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Abstract
In this paper, we consider the problem of reconstructing a shape from unorganized cross-sections. The main
motivation for this problem comes from medical imaging applications where cross-sections of human organs are
obtained by means of a free hand ultrasound apparatus. The position and orientation of the cutting planes may
be freely chosen which makes the problem substantially more difficult than in the case of parallel cross-sections,
for which a rich literature exists. The input data consist of the cutting planes and (an approximation of) their
intersection with the object. Our approach consists of two main steps. First, we compute the arrangement of the
cutting planes. Then, in each cell of the arrangement, we reconstruct an approximation of the object from its
intersection with the boundary of the cell. Lastly, we glue the various pieces together. The method makes use of
the Delaunay triangulation and generalizes the reconstruction method of Boissonnat and Geiger [BG93] for the
case of parallel planes. The analysis provides a neat characterization of the topological properties of the result
and, in particular, shows an interesting application of Moebius diagrams to compute the locus of the branching
points. We have implemented our algorithm in C++, using the [CGAL] library. Experimental results show that
the algorithm performs well and can handle complicated branching configurations.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling.

Introduction

The reconstruction of an object from a set of cross-sections
has intrigued computer science researchers for the last
decades. The need for such reconstructions is a result of
the advances in medical imaging technology. From data ob-
tained by CT, MRI, or other systematic scanning devices,
contours representing the boundaries of the organs may be
extracted on slices, and then interpolated in order to recon-
struct and visualize human organs. 3D reconstructions of or-
gans are widely considered to be an important diagnostic aid
in the medical world.

Since the work of Keppel [Ke75] on tiling between par-
allel polygonal contours, numerous algorithms were intro-
duced for parallel inter-slice interpolation. The problem is
considered to be quite difficult because the topology of the
contours may change between slices. Some progress was
made with the introduction of the Delaunay-based tech-
nique of Boissonnat [Bo88], and the method of Bajaj et
al. [BCL96]. Both approaches attempt to handle the most
general case, in which the geometries and topologies of
the contours in every slice are totally unrestricted. Subse-
quently, Barequet and Sharir [BS96] suggested an interpo-
lation method based on geometric hashing. In this method
similar sub-contours are identified first and stitched together,
while the remaining contour portions are triangulated so as

to minimize the surface area of the reconstructed solid. Later,
Barequet et al. [BGLS04] suggested another interpolation al-
gorithm that uses the medial axis of the overlay of the two
slices. This method generates a smooth and intuitive recon-
struction since it inherently captures the differences between
the slices.

Now that 3D reconstruction from parallel slices, as pro-
duced by CT and MRI, is more or less solved, we are given
the more difficult problem of 3D reconstruction from non-
parallel slices (see Figure1). This need arises in the use of
freehand 2D ultrasound. Information on the orientation of
each individual cutting plane is available through the use of
a navigation device coupled with the probe, producing 6 de-
grees of freedom. This allows the registration of the contours
extracted from the images to a global coordinate system, but
certainly does not indicate how the contours should be inter-
polated in order to reconstruct the full object geometry.

The 2D analog of the problem has been previously con-
sidered by Coll and Sellares [CS01a] and Sidlesky, Barequet
and Gotsman [SBG06]. The incremental algorithm proposed
in [CS01a], processes the cutting lines sequentially. At each
step, the reconstruction is updated in such a way that the time
complexity of the overall algorithm is logarithmic in the total
number of cutting lines. In [SBG06], the authors make use of
the arrangement of the cutting lines and consider the portions
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of one-dimensional cross-sections, lying on the boundary of
each cell of the arrangement. Then, using some inter-cell re-
lations, they enumerate all possible reconstructions that are
conform with the given cross-sections.

To the best of our knowledge, the 3D problem has only
been considered by Payne and Toga [PT94], and an unpub-
lished work [DP97], by Dance and Prager. The method of
Payne and Toga is restricted to simple shapes and does not
allow any branching. It produces poor results for shapes with
complex topologies. An approach with some similarities to
the one reported here, is presented in an unpublished re-
port [DP97]. This method builds also the arrangement of the
cutting planes and makes use of the Delaunay triangulation
of the section vertices. New contributions of our paper are : a
neat characterization of the notions of branching and cutting
loci, additional guarantees on the reconstructed shape and
experimental results showing that the method works well on
objects with complex topologies.

