
Eurographics Symposium on Point-Based Graphics (2007)
M. Botsch, R. Pajarola (Editors)

Approximate Star-Shaped Decomposition
of Point Set Data

Jyh-Ming Lien †

George Mason University, Fairfax, Virginia, USA

Abstract
Simplification or decomposition is a common strategy to handle large geometric models, which otherwise require
excessive computation to process. Star-shaped decomposition partitions a model into a set of star-shaped compo-
nents. A model is star shaped if and only if there exists at least one point which can see all the points of the model.
Due to this interesting property, decomposing a model into star-shaped components can be used for computing
camera locations to guard a given environment (the art-gallery problem), skeleton extraction, point data compres-
sion, as well as motion planning. In this paper, we propose a simple method to partition (or cluster) point set data
(PSD) into “approximately star-shaped” components. Our method can be applied to both 2D and 3D PSD and
can be naturally extended to higher dimensional spaces. Our method does not require or compute any connectivity
information of the input points. The proposed method only requires the position and the outward normals of points.
Our experimental results show that the size of the final decomposition is close to optimal.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computing Methodologies]: Computer Graph-
ics[Computational Geometry and Object Modeling]

1. Introduction

Larger and more complex models can be captured cheaply
nowadays using laser range scanners or stereo cameras.
Large geometric models require a lot of computation re-
sources to process. Even with current CPU and GPU ad-
vances, simplification is usually required in order to han-
dle such models efficiently. Decomposition is a kind of sim-
plification that partitions a model into simpler-shaped and
smaller-sized components.

Star-shaped decomposition partitions a model into a set of
star-shaped components. A model is star shaped if and only
if there exists at least one point which can see all the points
of the model. Due to this interesting property, decompos-
ing a model into star-shaped components has many applica-
tions. For example, star-shaped decomposition can be used
to extract shape descriptors, e.g., a skeleton. Star-shaped de-
composition has been used to compute roadmaps and find
paths in robotic motion planning [VM05]. Star-shaped de-
composition is also closely related to the art-gallery problem
(see [Chv75]): Finding the fewest cameras to guard a given
environment.

† jmlien@gmu.edu

In this paper, we propose a simple method to partition (or
cluster) a point set into “approximately star-shaped” com-
ponents. This work provides an alternative approach to the
existing star-shaped decomposition methods that are mostly
focused on decomposing 2D shapes with continuous bound-
aries. Our work is inspired by more and more techniques
proposed to work directly on point set data (PSD) instead of
on reconstructed meshes, e.g., rendering [RL00,ABCO∗03],
compression, feature extraction [PKG03], and surface analy-
sis [PG01], mesh offsetting [CWRR06], to name just a few.
One of the reasons for the popularity of point-based meth-
ods is that the connectivity of the points is not always easy
to compute. An important benefit of working directly on
points is that our method can be applied to both 2D and 3D
point sets and can be naturally extended to higher dimen-
sional spaces. Our method does not require or compute any
connectivity information of the input points. The proposed
method only requires the positions and the outward normals
of points, which can usually be computed efficiently for data
obtained from many sources, such as laser scanner or stereo
cameras. Another important feature of the proposed method
is that, as shown in our experimental results, our decompo-
sition is close to optimal. In all of our experiments, the size
of the final decomposition is only 1.1 to less than five times
larger than the optimal size.

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

J.-M. Lien / A� Decomposition of Point Set Data

We begin our discussion by reviewing some of the related
work in Section 2. In Section 3, we define the terms and
properties that we will use throughout the paper. The main
algorithm of our decomposition method is presented in Sec-
tions 4 to 6. Finally, we show experimental results of the
proposed algorithm in Section 7.

2. Related Work

Star-Shaped Decomposition. There is little known about
3D star-shaped decomposition. On the contrary, decompos-
ing simple polygons into 2D star-shaped subpolygons is well
studied; see a survey in [Kei00]. Similar to most of the de-
composition problems, decomposing a polygon with holes
into minimum number of star-shaped components is NP-
complete [Kei83]. For polygons without holes, the partition-
ing can be done in O(n logn) time [AT81] or O(n) [Gho83]
time and result in n

3 components. Finally, Keil [Kei85]
achieved the optimal solution for star-shaped partition with
the minimum number criterion in O(n5r2 logn) time, where
r is the number of the reflex vertices.

