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Abstract
Subdivision-based representations are recognized as important tools for the generation of high-quality surfaces
for Computer Graphics. In this paper we describe two parameterizations of Catmull-Clark subdivision surfaces
that allow a variety of algorithms designed for other types of parametric surfaces (i.e., B-splines) to be directly
applied to subdivision surfaces. In contrast with the natural parameterization of subdivision surfaces character-
ized by diverging first order derivatives around extraordinary vertices of valence higher than four, the derivatives
associated with our proposed methods are defined everywhere on the surface. This is especially important for
Computer-Aided Design (CAD) applications that seek to address the limitations of NURBS-based representations
through the more flexible subdivision framework.

1. Introduction

A number of properties make subdivision surfaces attractive
for graphics applications, including their ability to handle
general control mesh topologies, the relatively high visual
quality of the resulting surfaces for a broad range of input
meshes, and the efficiency of their evaluation. These same
properties make subdivision surfaces an appealing choice for
traditional CAD systems, primarily as a tool for conceptual
design. However, as observed in [GN01], a number of prob-
lems must be resolved in order to integrate a new surface
type into an existing CAD system.

Commercial CAD systems tend to have a complex
multilayered architecture and must support a variety of
legacy features and representations. For example, most
systems employ B-splines as the main parametric sur-
face representation. Many of the algorithms they imple-
ment (e.g., tessellation and surface-surface intersection
[BFJP87, BHLH88, Hoh91, KPW92]) assume, either im-
plicitly or explicitly, properties specific to splines. In many
instances, however, the actual surface representation is hid-
den by a software abstraction layer and could be replaced
with a different representation, provided that standard para-
metric evaluators are supplied as an interface with the rest of
the system.

In this paper we describe two parameterizations of
Catmull-Clark subdivision surfaces [CC78] which makes

them compatible with a typical boundary representation ab-
straction. Specifically, the topology of the surface is defined
by a mesh consisting of quadrilateral faces; each face has
a surface patch associated with it; each surface patch is pa-
rameterized over a standard parametric domain [0,1]2 with
coordinates (u,v) and derivatives are defined everywhere on
D. The first parameterization is efficient and easy to imple-
ment, however, the derivatives vanish at the corners of the
domain. The second parameterization is more complex aa it
requires the inversion of the characteristic map, however, it
guarantees a non-degenerate Jacobian.

The parameterizations described in this paper have been
tested in the context of the CATIA solid modeler †.

1.1. Previous Work

An algorithm for explicit evaluation of subdivision surfaces
at arbitrary points was first proposed in [Sta98] for Catmull-
Clark surfaces and in [Sta99] for Loop subdivision sur-
faces [Loo87]. This development was a part of the effort to
integrate subdivision surfaces into Alias|Waverfront Maya.
An extension of this method is presented in [ZK02]. Di-
rect evaluation is useful in many applycations (e.g., see

† http://www.catia.ibm.com
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[GS01, KP03]). Our work builds on Stam’s approach. A ma-
jor shortcoming of the parameterization used by Stam is that
it has has unbounded derivatives around extraordinary ver-
tices, resulting in the failure of algorithms which assume
nonsingular surface parameterizations.

Several papers discuss algorithms for various modeling
operations directly applicable to subdivision surfaces (e.g.
[KS99, LLS01, BLZ00]). The goal of this work is different:
we describe a well-behaved parameterization of subdivision
surfaces which makes it possible to take advantage of ex-
isting algorithms that were not originally intended for sub-
division surfaces. We note that special-purpose algorithms
are likely to perform better and take better advantage of the
important features of subdivision surfaces. However, this ap-
proach is not always practical in the context of existing sys-
tems.

1.2. Overview

The starting point of our construction is the parameteriza-
tion used in [Sta98], which we call natural. It is described in
Section 2. The main idea is to compose the natural param-
eterization with a one-to-one reparameterization map from
the unit square D to itself to ensure the desired properties
of the derivatives. If a face has a single extraordinary vertex,
this reparameterization is constructed as the inverse of an ap-
proximation of the characteristic map, or the inverse of the
characteristic map itself, blended with the identity map. We
obtain the desired boundedness of the derivatives by con-
struction. The main theoretical challenge in this work (see
Appendix A) is to establish that the resulting blended map
of the unit square onto itself is one-to-one.

