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Figure 1: Iterative reconstruction of a textured triangle mesh. From left to right: The point cloud created from a set of seven
aerial images, and the triangle mesh after 0.04 s, 0.2 s and 1 s of reconstruction. The grey proxy is provided as a visual 3D-cue.

Abstract

In this paper we present and evaluate a new online reconstruction algorithm to create a textured triangle mesh
from a set of aerial images via an unorganized point cloud. Both the point cloud and the mesh are iteratively
refined while allowing new aerial images to be added at any time during reconstruction. Texture coordinates are
learnt to instantly visualize an initially rough approximation that gets refined as more data becomes available.
The new algorithm improves upon other systems that require the complete data to be acquired beforehand, and that
apply offline, non-iterative reconstruction and processing. Thus, our algorithm is perfectly suited for time-critical
applications, e. g., strategical visualization platforms for disaster and emergency response.

Categories and Subject Descriptors (according to ACM CCS): 1.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Texture 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric
algorithms, languages, and systems 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color,

shading, shadowing, and texture

1. Introduction

Reconstructing 3D scenes from images is of major inter-
est for several application domains, e. g., reverse engineer-
ing, cultural heritage and urban reconstruction. A remark-
able work on the latter can be found in [FFGG*10], a survey
of techniques in [MWA*12]. Most use offline reconstruction
from previously acquired data, e. g., images.

The algorithm presented in this paper will be used in
a strategic visualization pipeline [SFS*11]. Tight timing-
restrictions make an iterative online approach indispensable:
A rough approximation is reconstructed at first. The point
cloud extracted from aerial images [RJ13] and the recon-
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structed surface [VHHM13] get refined as more images be-
come available. In contrast to approaches like [GWO*10],
texture information will be learnt during reconstruction.

Closely related to the surface reconstruction algorithm
used in this paper are [AB10] and [RABI10]. A detailed
discussion of other reconstruction algorithms can be found
in [VHHM13]. However, they do not integrate textures.

2. Reconstruction Pipeline

The online reconstruction algorithm presented in this paper
iteratively reconstructs a textured triangle mesh M from a
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Figure 2: Reconstruction pipeline: A set 4 of aerial images
is used to reconstruct a set P of points from which a triangle
mesh M is reconstructed, textured with the aerial images.

growing set 4 of aerial images via an unorganized point
cloud 2. Even though Fig. 2 might suggest sequential pro-
cessing, point cloud update and surface reconstruction run
in parallel: As new images are added to A4 point cloud up-
date adds new points to P or updates existing points, while
in the meantime surface reconstruction updates the mesh M
according to previous updates to P.

Rigorous mathematical notation will be used for a precise
description. 3D position p, 2D location X in an image A and
texture coordinates t will be attributes assigned to either the
points p, the vertices v or both. Maps bs : ¢ € S — b (e) will
be defined to assign an attribute b to an element e of a set S or
to determine the attribute itself. The shorthands b = b (e)
and b = b will be used for brevity if the exact meaning is
clear from the context. Boldfaced symbols b denote vector-
valued attributes and maps whereas script symbols B denote
attributes and maps that provide sets.

2.1. Point Cloud Update

A point cloud 2 is created similar to the way presented in
[FFGG™*10]: 2D feature points are detected in aerial images
and matched across pairs of images. The epipolar geometry
is estimated and 3D points p,, are reconstructed based on
Euclidean geometry. For each 3D point a sample py is added
to ? and a map p, : ps— Py (Ps) =P, € R is updated.

This paper proposes an online algorithm: Whenever new
aerial images have been captured and registered, a sparse set
of 3D points is reconstructed [RSH11] and added to the point
cloud to provide an approximation. Afterwards, the point
cloud is refined incrementally. Instead of searching for new
feature points in the vicinity of other feature points, a 2D
triangulation of the already detected feature points is repeat-
edly subdivided (cf. Fig. 3). The former technique would add
redundant information to the point cloud, whereas the latter
enhances entropy. New feature points are detected according
to the subdivided triangulation. They are matched and new
3D points are extracted. That way, 2D feature points and cor-
responding 3D points can be extracted from newly acquired
images up to a certain level of refinement, before the com-
plete set of features in all images is further refined. Detail
can be added where needed.

A detailed description of the above and an efficient tech-
nique to restrict the area in which to search for matching fea-
ture points is presented in an accompanying paper [RJ13].
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Figure 3: Feature refinement: A 2D triangulation of feature
points is repeatedly subdivided.

