, the trend towards information acquisi-
tion using data sets from multiple modalities is increasing
in order to facilitate better medical diagnosis. As different
modalities frequently carry complementary information, our
goal is to combine their strengths providing the user with a
consistent interface.

Normally a side-by-side view is provided in medical ap-
plications for the inspection of the different modalities. A
physician can simultaneously scroll through both registered
modalities. This practice has two main drawbacks. One is
the missing direct visual combination of the data. A physi-
cian has to mentally overlap the two images to get the cor-
responding points of one modality in the other one. A sec-
ond drawback is the restriction to a 2D visualization. These
drawbacks can be eliminated by the fused display of both
data sets together in a 3D multimodal visualization. The
challenge for such a visualization is the density of infor-
mation in space. For each sample point at least two values

from the different modalities are present. To reduce the den-
sity a transfer function can be used which defines optical
properties, such as color and opacity, for certain values. The
transfer function can be controlled by the user to change the
appearance of the result image. The more input values are
taken to classify a sample point and assign optical properties
to it, the harder it is for the user to find a good transfer func-
tion. This is the main problem of multimodal visualization
because there are at least two values involved.

In this paper, we introduce a novel concept for defining
transfer functions in multimodal volume visualization. Our
method aims to reduce the complexity of finding a good
transfer function. A new transfer function space is provided
which can be controlled by the user in an intuitive and famil-
iar way. This is done by using the information contained in
the distribution of values in both modalities. Based on this
information, the values of both modalities are fused. This
results in a fused transfer function space with a single value
and a single gradient magnitude as parameters. A measure
for the complimentary information of both modalities is used
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as additional parameter for more user control and a better
separation of different tissues.

In Section 3 the new approach is described in detail. We
show how the retrieved information of the value distribu-
tion can be used to generate the transfer function space. Sec-
tion 4 briefly describes an efficient implementation of the
new method. The usability of the new method is shown in
Section 5 with some results. Conclusions and ideas for fur-
ther work are given in Section 6. First an overview over re-
lated works on this topic is given in the following section.

2. Related Work

All different methods for multimodal visualization can be
classified - as described by Cai and Sakas [CS99] - accord-
ing to the level in the rendering pipeline in which they are
applied. In the illumination-model-level intermixing opti-
cal properties are assigned to a combination of values from
the different modalities. The accumulation-level intermixing
fuses the values after optical properties are assigned to each
modality individually. In the image-level intermixing the fu-
sion is done after the 2D images have been rendered.

The image-level intermixing is the simplest way for the
fusion of two modalities, but it has the disadvantage that
the 3D information is lost. Therefore this fusion technique
is typically just applied on single slices of the volume. Sev-
eral techniques have been developed for this purpose, such as
alternate pixel display or linked cursor [SBS∗87, SZHV94].

Due to the increasing speed of computers and graph-
ics hardware volume rendering became more popular and,
therefore, also the multimodal fusion could be done in the
volume space. The first methods were based on surface mod-
els. Levin et al. [LHT∗89] generated a surface model from
an MRI scan and mapped the PET-derived measurement
onto this surface. Evans et al. [EMT∗91] generated an inte-
grated volume visualization from the combination of MRI
and PET. These works are mainly focused on the combi-
nation of anatomical and functional images. A more gen-
eral approach for the fusion of modalities was introduced
by Zuiderveld and Viergever [ZV94]. For this method an
additional segmentation of the volumes is necessary to de-
cide which one to show at a given sample point. A more
recent work by Hong et al. [HBKS05] describes how fusion
techniques in this intermixing level can be efficiently imple-
mented using the graphics hardware.

More sophisticated but more complex methods for multi-
modal visualization are directly applied in the illumination-
model-level. The intermixing in this level directly gener-
ates optical properties from the combination of the values
and additional properties of the two volumes at a single
sample point. A case study for the rendering of multivari-
ate data where multiple values are present at each sample
point was done by Kniss et al. [KHGR02]. In this work the
idea of multi-dimensional transfer functions to assign optical

properties to a combination of values was used. Akiba and
Ma [AM07] used parallel coordinates for the visualization
of time-varying multivariate volume data. Multimodal visu-
alization of medical data sets by using multi-dimensional
transfer functions was shown by Kniss et al. [KSW∗04].
The classification is done on the basis of the dual histogram.
Kim et al. [KEF07] presented a technique which simplifies
the transfer function design by letting the user define a sep-
arate transfer function for each modality. The combination
of them defines the two-dimensional transfer function. The
problem with this technique is the loss of information by
reducing the multi-dimensional transfer function to two 1D
transfer functions.