In this paper, we present a Delaunay-based method to
solve the general 3D reconstruction problem. Given some
cutting planes (whose positions and orientations may be
arbitrary) and a polygonal approximation of their cross-
sections with an object, we propose a method to construct an
approximation of the object whose intersection with the cut-
ting planes coincides with the input sections. This approach
is a generalization of the algorithm proposed by Boissonnat
and Geiger [Bo88] for parallel cross-sections.

The approach consists of three main steps. First, we com-
pute the arrangement of the cutting planes (i.e. the subdivi-
sion of space induced by the cutting planes). Then, in each
cell of the arrangement, we reconstruct an approximation of
the object from its intersection with the boundary of the cell.
Lastly, we glue the various pieces together. As the first step
is standard in Computational Geometry and the last one is
easy, our main contribution is a method for reconstructing a
3d-solid shape from its intersection with the boundary of a
given convex polyhedronC. The method is general and can
handle any input section including, in particular, complex
branching configurations and nested contours.

Of utmost importance is the characterization of the
branching locus, i.e. the set of points of the sections where
the topology of the sections changes when we slightly per-
turb the cutting planes. We characterize the branching lo-
cus in a face ofC as a (subset of a) Moebius diagram,
an extension of the Euclidean Voronoi diagram [BK03].
This characterization extends on the work of Boissonnat and
Geiger [BG93] for the case of two parallel cutting planes
where the branching locus was defined as (a subset of) a Eu-
clidean Voronoi diagram, and on the work of Boissonnat et
al. [BCDT96] for the case of twonon parallelcutting planes
where the branching diagram was shown to be a (subset of)
a hyperbolic Voronoi diagram (a special case of Moebius di-
agram).

The algorithm consists in constructing the 3-dimensional

Delaunay triangulation of the union of the contour vertices
and of the branching points. We then prune this triangula-
tion so as to obtain a 3-dimensional triangulated manifold
(with boundary) that does not intersect the cutting planes
outside the given sections. Some geometric and topologi-
cal properties of the reconstructed manifold are established.
Moreover, the algorithm has been implemented in C++ using
the [CGAL] library and experimental results are discussed.

The paper is organized as follows. The two first sections
of this paper contain a short review of the problem and the
basic concepts and definitions which will be used further on.
The core of the reconstruction is studied in the third section,
by introducing thebranching diagram. Then, the reconstruc-
tion algorithm whose complexity is that of the 3D Delaunay
triangulation, is presented. In the last section, we give some
experimental results of the proposed algorithm.

(a) (b) (c)

Figure 1: Different cutting planes positions: (a) Parallel serial se-
quence of planes (b) non-parallel serial sequence (c) arbitrary cut-
ting planes.

1. Problem Description
Let P1, . . . ,Pk be a set of planes, called thecutting planes,
that intersect a compact setO of R

3. We callsectionof O
by Pi the intersectionAi = Pi ∩O, i = 1, . . . ,k. Given the
sectionsA1, . . . ,Ak, our goal is to reconstruct an approxima-
tion R of O whose intersection with the cutting planes is
identical to the sections, i.e.R∩Pi = Ai , i = 1, . . . ,k.

The reconstructed object will consist of line segments
(calledfibers) joining the sections. It will satisfy two main
conditions : first, no fiber will intersect a cutting plane out-
side a section (conformity condition); second, the recon-
structed objectR will be a 3-dimensional manifold with
boundary (solidity condition).

1.1. Conformity condition and the arrangement

Since no fiber can intersect a cutting plane outside a section
(conformity condition), we can decompose the problem into
several subproblems as follows. Consider the arrangementP
of the cutting planes, i.e. the subdivision ofR

3 into convex
polyhedral cells induced by thePi (see Figure2). Any fiber
that conforms to the cutting planes either is contained in a
cell of P or can be decomposed into at mostk−1 subseg-
ments, each contained in a cell ofP . Conversely, any fiber
with its two endpoints on the boundary of a cell ofP does
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Figure 2: Conformity condition and the arrangement of the cutting
planes:(Left) Fiber aa′ violates the conformity condition. (Right)
Fiber aa′ can be decomposed into subsegments, each contained in
a cell.

not cross any cutting plane except at its endpoints and there-
fore fulfills the conformity condition. Hence, without loss of
generality, we can restrict our attention to fibers inside a cell
of P and reduce the reconstruction ofO to the reconstruction
of O∩C for all cellsC of P . Since the various reconstructed
pieces will conform to the given sections, it will be easy to
glue them together in the end and their union will constitute
the overall reconstructed objectR.