Notation. We use f (u,v) to denote the natural parameter-
ization of a patch of a subdivision surface over the square
[0,1]2. We use y = (r,s) to refer to points in the domain of
the natural parameterization. The points in the domain of the
reparameterization map from the unit square to itself are de-
noted by t = (u,v).

2. The Natural Parameterization

The goal of this section is to introduce the basic nota-
tions used for subdivision surfaces and to define the natural
parameterization that can be evaluated using Stam’s algo-
rithm [Sta98].

Control meshes. A subdivision surface can be viewed as a
function defined on the faces of the control mesh. In this pa-
per, we restrict our attention to control meshes with quadri-
lateral faces. Each face can be identified with a square do-
main [0,1]2 with coordinates (r,s).

More precisely, we consider subdivision surfaces associ-
ated with control meshes (K,p), where K = (V,E,F) is a
two-dimensional polygonal complex, and p is the vector of

Figure 1: Catmull-Clark subdivision rules. Left: the rule for
a vertex added at the centroid of a face. Middle: the rule for
vertex added at an edge. Right: the rule for the update of an
existing vertex, β = 3/2k, γ = 1/4k, k is the vertex valence.

values assigned to the vertices of K (typically the values be-
long to Rn for n = 1,2,3). The set of faces F is a set of
quadruples of vertices and the edges are unordered pairs of
vertices. If (v1,v2,v3,v4) is a face, (vi,vi+1) are its edges,
for i = 1 . . .4 (the index increment is defined modulo 4). The
set of edges E is the union of the sets of edges of all faces.

A 1-neighborhood N1(v) of a vertex v in K is the sub-
complex formed by all faces that have v as a vertex. The
m-neighborhood of a vertex v is defined recursively as a
union of all 1-neighborhoods of vertices in the (m − 1)-
neighborhood of v.

Recall that a link of a vertex is the set of edges of N1(v,K)
that do not contain v. We consider only complexes corre-
sponding to manifold meshes, i.e., with all vertices having
links that are simple connected polygonal lines, either open
or closed. If the link of a vertex is an open polygonal line,
the vertex is a boundary vertex, otherwise it is an interior
vertex.

Subdivision. We can construct a new complex D(K) from
a complex K through subdivision by splitting each quadri-
lateral face in four. A new vertex is added for each old face
and edge, and each face is replaced by four new faces. We
use K j to denote the j times subdivided complex D j(K) and
V j to denote the set of vertices of K j. A subdivision scheme
defines for each complex K a linear mapping from the values
p on V to new values p1 defined on V 1. For most common
subdivision schemes, for any vertex v ∈V this mapping (i.e.,
the subdivision rule) depends only on the structure of the
neighborhood of v. In this paper, we consider Catmull-Clark
surfaces with rules as shown in Figure 1.

Limit functions and natural parameterization. If all
faces of the original control mesh are planar and the mesh
has no self intersections, the subdivision surface can be re-
garded as a function on the mesh which we denote by |K|.
However, these assumptions are somewhat restrictive, so it is
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best to construct the domain |K| in a more abstract way. We
consider a disjoint union of copies of the unit square [0,1]2,
one for each face. For each pair of faces sharing an edge, we
identify the edges of the corresponding squares. We denote
the domain obtained in this way by |K| and we refer to the
corresponding squares as faces of |K|. Subdivision surfaces
can be defined as functions on |K|:

Definition 1 For any given control point vector p, bilinear
interpolation defines a bilinear function on each face of |K|,
which we denote f [p]. The subdivision limit function is the
pointwise limit of the sequence of functions f [pi] defined
in |K|, whenever this sequence converges. We call the limit
function the natural parameterization of the limit surface.
For the Catmull-Clark rules limit functions are defined for
any control mesh.