Star-shaped decomposition is related to guarding an art
gallery [Chv75]. A polygon is said to be guarded if it is
covered by the visible regions of the guards. The visible re-
gion of a guard is a star-shaped component. The problem
of finding minimum guards is known to be NP-complete for
polygons with or without holes [OS83, LL86]. Approximate
approaches also have high complexities, e.g., O(n5 logn)
time [Gho87] and O(n4 logn) time [AGS88]. In 3D, ap-
proximate approaches have been proposed to guard terrain
(see [BMKM05]).

Decomposition of Points. Several methods have been
proposed to decompose point set data into meaningful com-
ponents, e.g., by Dey et al. [DGG03]. Recently, Yamazaki
et al. [YNBH06] proposed a decomposition method based
on the estimation the centrality of each point using approx-
imated geodesic distance. Despite their promising results,
one major drawback of this approach is that the computa-
tion for the centrality is time consuming and requires large
memory consumption. Further simplification of the model
and approximation of the centrality are required to provide
reasonable computation time.

Approximated Decomposition. The main idea of ap-
proximated decomposition is to take advantage of ignoring
detailed features of the model to efficiently produce smaller
decompositions than the exact approach. Approximate con-
vex decomposition (ACD) of polygons [LA06] and of poly-
hedra [LA07] are methods that decompose a model into
nearly convex components. Lien and Amato have shown that
ACD can be generated more efficiently and has more applica-
tions than exact convex decomposition methods. As we will
show, the approximate star-shaped decomposition has simi-
lar benefits.

s

q

x

p

Vx

(a)

p

Vx(P)sx

q

(b)

Figure 1: (a) A polygon. (b) A point set representing the same
shape. See Section 3 for detail.

3. Preliminaries: Visibility

Before going into details about our decomposition method
of points, let us first review some simple geometric prop-
erties about shape. A shape S is usually represented by its
boundary ∂S and the boundary of a shape is usually repre-
sented by a set of connected points, i.e., edges and facets.
Examples include 2D polygons and 3D polyhedra. Several
geometric properties can be easily computed using bound-
ary representations. For example, given two points p and q,
we can check if p can directly see q (with respect to S) by
checking if the line segment pq connecting p and q interests
the boundary ∂S. That is we can define the visibility of two
points as follows.
Definition 3.1. Visibility. Let p and q be two points and let
S be a shape. Points p and q are visible from each other if
and only if pq◦∩∂S≡ ∅, where pq◦ is the open set of pq.

Now, given a point p inside a shape S, we call a set of
points that are visible from p the visible region Vp of p (see
Figure 1(a)).
Definition 3.2. Visible region. Let p∈ S be a point of S. The
visible region, denoted as Vp, of p is a set of points in S that
are visible from p, i.e., Vp = {q ∈ S | pq◦∩∂S≡ ∅}.

It is easy to see that the visible region Vp of p is a star
shape, in which the point p is visible from all the points of
Vp. Therefore, we can now simply define a star shape and
star-shaped decomposition using the concept of visible re-
gion.
Definition 3.3. Star shape and star-shaped decomposition
Shape S is a star shape if and only if there exists a point p∈ S
so that Vp ≡ S. A star-shaped decomposition of a shape S is
a set of star shapes {Si} whose union is S.

Note that, so far, our definitions of visibility and star
shape depend on a continuous boundary representation of
the shape, however, this continuous boundary will not be
available in a point-based representation.

Point-based representation. Now let us return our at-
tention back to point sets. A point set data is also a type
of boundary representation except that these points are not
connected into lines or meshes. Without connectivity, the
boundary ∂S of a shape S becomes more ambiguous, thus
the definitions and properties mentioned previously seem to
be not valid anymore. For example, how can we check if two
points are visible from each other without the explicit repre-

c© The Eurographics Association 2007.

74

J.-M. Lien / A� Decomposition of Point Set Data

sentation of the boundary? Fortunately, as we will see, these
properties can be approximated closely without computing
the connectivity of the points.