As mentioned before, the assignment of optical proper-
ties in multimodal visualization is dependent on more than
one value. If the whole information space is used then a
multi-dimensional transfer function is needed. In general
it is a non-trivial task to define a multi-dimensional trans-
fer function because of its complexity. Nevertheless, multi-
dimensional transfer functions are commonly used for vol-
ume visualization. 2D transfer functions were first intro-
duced by Levoy [Lev88]. In addition to the data value the
gradient magnitude was used as second dimension to clas-
sify a sample point. Due to the fact that the design of a
2D transfer function is non-trivial, methods were developed,
to support this task. Kindlmann and Durkin [KD98] intro-
duced a semi-automatic approach for the visualization of
boundaries between tissues. Pfister et al. [PBSK00] gave an
overview on existing techniques to support the design task
of transfer functions. The direct manipulation widgets in-
troduced by Kniss et al. [KKH01] can be used to find re-
gions of interest in the multi-dimensional transfer function
space in an intuitive and convenient way. In other work,
Kniss et al. [KPI∗03] describe a way to efficiently represent
multi-dimensional transfer functions by Gaussian functions
instead of storing a multi-dimensional lookup table.

For the definition of the multi-dimensional transfer func-
tions, in addition to the values from the two volumes, fur-
ther properties can be used to better distinguish between
tissues. In this paper, these additional properties are re-
trieved by methods from information theory founded by
Shannon [Sha48]. He described how the probability of oc-
currence of a signal can be used to define the information
content of the signal. In imaging, information theory is used
in different areas. Image registration is one of these areas.
Wells et al. [WVA∗96] maximized the mutual information
to find a good registration position for two images or vol-
umes. This idea is the basis for the information-based part
of the new approach in this paper.

Rezk-Salama et al. [RSKK06] employed PCA to assist the
generation of more effective transfer functions based on se-
mantics. Our approach provides additional derived quantities
for evaluating the joint information of multiple modalities.
In future work, a combination of both methods could lead
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to even more intuitive user control for multimodal volume
visualization.

3. Information-based Transfer Functions for
Multimodal Visualization

In this section we introduce a novel transfer function space
for multimodal visualization. The aim of all steps described
here is the design of a transfer function space which is as
simple as possible but still able to separate different tissues.
The main contribution of the new approach is the use of
methods from information theory for the design of this trans-
fer function space. Figure 1 shows all necessary processing
steps to classify a tuple of input values ( f1, f2) in this new
transfer function space with optical properties. The further
sections describe these processing steps in detail.

Value 1 Value 2

Optical Properties

Information-based 
Data Fusion

Opposite
Information Retrieval

Information-based
Transfer Function Classification

f1 f2

f f

Δ

δfusedfused

Figure 1: Processing pipeline for the classification of sam-
ple points in a multimodal visualization by an information-
based transfer function.

In Section 3.2, we describe how the input values can be
fused to get just a single value for each pair of input val-
ues. Section 3.3 introduces an additional property which is
used to refine the classification of different tissues through
the transfer function. Finally, Section 3.4 describes how the
fused values are used to define the new transfer function
space and how the additional property is used to influence
the classification. First of all we describe how the probabili-
ties are estimated for the further approach.

3.1. Probabilities in Volume Data

To estimate the probabilities within the volume we first as-
sume the volume is given as a set of regularly arranged grid
points. The simplest way to estimate the probability of a cer-
tain value in such a volume is done by counting its occur-
rence in the whole data set and by dividing this number by
the total number of points in the volume. To do this for all
values a histogram is generated. In a histogram the count of
a bin is increased if a value falls in the range of this bin.

When the counted numbers for all bins are divided by the
total number of points in the volume, we get a probability
distribution P( f ) which returns a probability of occurrence
for each value f .

For retrieving the information content of the joint occur-
rence of two values from two modalities another probability
distribution is needed. It returns a probability P( f1, f2) for
each tuple of values f1 from modality 1 and f2 from modal-
ity 2, also referred to as joint probability. Equally to the prob-
ability for the occurrence of only one value this probability
distribution can also be estimated by a histogram. Due to the
dependency of two values, the histogram is defined in 2D.
This histogram is often referred to as dual histogram.