The image of the limit function is usually called the limit
subdivision surface. Sometimes, the same term is used to de-
note the limit function itself. As the distinction is important
in the context of our paper, we always differentiate between
the limit surface (a subset of R3) and the limit function (a
map from |K| to R3).

Our goal is to improve the natural parameterization. As
shown in [Sta98] it can be evaluated in constant time at any
point in |K|. As we demonstrate next, the main problem with
this parameterization is that its derivatives typically diverge
near extraordinary vertices. We address this issue by repa-
rameterization, i.e., by considering compositions f [p] ◦ T
where T is a one-to-one map from |K| onto itself. Further-
more we consider only reparameterizations which preserve
faces of |K|. In this case T restricted to each face is a one-
to-one map of the unit square onto itself (Section 4).

3. Derivative Behavior Near Extraordinary Vertices

We briefly review the theoretical tools necessary to exam-
ine the behavior of the derivatives of the natural parameter-
ization at extraordinary vertices: subdivision matrices and
eigenbasis functions. We make use of these tools to define
our reparameterizations.

Due to the locality of subdivision rules, local properties of
subdivision surfaces can typically be examined on k-regular
complexes instead of general meshes. A complex is called
k-regular if it has a single extraordinary vertex (i.e., a vertex
of valence 6= 4). We denote such complex Rk.

Subdivision matrices. The key to the analysis of stationary
subdivision is the subdivision matrix. Eigenvalues and eigen-
vectors of this matrix are closely related to the smoothness
properties of subdivision. Consider the part of a subdivision
surface f [p](y) with y∈U1, where U1 is the k-star formed by
the faces of the k-regular complex Rk adjacent to the central
vertex. It is straightforward to show that the limit surface on
this k-star can be computed given the control points p0(v)
for all vertices v in 2-neighbrhood N2 of the extraordinary

k = 3 k = 5

k = 13

Figure 2: Behavior of the isoparameter lines associated
with the natural parameterization near extraordinary ver-
tices.

vertex c. In particular, the control points p1(v) for vertices
in the 2-neighborhood of c in the subdivided complex R1

can be computed using only control points p0(v). Same is
true if we consider subdivision levels j and j + 1 instead of
0 and 1.

Definition 2 Let p j be the vector of control points p j(v) for
v ∈ N2(0,R

j
k). Let Q+1 = 6k +1 be the number of vertices

in N2(0,Rk). As the subdivision rules are linear and do not
depend on the level j, p j+1 can be computed from p j using
a (Q + 1)× (Q + 1) matrix S: p j+1 = Sp j. S is called the
Catmull-Clark subdivision matrix.

Eigenvalues and eigenvectors of this matrix have fundamen-
tal importance for smoothness of subdivision.

Eigenbasis functions. Let λ0 = 1,λ1, . . .λQ+1, be eigen-
values of the subdivision matrix in nonincreasing order of
magnitude each repeated according its multiplicity (we as-
sume that the matrix is nonderogatory, i.e. the total num-
ber of eigenvalues counted with multiplicities is Q + 1).
For Catmull-Clark and other commonly used subdivision
schemes, 1 = λ0 > λ1 = λ2 > λ3. Furthermore, all eigen-
values are real and the eigenvector bi corresponding to λi
satisfies Sbi = λibi.

Definition 3 The eigenbasis functions are the limit functions
of subdivision on the k-star defined by f i = f [bi] : U1 → R.

A Catmull-Clark subdivision surface f [p](y) defined on U1
can be represented as

f [p](y) = ∑
i

βi f i(y) (1)
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where βi ∈ R3. One can show using the definition of limit
functions of subdivision that the eigenbasis functions satisfy
the following scaling relations:

f i(y/2) = λi f i(y) (2)

It is often convenient to regard the eigenbasis functions
restricted to a single quad in the k-star using the bilinear co-
ordinates of the quad. The scaling relation (2) still holds in
this case and we use notation f i(r,s) for this linear reparam-
eterization of the eigenbasis functions.