2.2. Textured Surface Reconstruction

Artificial neural networks as presented in [AB10, RAB10,
VHHM13] can be used to reconstruct a triangle mesh with
arbitrary genus from the unorganized point cloud that was
created in the previous step. All of these algorithms can be
extended by the texture learning approach presented in this
paper. However, surface reconstructing Growing Neural Gas
(sGNG) [VHHM13] was used in this work. The basic learn-
ing algorithm that is similar in all of the above techniques
will be briefly described here to derive texture learning.

2.2.1. Surface Reconstruction by Learning

SGNG and related algoritms implement an artificial neural
network consisting of a set ¥ of vertices v; that are intercon-
nected by edges (vj,v;) € £ C V2 with (vj,v) = (v,v;).
For surface reconstruction a 3D position p,, must be assigned
to each vertex v; € ¥ by amap py : v; > py (vi) =Py, € R

The 3D position Py of a randomly selected point pg €
P is presented as an input signal to the SGNG network in
each learning iteration. The best matching vertex v;, € v is
determined with respect to the ¢>-norm ||-|»:

vy = argmin|[p,,, —py (vi)[2
ViEV
Afterwards v, and all of its direct topological neighbours

are moved towards the signal according to predefined learn-
ing rates 3 for v;, and vy for its neighbours. Let a map A :

vi> N(vi) = Ng; = {va | (vi,vn) € E} provide a set of all
direct topological neighbours of v;, then
O+1 )
piy =)y +Bp,, (D
) O )
e p" = (1-yp +yp,, @

with superscript (¥) denoting the number of the current iter-
ation. In general, to achieve good results, § > 7.

New vertices are added after certain numbers of iterations
by splitting the longest edge (v;,v4) € ‘E incident to the most
active vertex vy, i. €., the vertex that was selected best match
more often than the others:

vg = argmax||p,, — Py (vi)|l2

v,-ENyh

Py, +Py,

PO — 9§ G, P, =—5—+ O

Finally, inactive vertices are removed from the network.
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SGNG is the first algorithm of its kind that is able to create
a complete set ¥ C V3 of triangular faces during learning
without using post-processing. Therefore, a triangle mesh
M = (v, F) is readily available at any time during surface
reconstruction: An initially rough approximation that gets
refined as more data becomes available.

A detailed description of the above, connectivity updates
and triangle creation is presented in [VHHM13].

2.2.2. Texture Learning

Colour information can be easily extracted from the aerial
images and assigned to the 3D points in a very dense point
cloud. Learning vertex colours is a straightforward exten-
sion to reconstruction algorithms like sGNG. However, since
colour is interpolated between the vertices during render-
ing, a very large number of small triangles has to be re-
constructed to represent fine details. Therefore, SGNG is
extended by texture learning to provide a highly detailed
colour representation even on a coarse mesh.

Additional information about the points in 2 is needed to
learn texture information. Let a map Ap : ps — Ap (ps) =
Ap, C A4 provide the set 4, of aerial images that contain the
feature points corresponding to ps € P.

The 2D locations of feature points in the aerial images
and thus the 2D locations of the corresponding ps; were de-
termined in the previous step. This allows to define a map
X : ps,Aj—>X(ps;Aj) =Xpa, € [0, 1)* C R? that assigns
such a 2D location X, 4, in A € Ap, to a point p;.

Analogously to the point-to-image map 4 let a map Ay, :
vi > Ay (vi) = Ay, C 4 provide the set of aerial images that
is learnt by sGNG as a set of texture candidates for a vertex
vi. The images in 4, of an input signal pg are in general
used as new texture candidates for a vertex. However, texture
candidates may become invalid as the vertex is moved during
SGNG iterations.

To detect invalid texture candidates, a map T :
Vi,Aj —~ 1T (v,-,Aj) = T,,4; € R assigns a confidence mea-
sure Ty, 4; 10 a vertex v; that a given image A} is suitable for
texturing this vertex. This map is updated, whenever a signal
provides texture candidates to a vertex:

CREY
VA € a, - 1D _ Nt -ifAj €Ay,
J Vi . V;,A/- — (ﬁ)

HTa, > otherwise

with initially T,, 4, = 1, and 7 slightly larger than 1, u
slightly smaller than 1.