In the context of the joint probability P( f1, f2) the proba-
bility of just a single value P( f1) is referred to as marginal
probability. These two types of probabilities are further used
in the following sections to generate a new transfer function
space based on the methods of information theory.

3.2. Information-based Data Fusion

At some point in a multimodal visualization pipeline the in-
formation from both data sets has to be combined, as each
sample point can only have one color and opacity. The idea
behind the information-based data fusion is a fusion which
loses as little as possible information. Information can be
measured based on the quality or the quantity of the data. To
be measured by the quality, user interaction would be neces-
sary to decide which region is important in which modal-
ity. This would be a good measurement but it is a time-
consuming process and has to be repeated for each new data
set.

A second way to measure the information is based on the
quantity, i.e. frequency, of the data. For this measurement
the methods of information theory are used. The idea be-
hind this measurement is that values which occur very often
have less information than values which occur not so often.
For medical data sets this can be interpreted that larger re-
gions with the same value, such as the background, contain
less information than smaller regions, such as border areas
or small tissues. The information content can be expressed
by the following equation:

I( f ) = −log2(P( f )) (1)

where P( f ) is the probability of occurrence for a certain
value f . Through the log2 function the information I( f ) is
high for values with a low probability. The fusion should
then be done in a way to weight the value with more infor-
mation content higher than the value with less information
content. To formalize this weighting we want to introduce
the following equation:

γ( f1, f2) =
I( f2)

I( f1)+ I( f2)
(2)
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The γ value is 0 when the second modality has no informa-
tion. It is 1 if the first modality has no information. For a
value of 0.5 both modalities contain the same amount of in-
formation for a given pair of values.

With Equation 2 we get a number for each pair of values
which can directly be used for the weighting in the fusion
step. The fusion of two values, f1 and f2, is simply done by
the following equation:

f f used = (1− γ)∗ f1 + γ∗ f2 (3)

The fused value f f used is close to the value of one modality
when this modality contains more information than the other
modality. Therefore, points with high information content
in just one modality are only slightly modified in contrast
to their original value. This property makes it easier to find
such points in the new transfer function space because they
have almost the same value as they would have in volume vi-
sualization of this modality alone. For points with a γ around
0.5 the fused value is a mixture of both values and, therefore,
is distinguishable from points with high information content
in one modality.

The gradients of both modalities are fused in the same
manner as the values to get an appropiate fused gradient ac-
cording to the values:

∇ f f used = (1− γ)∗∇ f1 + γ∗∇ f2 (4)

The fusion of the gradients is needed for the shading calcu-
lation as well as for classification by the transfer function
based on gradient magnitude. The result of the fusion is a
single value for each sample point like for the visualization
of a single volume. This fused value together with the mag-
nitude of the fused gradient can be used for the classification
by a transfer function. Unfortunately some tissues are over-
lapping in this fused transfer function space. Therefore an
additional parameter is introduced in the following section
which supports the transfer function design for a better sep-
aration of different tissues.

3.3. Opposite Information Retrieval

In the previous section a quantity was calculated which indi-
cates which of the two values has more information. In this
section we will define a quantity which indicates the infor-
mation contained in the joint occurrence of two values rather
than the information contained in the occurrence of a single
value. This new quantity will be used as another attribute
for the classification of a sample point. It allows for a better
separation of different tissues.

For image and volume registration the maximization of
the mutual information is a common tool to find a good reg-
istration position. In this context the best registration posi-
tion is found when the mutual information is at a maximum.
This means that in this position both data sets contain the

lowest possible opposite information. The mutual informa-
tion is a quantity for the whole data set. In contrast the point-
wise mutual information (PMI) is a quantity for the mutual
information for a certain combination of points. It is defined
by the following equation:

PMI( f1, f2) = log2

(
P( f1, f2)

P( f1)∗P( f2)

)
(5)

The PMI is 0 when a pair of values occurs exactly as fre-
quently as one would expect by chance. This is the case
when both values are statistically independent from each
other and the joint probability P( f1, f2) is exactly the prod-
uct of both marginal probabilities P( f1) and P( f2). If they
occur together more frequently as one would expect by
chance then the result of the calculation is greater than 0.
Conversely, the value is lower than 0 if a pair of values
occurs less frequently as one would expect by chance. By
the definition of Shannon this case contains more informa-
tion than a result value greater than 0 because the occur-
rence is less frequent. For a joint probability P( f1, f2) of
0 the PMI is by definition 0. For all other probabilities the
PMI can be normalized to a value between 0 and 1 by sub-
tracting the lower bound (P( f1) = 1 and P( f2) = 1) from
the PMI and dividing it by the difference between the up-
per bound (P( f1) = P( f1, f2) and P( f2) = P( f1, f2)) and the
lower bound:

PMInorm( f1, f2) =
PMI( f1, f2)− log2(P( f1, f2))

log2( 1
P( f1, f2)

)− log2(P( f1, f2))
(6)

The value of PMInorm approaches 0 if the information car-
ried by the pair of values is high. Values close to 1 represent
low information content. To get a high value for pairs of val-
ues with high information content we define a new quantity
δ as an inversion of PMInorm:

δ( f1, f2) = 1−PMInorm( f1, f2) (7)

Figure 2 illustrates the behavior of δ. The different regions,
labeled with capital letters, have different colors to symbol-
ize regions of different values in both modalities. The red
crosses are sample points for which the δ value should be
calculated. For the sample point S1 the involved marginal
probabilities (P( f1) and P( f2)) are rather low because only
a small area (C1 and C2) has the same value in both modali-
ties. For the sample point S2 the marginal probability in the
second modality is higher because the sample point lies in
a larger area B2. The joint probability P( f1, f2) is the same
for both sample points because the combination of C1 and
C2 occurs exactly as often as the combination of D1 and B2.
By calculating the δ values with these probabilities we, how-
ever, get a smaller value for the sample point S1 than for the
sample point S2.

This example can be interpreted in a way that for sam-
ple point S1 both modalities contain correlated information
whereas for S2 modality 1 complements the information of
modality 2 because the region D1 is only represented in
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Figure 2: Example of slices of two different modalities to ex-
plain how the δ value is affected by the value distribution. S1
and S2 are sample points for which the δ value is calculated.

modality 1. This means that the δ value responds with a high
value for regions with high opposite information content. So
this value can be used to separate tissues which only show
up in one modality from tissues which are present in both
modalities. It can be seen as a quantity which indicates the
difference of information content in both modalities at each
sample point. Noise in the data sets does not influence the
δ value. It flattens the probability distribution function but
the relation between the probabilities does not change and,
therefore, the δ value is not affected. The following section
describes how this property can be integrated in the classifi-
cation process.

3.4. Information-based Transfer Function Classification

In the previous two sections we described how methods from
information theory can be used to generate a fused value and
fused gradient as well as an additional property δ which in-
dicates the opposite information. These values together will
be used now for the assignment of optical properties.

f

f

Δ

3D Region

fused

fused

δ

(a) 3D transfer function
space

f

f

Δ

width

pos

2D Region

fused

fused

ω(δ)

δδ

δ

(b) 2D transfer function space and δ
windowing function

Figure 3: Transfer function space is converted from 3D (a)
to 2D (b). Additionally, a simple windowing function for the
δ value is used to modify the optical properties of each 2D
region.

Due to the existence of three values ( f f used ,
∣∣∇ f f used

∣∣,
δ) for each sample point the classification could be done
in a 3D space. For every triple of values optical properties

would be assigned. This approach is shown in Figure 3(a).
The problem with this approach is the complexity of the
transfer function design and, therefore, it is hard to find a
good transfer function. To avoid this we reduce the degree of
freedom by defining a region only in the 2D transfer func-
tion space ( f f used ,

∣∣∇ f f used
∣∣). The design task in this space

is easier because the 2D space is already well-known from
volume visualization of only one volume. Additionally, for
each region a simple windowing function is defined for the
δ value. The selection of a windowing function for this task
results from the fact that the δ values for points of one tissue
in anatomical modalities or a level of activity in functional
modalities are in a certain value range. To extract such parts
only points with a δ value in this range should be selected. A
windowing function is easy to adjust to a certain value range
and, therefore, is perfect for this purpose. The windowing
function can be expressed by the following equation:

ω(δ) = max
(∣∣∣∣1− δ−δpos

0.5∗δwidth

∣∣∣∣ ,0
)

(8)

The parameters δpos and δwidth define the position and shape
of the windowing function ω(δ)∈ [0,1]. The original opacity
α, assigned according to a 2D region in the transfer function
space, is multiplied with this value to fade out points with
a low value of this windowing function. In Figure 3(b) the
separation in a 2D region and a corresponding windowing
function is shown.