Divergence of derivatives. Equations (1) and (2) allow us
to demonstrate immediately that the derivatives of f [p](y)
diverge for almost any p. Indeed, differentiating with respect
to u, we obtain:

∂ f i

∂r
(r/2,s/2) = 2λi

∂ f i

∂r
(r,s). (3)

For the Catmull-Clark scheme the scaling factor s f = 2λ1
is greater than one for valences greater than four. If we

choose a point (r0,s0) for which ∂ f 1

∂r (r,s) is nonzero (exis-
tence of such points follows from the analysis of the charac-
teristic map for the Catmull-Clark scheme in [PR98]), then
the value of the derivative for points (r0/2m,s0/2m) con-
verging to (0,0) as m → ∞ increases at the rate (2λi)

m. A
similar proof can be used for the derivative with respect to
v. We conclude that for any surface for which β1 is nonzero,
the derivatives of the natural parameterization diverge.

4. Differentiable Parameterizations

As Catmull-Clark subdivision surfaces are C1-continuous at
the extraordinary vertices ([PR98]), a C1 parameterization
exists for any surface patch corresponding to a face. Our goal
is to construct this parameterization explicitly. We base our
construction on the blending of parameterizations.

4.1. Blending Parameterizations

The unit square can be regarded as the intersection of four
quadrants. We are going to construct new parameterizations
for subdivision surfaces using the natural parameterization
over the unit square composed with a map of the unit square
to itself. These maps will be constructed by blending quad-
rant maps, i.e., maps defined on each quadrant.

Specifically, let Fi(t) i = 1,2,3,4, be maps from the quad-
rant R2

+ = {t = (u,v)|u ≥ 0,v ≥ 0}, to itself. We use these
maps to “fix” the divergence of the derivatives: we choose
them such that f ◦Fi has derivatives everywhere including
at zero ( f (r,s) is a limit function of subdivision restricted to
a single face). However, the Fi’s do not necessarily map the

unit square to itself. We use a blend of such maps to gener-
ate a new map that has this property and therefore yields the
desired face reparameterization.

Let vi be the vertices of a the unit square [0,1]2. Let Ti
be the orthogonal transformations of the plane mapping the
interval [0,1] on two coordinate axes to the sides of the unit
square adjacent to vertex vi. Let w : [0,1]2 → R be a weight
function which satisfies the boundary conditions w(0,0) = 1,
w(u,1/2) = w(1/2,v) = 0, w′ = w′′ = 0 for the boundary
of [0,1/2]2, and w(u,v) ≡ 0 outside [0,1/2]2. Define wi =
w ◦ T−1

i , i.e. the weight function rotated so that that it is 1
at vi. We define the blend of the maps Fi and the identity as
follows:

Fb = ∑
i

wi Ti ◦Fi ◦T−1
i +(1−wi)Id. (4)

The idea of this definition is straightforward: we gradually
decrease the influence of the map Fi as we move away from
a vertex vi; outside the quarter of the square adjacent to vi
it has no influence. Away from the corners, where there is
no need to alter the derivatives of the parameterization, the
reparameterization is close to the identity map.

Our choice of conditions on the blending functions en-
sures that the properties of the derivatives of Fi at corners
are preserved. However the fact that Fi are one-to-one does
not guarantee that their blend is also one-to-one. We reduce
the problem of verifying that Fb is one-to-one to checking
the sign of the Jacobian using the following proposition.

Proposition 1 If the Jacobian of the map Fb does not vanish
away from the corners and if Fi are one-to-one maps, then
Fb is one-to-one map from [0,1]2 onto itself.

The proof of this Proposition is given in Appendix A.

4.2. Parameterization with Vanishing Derivatives

Our first reparameterization uses simple closed-form func-
tions Fi of the following form:

Fα(t) = |t|α−1t,

We are interested in values of α for which the scaling fac-
tor s f of equation (3) after reparameterization is strictly less
than one. This ensures that the values of the derivatives for
points converging to the extraordinary vertex will converge
to zero after reparameterization.