Texture candidates are removed from 4, if they were
not provided by pg in the current iteration and if T,, 4; <7T
with T denoting the minimal confidence allowed. Let 4, =
{Aj |A; € 4, ATyA; < E}, then

-q\giﬁﬂ) = ( 5’1‘» U'qﬁg) \ﬂv,
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Letamap t:v;,A;—~t(vi,A;) =t,4, €[0, 1> c R? as-
sign a 2D texel location t,, 4, in A; € 4, to v;. Integrating
learning of texture coordinates into SGNG is similar to the
way positions are learnt (equations (1), (2) and (3)):

L g(0+1) (9)
VA; € Ap; : € = (1-p)t o, T BXpe A,

Vi A J v,

) O+1 [
VA€ Ay el (01 = (1=t +yxpa,
ch-,Aj +tV(]-,Aj ~ Tup A + T4,

VAJ' € 4, : tvm,Aj = ) » Tv,,,.Aj = )

with 4y, = 4y, N 4y, and initialization tii)qj =Xp A

'm

A single image has to be selected from the candidates to
correctly render a textured triangle Avg,v;,vim. Let da ¢ :
Aj—~dac (A j) eR? provide the vector from the barycen-
ter of the triangle to the camera position from where an aerial
image A; was taken. Let furthermore g-: Aj —~ g (A;) €
R? provide the gaze direction of that camera. Then, a func-
tion fac:Aj— fac(A)) € [~1,1] C R provides an or-
thogonality measure similar to the form factor that is used in
Radiosity where

(nh-dac(a)))- (el (4))dac(a)))
Inall2-llge (A) 12+ ldac (A))113

=cos(£np,dac(4))) -cos(Zgc (4)) . dac(4)))

with na denoting the normal of the triangle. Let Ta :
Aj —>TA (Aj) =1 (Vk,Aj) T (Vl.,Aj) T (vm,Aj) provide the
product of confidence measures of the vertices of the trian-
gle. Let finally A5 = 4, N 4y, N 4y,, denote the set of com-
mon aerial images of the vertices of the triangle, then an
image A A will be used for texturing where

A = argmax (’CA (Aj)-fA7C (Aj)) 4

JEAN

fac(A)) =

3. Results

The technique proposed in this paper was evaluated by
reconstructing textured triangle meshes from unorganized
point clouds that were extracted from a set of aerial images.
Point cloud creation and sGNG surface reconstruction itself
will not be evaluated in this paper. Detailed results can be
found in [RJ13] and [VHHM13].

The pipeline was distributed among two computers: One
reconstructed the points in Matlab using CPU and GPU, the
other reconstructed the textured triangle mesh using sGNG
on a single core of the CPU. A set of seven aerial images was
used for the textured reconstruction examples in this paper.
The images were taken with a camera mounted to a minia-
ture unmanned aerial vehicle. Creating an initially sparse
point cloud with 5,700 points took about 30s. Additional
60,000 points were extracted in ten iterations of refinement
in about 150 s. sGNG used this refined point cloud as an input
for the examples in this paper.
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Figure 4: Textured and colored meshes: (a) A textured mesh with 4,100 triangles, reconstructed in 1s. The grey proxy is
provided as a visual 3D-cue. (b) Color-coded sub-meshes. Each is textured with only one aerial image.

Fig. 1 presents an overview of the point cloud (left) and a
sequence of sGNG iterations: Instantly, after 0.04 s, a rough
but fully textured approximation with 200 triangles is avail-
able for visualization. The triangle mesh is continuously re-
fined to 1,000 triangles after 0.2 s, and up to 4,100 triangles
after 1s. An enlarged version is presented in Fig. 4 (a), pro-
viding fine visual detail on an approximation of the geome-
try. The triangle mesh is segmented into sub-meshes by eval-
uating equation (4). This segmentation is presented in Fig. 4
(b). Each sub-mesh is textured with only a single aerial im-
age. The textures match well with little to no visual artifacts
at the boundaries of the sub-meshes. However, slight distor-
tions occur in areas where the point cloud was very noisy.
The distortions and small sub-meshes on the right wing of
the castle are due to very sparse sample points in that area.

4. Conclusion and Future Work

With the technique presented in this paper, a fully textured
triangle mesh is created at virtually the same moment that a
3D point cloud has been extracted from a set of aerial im-
ages. Hence, detailed, close-up display is feasible even in
time-critical applications, and a wealth of rendering and vi-
sualization techniques can be applied.

Segmentation into sub-meshes is advantageous. They en-
able efficient rendering. Using them for spatial subdivisions,
local refinement and improved texture management is con-
ceivable and will be addressed in future work. However, seg-
mentation can lead to artifacts as noted, €. g., in [GWO™*10].
We will evaluate their techniques to improve our pipeline.
It was demonstrated in [VHHM13] that SGNG robustly han-
dles even extremely large datasets. We are thus planning to
extend the texture learning algorithm accordingly.
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