We let P be a point set. We assume that the point set P is
a sample of the boundary ∂S of a shape S and each point p
of P is associated with an outward normal direction�np.

First, let’s consider the visibility. Let x be an arbitrary
point and p be a point of P. We observe that if the “view-
ing line” from x to p and the outward normal of p point in
the opposite direction, p must be invisible from x. In this
case, p is called a back point of x.
Definition 3.4. Back point. Given a point x and a point p ∈
P. The point p is invisible from x if the normal of p is pointing
in the opposite direction of −→x p , i.e., �np ·−→x p < 0, except the
discontinuous points †.

Note that Definition 3.4 provides a necessary condition
to identify invisible points of a guard x but not a sufficient
condition. In order to find (or approximate) all visible points,
we have to identify the points that are “occluded” by the
back points as well. More precisely, we define the ε-view of
a guard x as follows.
Definition 3.5. ε-view. Given a guard x, an ε-view from x
to a point p is represented as a cone whose apex is x, apex
angle is ε and base center is p. Any back point of x in x’s
ε-view can occlude the view.

Then we can immediately define the occluded points of a
guard.
Definition 3.6. Occluded points. A point p is occluded from
a guard x if and only if there exists a back point q in x’s
ε-view and q is closer to x than p is to x.

An example of the the ε-view is shown in Figure 2. This
definition of ε-view helps to identity occluded points and
therefore the visible points. Using the concept of ε-view, we
define ε-visibility.

p
x ε

q

Figure 2: An ε-view of a guard x towards a point p. If the point q
is a back point of x, the view is occluded and p is not visible by x.

Definition 3.7. ε-visibility. A point p is ε-visible from a
point x if p is neither a back point nor an occluded point of
x. Then, a set of ε-visible points is called the ε-visible region
of x, denoted as ε-Vx.

Finally, we say that a point set P is an ε-approximate star

† Points on the boundary of a visible region can be further clas-
sified into connected components. We call the boundary points of
each component “discontinuous points.” An example is the point
s in Figure 1(b). The discontinuous points must be reflex vertices
(whose internal angle is larger than 180◦). The number of discontin-
uous points is usually relatively small comparing to the the number
of the invisible points.

shape (or simply ε-A�) if there exists a point x whose ε-
visible region is P. Then, as before, an ε-A� decomposition
of P is simply a set of ε-A�s whose union is P.

Note that the quality of the approximation of the true vis-
ibility depends on the value of ε. The quality degrades when
ε is too large or too small. We will discuss how to compute ε
from the point set in Section 6. In the following section, we
will assume that ε is given by the user and start to sketch our
method for computing A� decomposition.

4. Approximate Star-Shaped (A�) Decomposition

The framework of the A� decomposition is rather straight-
forward. We first select a point x at random from the point
set P that is not visible from any existing guards. Then we
add x as a guard and x’s ε-visible region as an ε-A�to the de-
composition. The process is iterated until all points in P are
ε-visible by at least a guard. We pick this strategy because of
its simplicity and because it has been shown to produce im-
pressive results for polygons [AMP05]. More importantly,
as we will see in our experimental results in Section 7, this
strategy generates only 1.1 to less than 5 times more guards
than any optimal solutions do for some common models in
computer graphics (see Table 1).

The main challenge of our A� decomposition framework
is to approximate the visible region of a guard. Because of
its crucial role in this framework, we will spend the entire
next section addressing this challenge.

5. ε-Visible Region of A Guard

In this section, we will discuss methods to compute the ε-
visible region of a guard. We first propose a basic method
in Section 5.1. Then we will improve of the efficiency and
quality of this basic method in Section 5.2 and in Section 5.3,
respectively.

5.1. Basic Approach

This basic approach is composed of two steps: Radial parti-
tioning and ε-visible point identification.

Radial partitioning. Given a point set P and a guard x,
we use x to partition P. To do so, we convert the points of
P to a spherical coordinate system centered at x. Then, we
partition the spherical coordinate system into 2(π

ε)2 equally-
sized buckets. Each bucket represents an ε-view of x. Fi-
nally, each point of P is assigned to a bucket according to
its coordinate. In our implementation, we use an enclosing
box instead of a sphere, and we project P to the boundary
of the box. An example of such a partitioning is shown in
Figure 3(a). A benefit of using a box is its simplicity in ex-
tending to high dimensional space.