To derive a valid range for α we use polar coordinates. Let
(ρ,ϕ) denote the polar coordinates of t = (u,v). The map F
becomes Fα(ρ,ϕ) = (ρα,ϕ) and simple substitution in equa-
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tion (3) yields the following scaling relation after reparame-
terization:

∂hi

∂u
(ρ/21/α,ϕ) = 21/αλi

∂hi

∂u
(ρ,ϕ), (5)

where hi(ρ,ϕ) = ( f i ◦Fα)(ρ,ϕ). By imposing the constraint
21/αλi < 1 we infer that, if α is greater than − log2/ logλi,
the values of the derivative ∂hi

∂u converge to zero around the
origin.

It is also straightforward to show that the blended map
is one-to-one by using radially symmetric weight functions
w(t) defined as b(|t|), where b(u) = B(cu + 1) + B(cu) +
B(cu−1), B(u) is the uniform cubic B-spline basis function,
and c = 1/6.

Indeed, it is sufficient to consider each quarter of [0,1]2

separately. The expression for the restriction of Fb is (r,ϕ)→
(b(ρ)ρα +(1−b(ρ))ρ,ϕ). To prove that it is one-to-one it is
sufficient to show that b(ρ)ρα + (1− b(ρ))ρ. Direct differ-
entiation shows that the derivatives are positive and therefore
the function is monotonically increasing.

Figure 4 illustrates the behavior of the iso-parameter lines
around vertices of valence 5 and 13, respectively, after repa-
rameterization with vanishing derivatives.

The advantage of this reparameterization is its simplicity.
However, it is easy to see that it forces derivatives to vanish
at the extraordinary vertices, which may be undesirable for
some algorithms relying on the fact that parameterizations
are non-degenerate, e.g., for tracing intersection curves. A
more complex approach is needed in this case.

4.3. Parameterization with a Non-degenerate Jacobian

To obtain surface parameterizations with non-zero Jacobian
we use characteristic maps. Characteristic maps were intro-
duced in [Rei95] as a tool for the analysis of subdivision.

Definition 4 For a given valence k and a subdivision scheme
with eigenvalues of the subdivision matrix for that valence
satisfying 1 = λ0 > λ1 = λ2 > λ3 and eigenfunctions f1 and
f2 which do not vanish identically, the characteristic map
Φ : U1 → R2 is the map defined as ( f 1, f 2).

In [Rei95] it was shown that, under the assumptions of
the definition, if the characteristic map is regular (i.e., it
has a non-vanishing Jacobian wherever the Jacobian is de-
fined) and one-to-one, the subdivision scheme produces C1-
continuous surfaces for almost any choice of control points.
As each component of the characteristic map is an eigen-
function, it satisfies the scaling relationship Φ(y/2) = λΦ(y)
where λ = λ1 = λ2.

The characteristic map for symmetric schemes, such as
Catmull-Clark, has the property of mapping the line seg-
ments from (0,0) to (cos(2 jπ/k),sin(2 jπ/k)) to themselves

for a suitable choice of eigenvectors b1, b2 corresponding to
λ1 = λ2 = λ.

Similarly to eigenbasis functions, we can restrict Φ to
a single quad and reparameterize it using bilinear coordi-
nates (u,v) over the quad. Using the scaling relation, we
can extend Φ(u,v) to R2

+: for any (u,v) let m be the small-
est number m such that (u/2m,v/2m) is inside U1. Then
Φ(u,v) = λ−mΦ(u/2m,v/2m). For the choice of b1 and b2
we have assumed, the extended Φ(u,v) is a map from R2

+

onto itself and can be used as a quadrant map Fi in (4).

Figure 3 illustrates the structure of layers and patches of a
segment of a characteristic map. The map is polynomial on
each patch, and the layers are similar under scaling.

We now consider quadrant maps of the form Fj(t) =

Φ−1
j (t), where Φ j is the characteristic map for the valence

of vertex v j . As for almost any subdivision limit function,
f ◦Φ−1

j (t) is known to be differentiable at the extraordinary
vertex, hence this approach ensures the desired property of
the parameterization.

D03 D02

D01
D13 D12

D11

layer 0

layer 1

layer 2

3
2

1

3
2

1

(r,s)(u,v)

char. map

Figure 3: The structure of layers and patches around the ex-
traordinary vertex. The domains of the polynomial patches
of the natural parameterization are shown on the right,
whereas their characteristic map images appear on the left.