4. Implementation

For a fast and efficient volume rendering it is necessary to do
as many calculations as possible in a pre-process. The most
time-consuming part of the whole process is the generation
of the dual histogram and the two individual histograms of
both modalities for the estimation of the probabilities. This
can be done before the rendering because the histograms are
static for two given volume data sets and do not change dur-
ing the rendering process. The histograms are used to calcu-
late the γ and δ values as described in the previous section.
Each of these values can be stored in a 2D lookup table. They
also do not change for two given volume data sets.

Figure 4 shows the processing steps for each sample point
during the rendering process. The processing steps with
sharp corners are lookups and the processing steps with
round corners are calculations. As first step lookups in the
a priori generated γ and δ lookup tables are done. The γ
value is used to fuse the two input values as described in Sec-
tion 3.2. With the fused value and the magnitude of the fused
gradient a lookup in the lookup tables of the transfer func-
tion is done. One lookup table stores the color c and opacity
α for each point in the transfer function space. The second
lookup table stores the parameters δpos and δwidth of the win-
dowing function. The color c of the 2D transfer function is
directly used for further processing steps, such as shading.
The opacity α is modified by the windowing function ac-
cording to the parameters δpos and δwidth as well as the δ
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γ Lookup Table

f1 f2

f f

Δ

δ

fusedfused

δ Lookup Table

2D Transfer Function Windowing Function

α Modification

α δ δpos width

c αmod

Fusion
γ

Figure 4: Overview over the processing steps for each sam-
ple point during the rendering process. Nodes with round
corners are calculation steps and nodes with sharp corners
are lookups.

value. As output of this calculation step we get a modified
opacity αmod which is further used in the rendering process.
The speed of the implementation is no big issue because all
processing steps can be executed quite fast on the graphics
hardware to achieve real-time frame rates.

5. Results

Modalities can be generally classified into two groups:
functional and anatomical modalities. The most common
anatomical modalities are CT and MRI. CT is typically used
to show bone structures. Soft tissues have a higher contrast
in MRI. In Figure 5(a) a visualization of a CT scan is shown
and in Figure 5(b) the visualization of an MRI scan. Both vi-
sualizations can be useful for special examinations but it can
also be seen that both data sets contain some joint informa-
tion. Furthermore some regions with less information, such
as the tissue around the brain in the MRI scan, are hiding
regions with more information, such as the brain itself.

The goal of a multimodal visualization is to combine rel-
evant tissues from both modalities and show them together
to provide additional context. The relevance of a tissue is
dependent on the kind of examination. In a combination of
CT and MRI of a head the brain could be the relevant part
of the MRI scan and the bones could be the relevant parts
of the CT scan. Figure 5(c) shows the rendering results of a
multimodal visualization based on the dual histogram. Both
relevant tissues, the brain and the bones, are visible but also
a lot of artifacts are visible in the result. This follows from
the fact that the brain cannot be better separated in the trans-
fer function space based on the dual histogram. Figure 5(d)
shows the result generated by the new method. In compar-
ison to the result generated with the traditional multimodal

visualization technique the brain is clearly separated from
other tissues and only a few artifacts are visible.

Figures 5 (e) to (h) show the corresponding histograms for
the visualizations in Figures 5 (a) to (d). The regions which
were used to classify sample points with optical properties,
such as color and opacity, are also shown on top of these
histograms. It can be seen that the regions for classifying the
brain tissue and the bones in the new fused transfer func-
tion space, as shown in Figure 5(h), are highly related to
the individual regions in the single modality visualizations,
as shown in Figure 5(e) and Figure 5(f). The regions for
the multimodal visualization, based on the dual histogram,
are shown in Figure 5(g). The position and shape of the re-
gions in this transfer function space are completely different
in comparison to the regions for the single modality visual-
ization. This makes it much harder for the user to define re-
gions for the transfer function because the knowledge from
the single modality visualization cannot be used.