Find visible points. We identify ε-visible points from
each bucket. That is, for each bucket, we find the closest
back point p of x (see the shaded bucket in Figure 3(b)).
Then all points in the bucket that are closer than p to x are

c© The Eurographics Association 2007.

75

J.-M. Lien / A� Decomposition of Point Set Data

x

(a)

p

x

(b)

x

p

(c)

Figure 3: (a) A radial partitioning of the point set P from a guard x. Points in P are projected to the boundary of a box defined around x.
(b) For each bucket, the closest invisible point p is found and all points that are closer than p are considered visible. (c) Darker points are
considered as visible points from x, which collectively form an A� of x.

visible by x. Figure 3(c) shows all the ε-visible points from x,
which collectively form the A� of x. Algorithm 5.1 outlines
this process.

Algorithm 5.1: A�(P,x,ε)

comment: Point set P and query point p

Assign P into 2(π
ε)2 buckets {Bi} of x’s radial partitioning

for each bucket Bi

do

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Compute the closest back point p ∈ Bi to x
if p exists

then dp← |x− p|
else dp←+∞

for each point r ∈ Bi

do
{

if |x− r|< dp
then Vx←Vx∪ r

A naïve implementation of Algorithm 5.1 is of O(n) time
complexity for a point set with n points. The computation
efficiency can be further improved if a spatial data structure
is built on P. Details of this idea will be elaborated in Sec-
tion 5.2. Moreover, since the guard x is selected at random,
x can have poor visibility. In this case, more guards will be
needed to guard the entire point set. Therefore, in order to
reduce the number of guards needed to cover the space, we
find a “better x” from x. Details of this method will be dis-
cussed in Section 5.3.

5.2. Improve A� Efficiency: Box-tree preprocessing

We use a box tree to pre-process the input point set and to
improve the performance of the A� computation discussed
above. A box tree is similar to an octree except that, in
the box tree, each node is always a smallest (axis-aligned)
bounding box of the enclosed points. Intuitively, our plan is
to place points near a guard x in smaller boxes and place
far away points in larger boxes. With this data structure, we
hope we can find the closest back point in the nearby small
boxes without checking the far away large boxes.

Box tree construction. The construction of the box tree
starts with the minimum bounding box of the entire point
set. If there are more than k points in a box, these points

are partitioned evenly at their center into eight point sets. (In
our experiment we arbitrarily pick k = 16.) Then a minimum
bounding box is constructed for each point set as a child of
the original box. This process iterates until no boxes can be
split.

Radial partitioning. Similar to the radial partitioning of
the entire point data, we perform a radial partitioning on the
box tree constructed above. The idea is to traverse the box
tree top-down and find a set of boxes that can fit into the
buckets. Starting with the bounding box (the root), we check
if all of its vertices belong to the same bucket. If so, we as-
sign the box to the bucket. Otherwise, we “open” the box
and perform the same test for each of the eight child boxes
and repeat until no unfit boxes left.

Find visible points. Similar to the basic method, we find
the closest back point in each bucket. To do so, we first sort
the boxes from near to far and then start to examine points
in each box until we find a back point.

Since checking if a box fits into a bucket takes only con-
stant time and the number of boxes is much smaller than the
number of points, partitioning boxes is more efficient than
partitioning all points. Using a box tree, the complexity of
computing an A� becomes output sensitive, i.e., O(k + m),
where k is the number of visible vertices and m is the over-
head of building the box tree and sorting the boxes in each
bucket.

5.3. Improve A� Quality: A� Expansion

Our goal here is to find a better guard than the randomly
selected guard. Here, “better” means larger visible region.
Our strategy is to compute the kernel of the visible points
of a guard x and find a guard from the kernel. We define a
kernel of a point set as the following.
Definition 5.1. A kernel of a set points P is another set of
points K. Every point of K can see all the points of P.