To obtain the complete reparameterization map using (4),
we define w(t) = b(u)b(v) for t = (u,v). The reason for using
a different weight function is that it is easier to verify that the
resulting map is one-to-one (see Appendix A). The idea of
the proof is straightforward, however, it requires algebraic
calculations using a computer algebra system.

The main practical challenge is the efficient computation
of the inverse of the characteristic map. We take advantage
of the structure of layers and patches induced by the scaling
relation to directly evaluate Φ−1(t). Specifically, it is well
known (e.g., [Rei95]) that a subdivision surface based on
splines (Catmull-Clark in particular) can be separated into
an infinite number of polynomial patches. For the natural pa-
rameterization over a single face, these patches can be orga-
nized into L-shaped layers as shown in Figure 3. Each layer
can be obtained from the previous one by scaling by λ. This
means that it is possible to reduce the problem of inverting
the characteristic map to inverting three polynomial patches
P1, P2, P3 defined on D01, D02 and D03. Let Dl1,Dl2,Dl3
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be three domains of patches in a given layer l. The overall
structure of the algorithm is as follows.

Algorithm 1:

Input: t = (u,v); Output: (r,s) = Φ−1(u,v)

1. Determine layer number l of the characteristic map and
polynomial patch number j, j = 1,2,3 in layer l such that
(u,v) ∈ λlPj(2lDl j)

2. Compute (r,s) = Φ−1(u,v) = 2−lP−1
j (λ−lt)

Layer and patch identification. As illustrated in Figure 3,
the layers and patches in the image of the characteristic map
are bounded by curves. Thus the first step of the algorithm
(finding the layer and patch number for a point in the im-
age), needs to test on which side of a curved boundary a
point is. As each polynomial patch is bicubic, the bound-
aries are parametric cubic curves. For efficient inside-outside
tests, we convert the curves to implicit form g(u,v) = 0. The
sign of g(u,v) determines on which side of the curve a given
point (u,v) is.

While several methods exist for implicitization [SC95] we
only need to implicitize cubic curves, and we opt for a simple
approach based on polynomial resultants [Apo70].

Definition 5 Let q(t) = qmxm + qm−1xm−1 + · · ·+ q0 and
r(t) = rnxn + rn−1xn−1 + · · ·+ r0 denote two scalar polyno-
mials such that at least one of qm and rn is non-zero. The
Sylvester resultant of the two polynomials is defined as the
determinant of the following (m+n)×(m+n) Sylvester ma-
trix:

S(q,r) =





















q0 q1 · · · qm−1 qm 0 0 · · · 0
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. . .
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. . .
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



















A connection between the Sylvester resultant and the
common roots the two polynomials is established by the fol-
lowing well-known result [GKZ96]: Two polynomials q and
r have a common root if and only if detS(q,r) = 0. To decide
the position of a given point (u0,v0) with respect to a para-
metric polynomial curve C(t) = (u(t),v(t)) we set q(t) =
u(t)−u0 and r(t) = v(t)− v0 and we compare detS(q,r) to
zero (or a small ε to account for numerical precision errors).
To make the calculation more efficient, for an input point
(u,v) we first compute an approximate layer number l′ can
be quickly computed as l′ = dlog[λ]max(u,v)e−1. We then
use implicitization to determine a nearby patch which con-
tains (u,v).

k = 5 k = 13

Figure 4: Isoparameter lines near extraordinary vertices
after reparameterization with vanishing derivatives.

Patch inversion. After locating the layer and patch contain-
ing a given (u,v) we must compute its pre-image (r,s) =
Φ−1(u,v), which, as we have shown, only requires inver-
sion of three bicubic patches P1, P2 and P3. To compute the
inverse of a bicubic patch we use Newton’s method [Cd80]
to find a root of the following equation inside our domain
(i.e, the unit square):

Pj(r,s)−
[

u
v

]

= 0 (6)

We use (u,v) as the initial approximation. Although the
Newton method is not guaranteed to converge, we have ob-
served consistent convergence, as our reparameterization in-
troduces relatively little distortion. A more reliable approach
would be to use Bezier clipping.