In the sequel, we focus on a cellC of the arrangement
and describe how to reconstruct the corresponding portion
RC =R∩C of the object. On each facef of C, we are given
a set of polygonal regions that approximate the intersection
of the objectO with f . This set is called thesectionof f
and we denote byAC the union of the sections of all the
faces ofC. AC is the only information we know aboutO
and constitutes the input of our algorithm.

Notations

Section: A set of polygonal regions, possibly with holes,
that approximate the intersection ofO with a face ofC.

Section-contour: A connected component of the boundary
of a section. Note that the section-contours form a union
of non-intersecting polygons, some possibly lying inside
others.

Section-point: Any point of a section, which could itself be
a contour-pointor aninterior-point.

Contour-vertex: Any vertex of a polygonal region ofAC .
VC denotes the set of contour-vertices.

1.2. Solidity Condition in a cell of the arrangement

The solidity condition forbids connections between sections
along zero or one dimensional features, as shown in the 2D
example of Fig3c. To state this condition more formally, we
introduce the following definitions.

Definition 1 (ExtendedAC , ExtendedRC) To any section-
point p ∈ AC , we associate thenormal coneof C at p, i.e.
the set of rays issued fromp, lying outsideC and directed
along the normals to the supporting planes ofC at p. The
extendedAC is the union of all such rays, noted̃AC . R̃C is
then defined asRC ∪ÃC , see Fig3.

Definition 2 (Singularity) Points that do not have ball or
half-ball neighborhoods iñRC are called singular. In this
case, we say that̃RC has a singularity at such a point.

Figure 3: Extended reconstruction and the solidity condition: (a)
ÃC (colored in blue) is the union of the normal cones. (b) For this
reconstructionRC (in green),R̃C = RC ∪ ÃC , is a 3-manifold
(with boundary). (c) This extended reconstruction has a singular-
ity at point a.

In the sequel, we will ensure that̃RC has no singularity
and therefore is a 3-manifold (with boundary).

2. Empty Spheres and Delaunay Simplices
Our method is based on the Delaunay triangulation and the
related notion of empty spheres.

Definition 3 (Empty sphere)Let K be a set of points. The
sphereS is calledK-empty, if the open ball bounded byS
does not include any point ofK.

Definition 4 (Delaunay simplex)Let K be a set of points. A
simplex with vertices inK is called Delaunay, if there exists
aK-empty sphere passing through all its vertices.

To give some intuition behind our method, consider the
maximalAC -empty spheres. These spheres pass through at
least two section-points. We callDelaunay fibers, the line
segments joining the pairs of points lying on two differ-
ent cutting planes. The Delaunay fibers are candidates to be
fibers of the reconstructed object.

Definition 5 (φ and φ−1) Let f be a face ofC, andP be
its supporting cutting plane. To any section-pointa of f , we
associateSa, the maximalAC-empty sphere tangent toP at
a. We call φ(a) the set of section-points (distinct froma)
lying onSa, see Fig4a. For a section-pointa, φ−1(a) denotes
the set of section-pointsb, such thata∈ φ(b).

By definition, for anya, if b∈ φ(a) then[ab] is a Delaunay
fiber. Similarly, if b∈ φ−1(a) then[ab] is a Delaunay fiber.

2.1. Branching Diagram

Generically,φ(a) consists of a single point. An important sit-
uation occurs when for somea, φ(a) contains more than one
point. This defines the branching locus of the reconstruction.

Definition 6 (Branching diagram) Let f be a face ofC. A
section-pointa ∈ f for which Sa passes through two other
section-points (distinct froma) is called abranching point,
see Fig4c. Thebranching diagramof f , Bf , is defined as the
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(a) (b) (c) (d) (e) (f)

Figure 4: (a) φ(a) is on the maximalAC -empty sphere tangent to P at a. (b)φ and φ−1 (in the case of two parallel planes). (c) a is a
branching point ifφ(a) contains more than one point. (d) Branching diagram example (in green). In the case of parallel planes, it is the
orthogonal projection of the external medial axis of the adjacent section. (e) Flat zone (in red) and Cutting diagram (in green).φ−1 looses
connectivity at a. (f) Approximation of the cutting diagram using the Moebius diagram of the contour-vertices. M(a)∩M(a′) is on the cutting
diagram if M(a) is connected and M(a′) is not.