The kernel Kp of a set of points Vp can be computed as
the intersection of half-spaces defined by the points in Vp
(see Figure 4). The key to compute the kernel efficiently is
that we can convert these half-spaces to the points Vp in the

c© The Eurographics Association 2007.

76

J.-M. Lien / A� Decomposition of Point Set Data

Kp

Vp

Figure 4: Kp is the kernel of the points Vp. Kp is simply the in-
tersection of the half spaces (shown as the lines and arrows in the
figure) defined by the points (shown as dark points in the figure) and
point normals.

dual space, where Vp is defined as the following:

Vp = { �nq
−→q p ·�nq

| q ∈Vp}.

Then the boundary points in the kernel Kp are simply dual
to the facets of the convex hull of Vp, which can be computed
efficiently in O(n logn), where n is the number of points in
Vp.
Lemma 5.2. Let Hi = {x | (x− pi) ·�npi < 0} be a half space
defined by a point pi ∈Vp. The kernel Kp of Vp is

T

i Hi.

Proof. We know that if a point pi ∈Vp is visible from a point
x, the view direction −→x pi and the normal of pi point in the
same direction. For x to be a member of the kernel Kp, this
criterion must hold for all points of Vp, i.e., −→x pi ·�npi > 0 =
(x− pi) ·�npi < 0,∀pi, i.e.,

T

i Hi.

Once the kernel is known, we compute a visible region
for each vertex in the kernel. Since the visible regions of the
vertices of the kernel are larger than or equal to Vp(P) (see
Lemma 5.3), our visible region must expand monotonically.
This process is repeated until no expansion can be gained.
The subroutine A�-EXPAND is defined in Algorithm 5.2.

Algorithm 5.2: A�-EXPAND(x,Vx)

Compute the kernel Kx from Vx
Find k ∈ Kx so that k has the largest visible region Vk
if |Vk|> |Vx|

then return (A�-EXPAND(k,Vk))
else return (x,Vx)

Lemma 5.3. Given a point p and its visible points Vp, Algo-
rithm 5.2 must return a guard p′ whose visible region is no
smaller than Vp.

Proof. Let Kp be the kernel of Vp and let p′ ∈ Kp. Because
p′ can see all the points in Vp, Vp ⊂ Vp′ . Therefore |Vp| ≤
|Vp′ |.

It is clear that the time complexity of computing A�-
EXPAND is higher than computing A�. One pass of A�-
EXPAND without the recursive call takes O(n2 + n logn)
time. In the worst case, only one more point becomes visible
by applying one pass of A�-EXPAND. When this happens,
the recursion depth is O(n) and the total time complexity for
A�-EXPAND is O(n3), which is not practical for most prob-
lems that we are interested in in this work. To reduce the time
complexity, we modify Algorithm 5.2 so that only log |Kp|
points randomly selected from the kernel Kp are considered
and the recursion stops when the improvement is less than
|P|/c points, where c is a user-defined constant. This heuris-
tic is outlined in Algorithm 5.3.

Algorithm 5.3: A�-EXPAND2(x,Vx)

Compute the kernel Kx from Vx

Let K′
x contain log |Kx| random vertices from Kx

Find k ∈ K′
x so that k has the largest visible region Vk

if |Vk|> |Vx|+ |P|
c

then return (A�-EXPAND2(k,Vk))
else return (k,Vk)

The time complexity of Algorithm 5.3 now becomes
O(n logn). Experimentally we observe that A�-EXPAND and
A�-EXPAND2 produce similar results while A�-EXPAND2 is
much more efficient. For the rest of this paper, A�-EXPAND2
is used (if not said otherwise) to compute the A� of a given
point.

6. Putting It All Together

Algorithm 6.1 shows a fleshed-out version of the A� decom-
position. Note that in the last step of Algorithm 6.1 we sim-
ple assign each point to its closest visible guard to produce
the final decomposition. Figure 5 shows an example of the
A� decompositions of a 3-d point cloud. Algorithm 6.1 has
O(kn logn) time complexity, where n and k are the number
of points in P and guards, respectively.