Figure 5 illustrates the behavior of the iso-parameter lines
around extraordinary vertices after reparameterization by in-
version of the characteristic map. Note the equal spacing be-
tween consecutive lines in contrast to Figures 2 and 4.

Figure 6 illustrates the application of our evaluation with
reparameterization around extraordinary vertices on mul-
tiresolution subdivision surfaces corresponding to scanned
objects. Figure 7 shows comparatively the magnitude of the
derivatives around extraordinary vertices of various valences
with and without reparameterization.

Computationally, the reparametrization introduces a sig-
nificant overhead. The goal of our current implementation
was correctness, rather than efficiency, and we can only esti-
mate the relative cost of different stages. We have observed
that the computation time is dominated by step 1 in Algo-
rithm 1 (i.e. finding the layer and the patch). Step 2 (inver-
sion of the polynomial patch) is much less expensive and
takes a small fraction of the time it takes to evaluate a point
without reparametrization. Our current implementation of
step 1 is highly inefficient; with inefficiencies eliminated,
based on the floating point operations counts, we expect that
its cost will be lower than the cost of evaluation. However,
we should caution the reader that the wall-clock timings de-
pend strongly on the datastructures used for storing control
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k = 3 k = 5

k = 7 k = 13

Figure 5: Behavior of isoparameter lines near ex-
traordinary vertices after reparameterization with a non-
degenerate Jacobian.

points, eigenvectors and other necessary information. and
can vary in wide range.

Furthermore, we have considered random point evalua-
tion, for which no coherence between sequential evaluations
is assumed. In practice, it is more likely that many close
points are evaluated, or the surface is evaluated at the same
points many times; in such cases many computed values can
be cached. As a result the actual computational overhead of
reparametrization can vary greatly, from negligible to high.

5. Conclusions and Future Work

In this paper we have described two methods for generating
everywhere differentiable parameterizations for Catmull-
Clark subdivision surfaces. Unlike the natural parameteriza-
tion for which derivatives diverge around extraordinary ver-
tices of valence greater than four, the proposed reparameteri-
zations guarantee convergence. Moreover, our method based
on the inversion of the characteristic map also guarantees a
parameterization with non-degenerate Jacobian, both for va-
lences greater than four and for valence three.

At the same time, the non-degenerate parameterization
carries a significant computational penalty. Ideally it would
be preferable to have an approximation to the characteristic
map for which the inverse can be computed exactly. A num-
ber of mathematical considerations indicate that existence of
such map is unlikely if we require non-zero derivatives at the
origin. At the same time, a statement of this type would be
hard to prove rigorously.

k = 5

k = 6

k = 7

Figure 6: Evaluation of multiresolution subdivision sur-
faces corresponding to scanned objects. Left column: sur-
faces with patches to be evaluated shown highlighted. Right
column: result of evaluation after reparameterization with
non-degenerate Jacobian.

These difficulties indicate that this approach of integrat-
ing subdivision surfaces into systems designed for paramet-
ric patches has limitations. However, we believe that the ap-
proaches of this type are currently the only ones that make
such integration practical for CAD applications.
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Appendix A: Proofs

Proof of Proposition 1. If the Jacobian of the map does
not vanish away from the vertices, the map is a cover-
ing on its image (see any basic topology text). As [0,1]2 \
{v1,v2,v3,v4} is simply connected, the covering has to be
an isomorphism. It is easy to check directly that it leaves the
vertices vi in place. This means that Fb is one-to-one. As it is
continuous, it maps the boundary of [0,1]2 to the boundary
of the image. It can be easily verified that Fb maps each side
of the square [0,1]2 to itself. Consider the half of the edge
e = [vi,vi+1] adjacent to vi. Fi maps the half-line obtained
by extending vi,vi+1 beyond vi+1 to itself. As Fb on e is an
affine combination of Fi and identity, it maps e to the straight
line containing e. The Jacobian in the interior of e does not
vanish, therefore, the derivative of the map Fb|e along e has
constant sign in the interior of e. The function is monotonic
in the interior and continuous, therefore monotonic on the
whole e. As it maps the endpoints of e to themselves, it fol-
lows that e is mapped to e. We conclude that the boundary
of [0,1]2 is mapped onto itself and, therefore, the interior is
mapped to the interior. Finally, if there is a point in the inte-
rior of [0,1]2 which is not an image of any point, then there
is a curve in Fb([0,1]2) which is not contractible, which is
impossible given that the image is homeomorphic to [0,1]2.
We conclude that in the interior the map is also onto.