Figure 5: Left: Branching diagram of a face f (in blue) ofC. Right:
The set of Delaunay fibers (in green) with an endpoint on f .

locus of the branching points onf . The branching diagram
of C, is the union ofBf , for all facesf of C, i.e.

BC = {a∈ AC , |φ(a)| ≥ 2}.

In the case of parallel cutting planes,C is formed by two
consecutive planesP1 andP2. We write A1 andA2 for the
sections ofP1 andP2 respectively. The branching diagram
of Pi is then the restriction toAi of the orthogonal projection
onto Pi of the external medial axis ofAi+1 (indices being
taken modulo 2). See Fig4d for an example.

In the case or arbitrary cutting planes (Fig5), the restric-
tion of the branching diagram to a face ofC is a variant of
a known 2-dimensional diagram, calledMoebius diagram.
This diagram is a generalization of both power diagrams
and multiplicatively weighted Voronoi diagrams. Its edges
are circular arcs and it can be computed efficiently [BK03],
[BD05]. Although an exact construction of the branching di-
agram is possible, we suggest, as a simpler solution, to ap-
proximate its curved edges by polygonal lines. Hence, in ad-
dition to the contour-vertices, we add new vertices inside the
sections along the branching diagram.

2.2. Cutting Diagram

For a contour-pointa, there may be severalAC -empty
spheres passing througha and tangent to other cutting
planes. Henceφ−1(a) may contain several points. An im-
portant situation occurs whenφ−1(a) is not connected, Fig-
ure 4b shows an example. In this case, there is a branching
along the contour which creates a singularity. To fulfill the
solidity condition, some of the fibers[ab], b∈ φ−1(a), will
be eliminated. As a consequence, aflat zone, i.e. not linked
to any other section, may appear in the section containingb.

See Figs4e and3b. A flat zone is either an entire section or
a portion of a section. In the latter case, the boundary of the
flat zone is contained in the so-calledcutting diagram. This
diagram is formally defined as the locus of points inφ−1(a),
such thatφ−1 looses connectivity ata.

Similarly to the branching diagram, this cutting diagram
can be extracted from the Moebius diagram of the contour-
vertices. Leta be a contour-vertex andb ∈ φ−1(a) be on
face f of C. b belongs to the cellM(a) of a in the Moe-
bius diagram of f . Let a′ be a neighbor ofa along the
section-contour. IfM(a) is connected whileM(a′) is not,
thenM(a)∩M(a′) is on the cutting diagram, Fig4f. In addi-
tion to the contour-vertices and the added branching points,
we add also some points on the cutting diagram.

3. The Initial Delaunay Triangulation
We have characterized some significant points of the sec-
tions which are either on the branching diagram or on the
cutting diagram. Instead of sampling the whole polygonal
regions of the sections, we consider the contour-vertices and
a sample of the branching and cutting diagrams.

LetBC be a sample of points on the branching diagram of
C andMC be a sample of points on the cutting diagram.
We consider nowDT(VC ∪ BC ∪MC), the 3D Delaunay
triangulation of the union of the contour-vertices and these
added points. This triangulation, calledR0 in the sequel, con-
tains the reconstructed objectRC as a subcomplex. All the
considered vertices are in the sections and calledsection-
vertices. Let us fix some notations for the simplices ofR0.

Grounded simplex is a simplex whose vertices all lie in
a same cutting plane. We distinguish three types of
grounded edges depending on the relative position of the
edge with the corresponding section

1. Contour-edgeA grounded edge which is an edge of
the section-contour.

2. Internal-edge A grounded edge which lies inside the
section (but not on its contour).

3. External-edgeA grounded edge which lies outside the
section.
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(a) (b) (c)

(d) (e) (f)
Figure 6: Reconstruction Algorithm: (a) Input points (contour-vertices of the sections). (b) The initial Delaunay triangulation. (c) In red,
some external tetrahedra which are eliminated in Step 1. (d) The result of Step 1, which has a singularity along a section-contour. (e) In red,
the set of eliminated tetrahedra during Step 2. (f) The reconstructed object.