As described in Section 3.4 the definition of a transfer
function is done in two steps. In Figure 5(h) only the re-
gions are shown which assign a color and non-zero opacity
to sample points. Furthermore for each of these regions a
windowing function for the δ value is defined. This function
is used to refine the separation by the transfer function. In
Figure 6(a) the rendering result is shown which is generated
without the usage of a windowing function for δ. The re-
gion which is used to assign optical properties to the brain
is the same as used for Figure 5(d). It can be seen that the
result contains a lot of artifacts. In comparison to that, Fig-
ure 6(b) shows a result which is generated by the additional
usage of a windowing function for δ to modify the opacity.
Through the refinement of the classification with the win-
dowing function most of the artifacts are gone and the brain
is clearly separated.

1

1

ω(δ)

δ

(a) No δ windowing function

1

0.11

0.25

1

ω(δ)

δ

(b) With δ windowing function

Figure 6: The two results show the effect of the usage of δ to
modify the optical properties of a 2D region in the transfer
function space.

Besides the reduction of artifacts the strength of the addi-
tional δ value is the ability to find regions with high differ-
ences in both data sets. This can be very helpful for several
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(a) CT (b) MRI (c) CT & MRI with dual his-
togram

(d) CT & MRI with fused his-
togram

fΔ 1

f1

(e) CT histogram

fΔ 2

f2

(f) MRI histogram
f 2

f1

(g) Dual histogram

fΔ

ffused

fu
se

d

(h) Fused histogram

Figure 5: The images show single volume visualizations of CT data (a) and MRI data (b) in contrast to multimodal visualizations
by using the dual transfer function space (c) and the fused transfer function space (d). Histograms (e)-(h) with the colored 2D
regions for the assignment of optical properties correspond with the above visualizations.

applications, such as the finding of a tissue which only shows
up in one modality. Due to the properties of δ as described
in Section 3.3 regions with opposite information in both data
sets have a high δ value. Figure 7 shows the response of the
δ value for the combination of two example data sets. In Fig-
ure 7(a) and Figure 7(b) two data sets are shown which only
differ at one region where in modality 1 a sphere exists and
in modality 2 not. Figure 7(c) shows the corresponding dis-
tribution of δ values for the two modalities. In the region
where the sphere is represented in only one modality the δ
value is the highest due to complementary information.

(a) Modality 1 (b) Modality 2 (c) δ distribution

Figure 7: The image in (c) shows the distribution of δ in vol-
ume space. It is highest in regions with the largest difference.
In this case the largest difference occurs where in modality
1 (a) a sphere exists and in modality 2 (b) not.

Figure 8 shows a result of a multimodal visualization for
the combination of a CT scan and a PET scan generated by
the new approach. The regions of high acitivity inside the

brain and in the tumor on the neck are shown more opaque.
This example proves that the method also works with the
combination of anatomical and functional modalities and,
furthermore, with different spatial resolutions.

Figure 8: Multimodal visualization of a CT and PET scan.
The more opaque regions symbolizes regions of high activity
such as in the brain and in the tumor on the neck.

6. Conclusion and Future Work

In this paper we introduced a novel approach for the defini-
tion of transfer functions for multimodal visualization. The
initial idea was to define a user-friendly transfer function
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space, which makes it easy to find an expressive transfer
function in order to visualize certain tissues of both modali-
ties. Through the fusion of the data values, based on the in-
formation content, a 2D transfer function space is defined
which is similar to the well-known 2D transfer function
space of single volume visualization with value and gradient
magnitude as the two dimensions. Therefore, the distribu-
tion of points in this transfer function space is easier to un-
derstand by the user. An additional δ value, which describes
the complementary information contained in a pair of val-
ues, is used for a better separation of different tissues. In the
result section we have shown how the new transfer function
space can be used to show relevant parts of both modalities
together.

In comparison to other approaches, which are used for
multimodal visualization, the benefit of the new approach
is the conversion of the classification problem to a problem
which is already known from classification in single volume
rendering. A penalty of the new method is that more infor-
mation does not always mean more importance. So it can
happen that, e.g., artifacts can have high information content
while other, more important parts have lower information
content. But anyway, the user can control this by defining a
transfer function which has low opacity for such unimpor-
tant parts.

An idea for future work is the extension of the method
to more than two modalities. For this reason the approach
can be modified to generate a single fused value and fused
gradient as a combination of all values and gradients from
all modalities. The same modification can be done with the
calculation of the opposite information as well. With these
modifications we still get a transfer function space with the
same dimensionality as for two modalities. The question is
if different tissues are still separable in this transfer function
space. The answer to that question will be part of the new
research.
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[EMT∗91] EVANS A., MARRETT S., TORRESCORZO J., KU S.,
COLLINS L.: MRI-PET correlation in three dimensions using a
volume-of-interest (VOI) atlas. Journal of Cerebral Blood Flow
and Metabolism 11, 2 (1991), A69–A78.