Algorithm 6.1: A�-DECOMP(P)

build a box tree from P
repeat⎧⎪⎨
⎪⎩

randomly select a point x ∈ P invisible by any guards
build ε-Vx of x using the box tree
(g,ε-Vg) =A�-EXPAND2(x,ε-Vx)
add (g,ε-Vg) to the decomposition

until every point in P is visible
Assigneverypointtoitsclosestvisibleguard

Now, the remaining task is to find the value of ε from a
given point set. As we mentioned before, the value of ε has
great influence on the quality of the final decomposition. A
small ε makes invisible points visible while a large ε elimi-
nates many visible points. Our goal is to find the smallest ε
that will not classify invisible points as visible.

c© The Eurographics Association 2007.

77

J.-M. Lien / A� Decomposition of Point Set Data

Figure 5: A� decompositions of the point data of a horse model
(with A�-EXPAND2). Each of the 17 large dots in the figure repre-
sents a guard. (This figure is much informative in color. Please refer
to the PDF file if you have a black and white printout.)

6.1. The value of ε

The value of ε depends on how dense the point set P is sam-
pled from the boundary of a shape S and the external medial
axis of S. Lemma 6.1 uses the sampling density to compute
the value of ε.
Lemma 6.1. When ε = maxi{2 ·arctan(δ

4γi
)}, where δ is the

sampling density of P and γi is the distance from a point
pi ∈ P to its closest point on the medial axis, Algorithm 6.1
will never classify invisible points as visible points.

Proof. We show this statement is true by assuming that ε is
known and show that if no invisible point is missed by Algo-
rithm 6.1, then the sampling density is 4γi · tan(ε

2). Figure 6
shows an example of the worst scenario, in which the guard
x is placed on the boundary of the shape. In addition, x’s
ε-view is aligned with its outward normal and the first seg-
ment of the shape blocking the view is perpendicular to the
view. This make the intersection of the view and the segment
shortest.

To make Algorithm 6.1 recognize this boundary, there
must be a point sampled from the intersection, e.g., the point
p in Figure 6. Otherwise, x will see through this boundary
and classy some invisible points as visible, e.g., the point q.
Therefore the length of the intersection of the ε-view and the
invisible boundary defines the sampling density δ. It’s easy
to see that the length of the intersection is 4γx · tan(ε

2), where
γx is the distance between the external medial axis and x.
Thus, we conclude that if ε = 2 · arctan(δ

4γx
) all back points

will be found and no invisible points are visible by x.

Both sampling density δ and distance to the medial axis γi
can be estimated from the point set. To estimate, δ, we com-
pute the maximum of the longest distances between each

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

p

r

q
x

external medial axis

Figure 6: There must be a sample, such as the point p, in the first
intersection of x’s ε-view and the polygon to ensure that q will not
become a visible point of x.

point and its k nearest neighbors. (We simply set k = 4.) We
estimate γi as the half of the distance between the point pi
and its closest back point.

7. Experimental Results

We implemented the proposed method in C++. In this sec-
tion, we show experimental results from our implementation
using seven common models, which are converted to point
set data and shown in Table 1. We show the the number of
guards and computational efficiency of the proposed meth-
ods. We also compare to the estimated lower bound of guards
for each point set.

The size of A� decomposition is close to the lower
bound. We compute the lower bound as the maximum num-
ber of guards such that no points can see more than one
guard. Under this definition, we know that no visible regions
of any guards can overlap and therefore this lower bound
must be smaller than the minimum number of guards cover-
ing the entire point set.

The estimated lower bound for each point set is shown in
Table 1. Table 1 also shows the averaged number of guards
generated by A� decomposition over 10 runs. For the cubes,
horse, bunny, venus and armadillo models, A� decomposi-
tion generates just 1.1 to 2.7 times more guards than the
lower bound does. Moreover, when the shape of the model
is relatively “fat” (e.g., the cubes, the bunny and the venus
models), A� decomposition generates only 1.1 to 1.5 times
more comparing to the lower bound. On the other hand,
A� decomposition generates 2.7 times and 4.9 times more
guards than the lower bound of the head bone and the david
models. The main reason for this is because the lower bound
estimation is not accurate enough. This happens when the
model has “teeth”-like or pocket-like regions, e.g., the teeth
of the bone model and the pockets around the hair area of the
david model. A guard placed at the based of the “teeth” will
prohibit any guards being placed inside the teeth. Figure 7
illustrates this scenario.