We distinguish two types of grounded triangles:

1. Internal-triangle A grounded triangle which lies in-
side the section.

2. External-triangle A grounded triangle which lies out-
side the section.

Ground of an edgeTo each grounded edgee, we associate
the two grounded trianglestr(e) andtl (e) that are incident
to e. The ground ofe is the intersection of{tr(e), tl (e)}
with the sections. For example, ife is a contour-edge then
the ground ofe contains a single triangle.

Ground of a section-vertexTo each section-vertexv, we
associateG(v) the set of grounded triangles incident to
v. The ground of v is the intersection ofG(v) with the
section.

Types of tetrahedra The tetrahedra ofR0 are of four types,
see Fig7. A tetrahedron of the first type,Tv f , has a
grounded face (triangle) on a cutting plane. The tetrahe-
dra of typeTee have two grounded edges on two different
cutting planes. The tetrahedra of typeTevv have a single
grounded edge and intersects two other cutting planes at
a single vertex. The tetrahedra of typeTvvvv have a vertex
on four different cutting planes.

(a) Tvf (b) Tee (c) Tevv (d) Tvvvv

Figure 7: Types of tetrahedra .
Sampling condition onAC , BC and MC : We will assume
the following condition to be satisfied, which can always be

ensured by adding finitely many new vertices on the section
contours and on the branching diagram [ET92].

Delaunay conformity condition: We assume that the
edges of the section-contours are edges ofR0. Similarly, we
assume that any two branching (or cutting) vertices that are
consecutive alongBC (MC) are joined by an edge inR0.

According to this condition, any grounded edge is either
a contour-edge, an internal-edge, or an external-edge, and
any grounded triangle is either internal or external. In the
sequel, a tetrahedron ofR0 with an external grounded edge
or triangle will be calledexternal, see Fig6c.

4. The Reconstruction Algorithm
We will prune the 3-dimensional Delaunay triangulationR0,
to obtain a complex which verifies the conformity and so-
lidity conditions, Fig6. The pruning ofR0 is done in three
steps. We call the resulting subcomplexesR1, R2 andR3 re-
spectively.R1 is the maximal subset ofR0 that conforms to
the given sections.R1 may not satisfy the solidity condition
and further tetrahedra have to be removed until the solidity
condition is verified. This procedure is done in two steps: in
Step 2, we compute the maximal set of tetrahedra of types
Tv f and Tee (each linking two cutting planes), which veri-
fies the solidity condition, see Section4.2.3. Then in Step 3,
we add toR2, as many tetrahedra of typeTevv andTvvvv as
possible while maintaining the solidity condition.

4.1. Step 1: Removal of the external tetrahedra

We remove fromR0 all the external tetrahedra . The resulting
subcomplex ofR0 is notedR1.

4.2. Step 2: Solidity check around grounded edges

Let us make precise the solidity condition in this context. For
this, we need the following definitions.
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Definition 7 (Shell of a grounded edge (section-vertex))
For R′ ⊂ R0, the shell of a grounded edge (section-vertex)
e is defined as the tetrahedra ofR′ which containe. In the
sequel, we writeShR′(e) for the shell ofe in R′. When the
context is unambiguous, we may occasionally dropR′ and
write Sh(e).

Definition 8 (Face-to-face connectivity)Two tetrahedraT
andT′, are said to be face-to-face connected inR′, if there
exists a sequence of tetrahedraT = T0, . . . ,Tk = T′ such that
for all i, Ti ∈ R′, andTi−1 andTi share a face.

Definition 9 (Solidity at a grounded edge (section-vertex))
R′ is solid at a grounded edge or section-vertexe, if any tetra-
hedron inSh(e) is face-to-face connected (inR′) to at least
one tetrahedron containing a grounded triangle incident toe.
Such a shell is calledsolid.

The goal of this step is to pruneR1 to obtain a solid com-
plex, whose tetrahedra are all incident to a pair of cutting
planes. To consider the connections between the pairs of
planes, we remove the tetrahedra of typeTevv andTvvvv. The
goal is now to prune around the grounded edges. We prune
the incident tetrahedra of a grounded edge until we obtain a
solid shell. Fig8b shows all the possible configurations of a
solid shell, resulting from Step 2.

Shell pruning description

Let T andT′ be two tetrahedra incident to a grounded edge
e. A pivot from T to T′ arounde is a sequence of face-to-
face connected tetrahedra incident toe joining T to T′, see
Fig 9.