[HBKS05] HONG H., BAE J., KYE H., SHIN Y.-G.: Efficient
multimodality volume fusion using graphics hardware. In In-
ternational Conference on Computational Science (3) (2005),
pp. 842–845.

[KD98] KINDLMANN G., DURKIN J. W.: Semi-automatic gen-
eration of transfer functions for direct volume rendering. In VVS

’98: Proceedings of the 1998 IEEE Symposium on Volume Visu-
alization (1998), pp. 79–86.

[KEF07] KIM J., EBERL S., FENG D.: Visualizing dual-modality
rendered volumes using a dual-lookup table transfer function.
Computing in Science and Engineering 9, 1 (2007), 20–25.

[KHGR02] KNISS J., HANSEN C., GRENIER M., ROBINSON T.:
Volume rendering multivariate data to visualize meteorological
simulations: a case study. In VISSYM ’02: Proceedings of the
symposium on Data Visualisation 2002 (2002), pp. 189–195.

[KKH01] KNISS J., KINDLMANN G., HANSEN C.: Interactive
volume rendering using multi-dimensional transfer functions and
direct manipulation widgets. In VIS ’01: Proceedings of the 12th
IEEE Visualization 2001 (2001), pp. 255–262.

[KPI∗03] KNISS J., PREMOZE S., IKITS M., LEFOHN A.,
HANSEN C., PRAUN E.: Gaussian transfer functions for multi-
field volume visualization. In VIS ’03: Proceedings of the 14th
IEEE Visualization 2003 (2003), pp. 65–72.

[KSW∗04] KNISS J., SCHULZE J. P., WÖSSNER U., WINKLER

P., LANG U., HANSEN C.: Medical applications of multi-
field volume rendering and VR techniques. In Proceedings of
Eurographics/IEEE VGTC Symposium on Visualization (2004),
pp. 249–254.

[Lev88] LEVOY M.: Display of surfaces from volume data. IEEE
Computer Graphics and Applications 8, 3 (1988), 29–37.

[LHT∗89] LEVIN D., HU X., TAN K., GALHOTRA S., PELIZ-
ZARI C., CHEN G., BECK R., CHEN C., COOPER M., MUL-
LAN J.: The brain: integrated three-dimensional display of MR
and PET images. Radiology 172 (1989), 783–789.

[PBSK00] PFISTER H., BAJAJ C., SCHROEDER W., KINDL-
MANN G.: The transfer function bake-off. VIS ’00: Proceedings
of the 11th IEEE Visualization 2000 (2000), 523–526.

[RSKK06] REZK-SALAMA C., KELLER M., KOHLMANN P.:
High-level user interfaces for transfer function design with se-
mantics. In VIS ’06: Proceedings of the 17th IEEE Visualization
2001 (2006), pp. 1021–1028.

[SBS∗87] SCHAD L., BOESECKE R., SCHLEGEL W., HART-
MANN G., STURM V., STRAUSS L., LORENZ W.: Three dimen-
sional image correlation of CT, MR, and PET studies in radio-
therapy treatment planning of brain tumors. Journal of Computer
Assisted Tomography 11, 6 (1987), 948–954.

[Sha48] SHANNON C. E.: A mathematical theory of communi-
cation. Bell System Technical Journal 27 (1948), 379–423,623–
656.

[SZHV94] STOKKING R., ZUIDERVELD K. J., HULSHOFF POL

H. E., VIERGEVER M. A.: SPECT/MRI visualization for
frontal-lobe-damaged regions. Visualization in Biomedical Com-
puting 1994 2359, 1 (1994), 282–290.

[WVA∗96] WELLS III W. M., VIOLA P., ATSUMI H., NAKA-
JIMA S., KIKINIS R.: Multi-modal volume registration by max-
imization of mutual information. Medical Image Analysis 1
(1996), 35–51.

[ZV94] ZUIDERVELD K. J., VIERGEVER M. A.: Multi-modal
volume visualization using object-oriented methods. In VVS ’94:
Proceedings of the 1994 IEEE Symposium on Volume Visualiza-
tion (1994), pp. 59–66.

c© The Eurographics Association 2008.

108