A� expansions reduce decomposition size. Recall that,
in Section 5.3, we proposed two A� expansions (denoted as
full and limited expansions). A� expansion is designed to
improve the visibility of a randomly selected guard and to

c© The Eurographics Association 2007.

78

J.-M. Lien / A� Decomposition of Point Set Data

Table 1: Models used in the experiments. A� decompositions of the models are generated with limited expansion.

(cubes) (bunny) (venus) (armadillo) (head bone) (david)
point set cubes horse bunny venus armadillo head bone david

(above) (Fig. 5) (above) (above) (above) (above) (above)
point size 18434 19849 34834 134345 172974 172974 254072

number of A�-DECOMP (avg.) 1.1 18 6.5 2.3 40.4 276.2 235
guards lower bound 1 12 4 2 22 109 48

x

Figure 7: In the lower bound estimation, the guard x will prohibit
us from adding more guards, while the minimum number of guards
to cover the environment is seven.

reduce the size of the final decomposition. Figure 8 shows
the computation time and the number of guards. For the lim-
ited expansion, we stop expanding when the expansion is not
larger than 0.1% of the input point size.

As you can see from Figure 8, the number of guards gen-
erated without any expansion is significantly (2 to 5 times)
larger than that with expansions. Moreover, the difference
between the guard sizes of the full and the limited expan-
sions is negligible while the limited expansion is always (1.3
to 3 times) faster than the full expansion.

Box tree helps improving efficiency. The box tree de-
scribed in Section 5.2 significantly improves the efficiency.
Figure 9 shows that the improvement is larger than 100%.

Partial coverage. When partial visibility coverage is tol-
erable, A� decomposition can be computed much more ef-
ficiently. In fact, according to Figure 10, if only 90% cov-
erage is needed the number of guards and the computation
time can be halved. Both the size of guards and the compu-
tation time grow exponentially as the coverage percentage
increases.

8. Conclusions

In this paper, we proposed a method to decompose a point
set into a set of approximately star-shaped (A�) components.
We proposed a method to compute ε-visibility, where ε can
be estimated from the input point set. Several strategies are
investigated to improve the quality and the efficiency of the
A� decomposition, namely the box tree and A� expansion.
Our experiments demonstrated these improvements using
seven common models.

 0.1

 1

 10

 100

 1000

T
im

e
(s

ec
)

no exp
full exp

limited exp

 1

 10

 100

 1000

gu
ar

ds

no exp
full exp

limited exp
lower bound

cubes

horse

bunny

venus

arm
adillo

head bone

david

Figure 8: Computation time and guard size with three different
A� expansions. Each record shows an average of 10 experiments.
Notice that the Y-axis is in logarithmic scale.

 3500

with box tree

Time (sec)
0 500 1000 1500 2000 2500 3000

without box tree

Figure 9: Decomposition time of all seven models with and without
box trees.

The major limitation of the proposed method is its effi-
ciency. The computation can take up to several minutes (4.6
and 3.9 minutes are needed for the bone and the david mod-
els, respectively). Fortunately, due to the popularity of the
recent multi-core processors, we can address this issue by

c© The Eurographics Association 2007.

79

J.-M. Lien / A� Decomposition of Point Set Data

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
)

Covering %

david
armadillo

horse

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

gu
ar

ds

Covering %

david
armadillo

horse

Figure 10: Computation time and number of guards needed for
different percentages of coverage. Three models are shown in this
experiments. Similar behaviors are observed for all three models.
Notice that the Y-axis is in logarithmic scale.

parallelizing the proposed method. This can be done by ask-
ing processors to work on different buckets independently.

References

[ABCO∗03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN

S., LEVIN D., SILVA C. T.: Computing and rendering point
set surfaces. IEEE Transactions on Visualization and Computer
Graphics 9, 1 (2003), 3–15.

[AGS88] AGGARWAL A., GHOSH S. K., SHYAMASUNDAR

R. K.: Computational complexity of restricted polygon decom-
positions. In Computational Morphology, Toussaint G. T., (Ed.).
North-Holland, Amsterdam, Netherlands, 1988, pp. 1–11.