Figure 9: A pivot from T to T′ around e, that contains four tetra-
hedra . On the right side a 2D view of these tetrahedra .

Figure 10: A disconnected tetrahedron from the ground of e is
between two eliminated tetrahedra . On the right side a 2D view of
Sh(e).

During the pruning process, a tetrahedront ∈ Sh(e) is
disconnected from the ground ofe iff it lies between two

eliminated tetrahedra incident toe, see Fig8a. We compute
these tetrahedra as follows. For an eliminated tetrahedron
T ∈ Sh(e), we start pivoting atT arounde until we find an-
other eliminated tetrahedron or aTv f tetrahedron incident to
e, calledT′. The pivot sequence consists ofTee tetrahedra all
sharing edgee. To any suchTee tetrahedron , we can asso-
ciate a direction corresponding to the direction of the pivot.
In our algorithm, we store this orientation as an orientation
on the other grounded edge of the tetrahedron (distinct from
e).

We apply the same procedure to all the eliminated tetrahe-
dra ofSh(e). A Tee tetrahedron incident toe is disconnected
from the ground ofe if it is visited twice with different direc-
tions, Fig10. Note that if during a pivot we reach a tetrahe-
dron already oriented with the same orientation as the pivot,
we can stop the propagation.

We are now in a position to describe Step 2 of the algo-
rithm:

1. We put all the eliminated tetrahedra in a listEL.
2. While EL 6= ∅ do

a. For a tetrahedronT ∈ EL do
b. For any grounded edgeeof T do

• Start pivoting atT arounde and orient the visited
tetrahedra until an eliminated orTv f tetrahedron is
reached.

• If a tetrahedront receives two opposite orienta-
tions, markt as eliminated and add it toEL.

c. RemoveT from the list (EL = EL\T).

3. Eliminate the face-to-face connected subsets ofTv f
which share no face with the non-eliminatedTee tetra-
hedra .

4. R2 is the set of non-eliminated tetrahedra .

4.2.1. Complexity of Step 2

Let s be the total number of tetrahedra inR0. We claim that
Step 2 can be performed inO(s) time. Indeed, a tetrahedron
of typeTeehas at most two pivoting edges and can receive at
most two (opposite) orientations for each edge before being
eliminated.

4.2.2. Solidity ofR2

R2 is a set of tetrahedra of typeTv f andTee, which satisfies
the following properties.

Property 1 (Solidity at grounded edges)Let e be a
grounded edge. Any tetrahedront ∈ ShR2(e) is face-to-face
connected (inR2) to the ground ofe.

Proof. If t is a Tv f tetrahedron inR2, it is not external and
is it-self in the ground ofe. Let t be aTee tetrahedron dis-
connected from the ground ofe. Hence,t is between two
eliminated tetrahedra and has been visited with two opposite
directions. Thus,t does not belong toR2. �
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(a) (b)

Figure 8: A 2D view of the shell of a grounded edge e (e is perpendicular to the figure plane). (a) Disconnected tetrahedra from the ground
are colored in red. They induce a singularity at e. (b) Configurations of a solid shell.

Property 2 (Solidity at section-vertices)Let v be a section-
vertex. Any tetrahedront ∈ ShR2(v) is face-to-face con-
nected (inR2) to the ground ofv.

Proof. Let t be aTee tetrahedron inR2 which passes through
an incident grounded edge ofv. Thus,t is face-to-face con-
nected to the ground ofe and in particular to the ground of
v.
Let t be aTv f tetrahedron inR2, with v as the fourth vertex
(not in the plane of the grounded triangle oft). According
to the algorithm,t is in a connected set ofTv f tetrahedra
(with v as the fourth vertex), which shares a face with aTee

tetrahedron inR2. This Tee tetrahedron is thus incident to a
grounded edgee on the ground ofv. Thus,t is face-to-face
connected to the ground ofe and in particular to the ground
of v. �

4.2.3. Maximality of R2

The following lemma shows that the order of elimination of
the tetrahedra is not important.

Lemma 1Let R′ be subset ofR0. If T is a tetrahedron which
creates a singularity inR′, thenT creates a singularity in any
subset ofR′ containingT.

Proof. If t is disconnected from the ground of one of its
grounded edgese, in R′, then it is also disconnected from
this ground in any subset ofR′. �

In Step 2, the algorithm eliminates all the tetrahedra which
create a singularity. According to the previous lemma, the
elimination of some tetrahedron does not make disappear
any other singularity, and so the order of elimination is not
important. However, this elimination may make appear some
other singularities in the resulting subset. Then, the algo-
rithm removes these new singularities and so on until ob-
taining some subset ofR1 without singularity. Note that the
number of the tetrahedra is finite and this process finishes.
As at each step the order of the elimination is not important
the resulting subset is maximal.

Proposition 1R2 is the maximal subset ofTeeandTv f tetra-
hedra which has no singularity along the sections.

4.3. Step 3: Connecting more than two planes

As said before,R2 consists of Delaunay tetrahedra of type
Tee andTv f exclusively. In this step, we add toR2 as many

tetrahedra of typeTevvandTvvvvas possible provided that the
only tetrahedra that can be added are those with exactly four,
three or two faces in the current reconstruction. Clearly, as
the intersection of such a tetrahedron with the current recon-
struction is a topological disk or sphere, its insertion does not
create singularities in the overall complex. Fig11 provides
some examples.

Figure 11: Step 3 examples: T and T′ do not create singularity
and can be added to the reconstruction. A 2D view is also given.

The algorithm maintains a listL of the tetrahedra of types
Tvvvv andTevv with such an intersection with the current re-
constructed object. As long as this list is not empty, we add
its first element inR and updateL. We call R3 the result-
ing complex which is , by construction, solid at any section-
point and any grounded edge.

R3 constitutes the reconstructed object (portion)RC , cor-
responding to the cell of the arrangementC. The overall re-
constructed object is the union of these portions for all the
cells of the arrangement.

5. Properties of the Reconstruction
Generality

There is no assumption on the position and orientation of the
cutting planes neither on the geometry and topology of the
sections. Complex section-contours with multiple branch-
ings and holes can be handled, see Section6 for some result
examples.

Complexity

Let k be the number of cutting planes andn the total num-
ber of vertices, including the vertices of the section contours
and the points on the branching diagram. LetCi be a cell in
the arrangement of the cutting planes andni the number of
vertices inCi , including the contour-vertices and the sample
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points on the branching diagrams of the faces ofCi . Assum-
ing that thePi are in general position, each point is on the
boundary ofO(1) cells, and we have∑i ni = O(n).

Firstly, we compute the arrangement ofk planes, which
can be done inO(k3) time, see [E87]. In each cellCi , we
then compute the branching diagram ofCi by computing 2D
Moebius diagrams in each face. Computing the 2D Moebius
diagram ofn points can be done inO(n2) time (see [BK03]
and [BD05]), which is the same complexity as for computing
the 3D Delaunay ofn points in the worst case.
OnceR0 is computed, we eliminate the external tetrahedra .
In this step, we have to visit each tetrahedron to decide if it
is inside or outside the section-contours.
Since the size of 3D Delaunay isO(n2), Steps 2 and 3 can
be done inO(n2) time. As each cell has at mostk faces, the
complexity of our algorithm is at most:

O(k3)+ ∑Ci
(k∗Moeb2(ni)+DT3(ni)+O(n2

i )) ≤

O(k3)+k∗∑Ci
O(n2

i ) ≤ O(k3)+k∗ (∑Ci
O(ni))

2 ≤

O(k3 +kn2)

Consequently, fork = O(1), the complexity isO(n2).

Solidity and Topological correctness

We showed that the reconstructed objectRC in each cellC
of the arrangement has no singularity in the sections.
As said before, the boundary of theRC contains the section-
contours, the branching and cutting diagrams, and some flat
regions. When we glue the variousRC together, some sin-
gularity may appear on the boundary.
Consider a facef of the arrangement and the two incident
cellsC andC′. If the branching diagrams ofC andC′ inter-
sect in f then intersection points are singular, see Fig12a.
We may have a similar situation, when two cutting diagrams
intersect. In general position, the intersection points of the
branching or cutting diagrams are isolated. The overall ob-
ject is therefore locally a manifold except at some isolated
points.
Note that this problem can be handled by displacing the
branching and cutting points slightlyinsidethe correspond-
ing cells, or by thickening the cutting planes, Fig12b.