[AMP05] AMIT Y., MITCHELL J., PACKER E.: On guarding and
partitioning polygons. In 15th Annual Fall Workshop on Compu-
tational Geometry and Visualization (2005).

[AT81] AVIS D., TOUSSAINT G. T.: An efficient algorithm
for decomposing a polygon into star-shaped polygons. Pattern
Recogn. 13 (1981), 395–398.

[BMKM05] BEN-MOSHE B., KATZ M. J., MITCHELL J. S. B.:
A constant-factor approximation algorithm for optimal terrain
guarding. In SODA ’05: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms (Philadelphia,
PA, USA, 2005), Society for Industrial and Applied Mathemat-
ics, pp. 515–524.

[Chv75] CHVÁTAL V.: A combinatorial theorem in plane geome-
try. J. Combin. Theory Ser. B 18 (1975), 39–41.

[CWRR06] CHEN Y., WANG H., ROSEN D. W., ROSSIGNAC

J.: A point-based offsetting method of polygonal meshes, 2006.
ASME Journal of Computing and Information Science in Engi-
neering, in review.

[DGG03] DEY T. K., GIESEN J., GOSWAMI S.: Shape segmen-
tation and matching with flow discretization. In Proc. Workshop
on Algorithms and Data Structures (2003), pp. 25–36.

[Gho83] GHOSH S. K.: A linear time algorithm for decompos-
ing a monotone polygon into star-shaped polygons. In Proc. 3rd
Conf. Found. Softw. Tech. Theoret. Comput. Sci. (1983), pp. 505–
519.

[Gho87] GHOSH S. K.: Approximation algorithms for art gallery
problems. In Proc. Canadian Inform. Process. Soc. Congress
(1987), pp. 429–434.

[Kei83] KEIL J. M.: Decomposing Polygons into Simpler Com-
ponents. PhD thesis, Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, 1983.

[Kei85] KEIL J. M.: Decomposing a polygon into simpler com-
ponents. SIAM J. Comput. 14 (1985), 799–817.

[Kei00] KEIL J. M.: Polygon decomposition. In Handbook of
Computational Geometry, Sack J.-R., Urrutia J., (Eds.). Else-
vier Science Publishers B.V. North-Holland, Amsterdam, 2000,
pp. 491–518.

[LA06] LIEN J.-M., AMATO N. M.: Approximate convex de-
composition of polygons. Comput. Geom. Theory Appl. 35, 1
(2006), 100–123.

[LA07] LIEN J.-M., AMATO N. M.: Approximate convex de-
composition of polyhedra. In SPM ’07: Proceedings of the 2007
ACM symposium on Solid and physical modeling (New York, NY,
USA, 2007), ACM Press, pp. 121–131.

[LL86] LEE D., LIN A.: Computational complexity of art gallery
problems. IEEE Trans. Inform. Theory 32, 2 (1986), 276–282.

[OS83] O’ROURKE J., SUPOWIT K. J.: Some NP-hard poly-
gon decomposition problems. IEEE Trans. Inform. Theory IT-30
(1983), 181–190.

[PG01] PAULY M., GROSS M.: Spectral processing of point-
sampled geometry. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 2001), ACM Press, pp. 379–386.

[PKG03] PAULY M., KEISER R., GROSS M.: Multi-scale feature
extraction on point-sampled surfaces. In Proceedings of the Eu-
rographics/ACM SIGGRAPH symposium on Geometry process-
ing (2003), pp. 281–289.

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: a multiresolu-
tion point rendering system for large meshes. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 2000),
ACM Press/Addison-Wesley Publishing Co., pp. 343–352.

[VM05] VARADHAN G., MANOCHA D.: Star-shaped roadmaps -
a deterministic sampling approach for complete motion planning.
In Robotics Science & Systems (2005).

[YNBH06] YAMAZAKI I., NATARAJAN V., BAI Z., HAMANN

B.: Segmenting point sets. In IEEE Intl. Conf. Shape Modeling
and Applications (SMI) (2006), pp. 4–13.

c© The Eurographics Association 2007.

80

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