Conformity

By definition, the reconstructed object does not intersect
the cutting planes outside the given sections. Conversely, it
should be observed thatRC does not necessarily contain all
the grounded triangles of the sections. This particular situa-
tion occurs when a region of a section is flat in the two adja-
cent reconstructed portions corresponding to the two cells.
This only happens when the set of cutting planes is very
sparse, Fig13.

Thickening the cutting planes could be another solution to
handle these situations. In this case, the thin regions which
appear in the overall reconstruction guarantee its conformity
with the sections, see Fig12c.

(a) (b) (c)

Figure 12: (a) A singularity at point b which is on the intersec-
tion of the two branching diagrams, corresponding to the two adja-
cent cells. (b) This singularity disappears after thickening the cut-
ting planes.(c) The flat region A gets also a thickness by this proce-
dure. However, this thickening procedure does not make disappear
the singularity at a.

Figure 13: A sufficiently dense sampling (right) of the cutting
planes can guarantee that there is no flat region (left) in the overall
reconstruction.

6. Experimental Results
A preliminary version of the algorithm has been imple-
mented in C++, using the [CGAL] library. The input of the
algorithm consists of a cell of the arrangement (a convex
polyhedron), and a set of polygonal contours lying on the
boundary of this polyhedron. The contours are assumed to
be Delaunay-conform and non self-intersecting, some pos-
sibly lying inside others. The contours are oriented in such
a way that the interior of the section they bound is on the
righthand side.

We present the results of the algorithm applied to a variety
of input models. To gain more intuition, in addition to the 3D
results, some figures of 2D reconstructions are also given.
Fig 14 illustrates the reconstruction of a sphere cut by the
faces of a cube. In this case, the reconstructed object is the
convex hull of the contours.
Figure 15 shows how the method eliminates successfully

Figure 14: The reconstructed object corresponding to a sphere,
cut by the faces of a cube.

the singularities of the Delaunay triangulation to guarantee
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the topological correctness of the reconstructed object.

Figure 15: Elimination of a singularity during the reconstruction:
(Left) Input points. (Middle) Delaunay simplices of input points.
(Right) Reconstructed object. A flat region appears in the recon-
structed object.

Some examples of branching between the sections are
presented in Fig16 and 17. These examples illustrate the
role of the points added on the branching diagram. As we
can see in Fig16a, the branching diagram corresponds to
the projection of the external medial axis of the sections. In
the non-parallel case of planes, the branching is handled as
well as the parallel case, see Fig17.

(a) (b)

(c) (d)

Figure 16: (a) The single circle is at the same distance from all
the other circles (b) There is a multiple branching between these
four circles without any singularity. (c) As the circle is shifted, there
is no branching anymore in the reconstructed object (d).

The algorithm handles the complex branching of non-
convex sections possibly with holes. The last figures provide
some examples of these complex cases.

7. Conclusions
We have presented a method to reconstruct a volumetric
model of an object given its intersection with a given set of

(a) Input points. (b) Reconstructed object

Figure 17: An example with two non-parallel cutting planes.

Figure 18: A result for non-convex sections (given at left). There
is no singularity in the reconstructed object (at right).

Figure 19: A complex branching of a section with a hole.

(a) Input points. (b) Output (view 1).(c) Output (view 2).

Figure 20: An example with nested section-contours.

unorganized cutting planes. The method is an extension of
the work of Boissonnat and Geiger which was limited to the
case of parallel sections [BG93]. The result is given as a sub-
complex of the Delaunay triangulation of the union of two
sets of points: the first one is the set of vertices of a polygo-
nal approximation of the sections; the second set is a sample
of points taken on two diagrams, called branching and cut-
ting diagrams. These diagrams can be computed from the
first set of points and the cutting planes. Interestingly, they
are a variant of a non-euclidean Voronoi diagram known as
Moebius diagram. The reconstructed objectR is obtained
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(a) (b) (c)

Figure 21: Multiple branching between the sections:(a) Input points. (b) Input points in red and the added branching points in green. (c)
Reconstructed object

by pruning this Delaunay triangulation. We proved thatR
is a (triangulated) 3-manifold with boundary that conforms
to the input sections. The overall construction has the same
asymptotic complexity as the construction of the Delaunay
triangulation.
Further questions we intend to consider in future are shape
reconstruction from noisy cross-sections and reconstruction
of moving objects.
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