1/2 1/31/6

Figure 8: The boundaries of layers of the characteristic
maps are shown together with the domains on which w is
polynomial (shades of gray). A single subpatch of the char-
acteristic map is hatched. We verify that the Jacobian of the
composition does not vanish for the subpatch of the charac-
teristic map composed with any of the overlapping polyno-
mial pieces of w.

Proof of injectivity of the characteristic map reparam-
eterization. According to Proposition 1 it is sufficient to
show that the Jacobian of the map does not vanish. It is
sufficient to consider the map restricted to one quarter of
the domain adjacent to one of the corner vertices. On this
subdomain the map is a blend between the identity and
the inverse of the characteristic map: wΦ−1 + (1 − w)Id.
We note that proving that the Jacobian for this map does
not vanish is equivalent to proving that the Jacobian of
(w◦Φ)Id +(1−w◦Φ)Φ does not vanish.

The proof of the latter is straightforward, but requires con-
siderable amount of algebraic calculations which we have
performed using a computer algebra system. We outline here
the main steps of the analysis.

Assume that the valence is fixed. The computation below
needs to be performed for all valences.

First, we recall that the characteristic map is piecewise-
polynomial and that the polynomial subpatches have a lay-
ered structure near the extraordinary vertex. Furthrmore,
the map is self-similar, so there are only three basic
patches Pj(u,v), j = 1,2,3. All the rest have the form
λiPj(2−iu,2−iv).

As w is also piecewise polynomial, the combined map is
piecewise polynomial. Unfortunately, the shape of the poly-
nomial patches is not simple, as some of the boundaries
occur, for example, when Φ(u,v) is on the line segment
e = (1/c, t),0 < t < 1/c at which w switches from one poly-
nomial form to another. This is illustrated in Figure 8.

This means that the patch boundary in the (u,v) domain
is the curve Φ(u,v) which makes it difficult to verify exactly
that the Jacobian is positive.

We take the following approach. The domain is subdi-
vided N times (we use N = 3), and each of 2N × 2N sub-
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patches is examined separately. The value of N is cho-
sen such that for the subpatch (0,0), i.e., for u,v < 2−N

Φ(u,v) < 1/c. This implies that w(Φ(u,v)) = Pw
0 (Φ(u,v),

where Pw
0 is a fixed polynomial.

For all other patches (l,m), l 6= 0 or m 6= 0, we observe
that Φ(u,v) reduces to a polynomial. We convert each patch
to Bezier form and we use the bounding box of the Bezier
control points to determine the range of values of Φ(u,v).
Using these ranges we determine which polynomial pieces
of w are necessary. If the patch (l,m) of the characteristic
map overlaps a line separating two pieces of w, we include
both pieces. As a result, for each subpatch we have a set
of polynomial forms of the reparameterization map. These
forms correspond to the smaller subdomains on which (w ◦
Φ)Id +(1−w◦Φ)Φ is polynomial.

Next, we compute the Jacobian of each patch (l,m) 6=
(0,0), which is a polynomial in (u,v) and we convert it to
Bezier form. We verify that the coefficients of the Bezier
form have the same sign. By the convex hull property, this
proves that the Jacobian does not vanish anywhere, except
possible on the patch (0,0).

In the subdomain (0,0) there is an infinite number of poly-
nomial subpatches. Fortunately the polynomials on all these
subpatches have one of three possible general forms, due to
the fact that w reduces to a polynomial on this subpatch and
to the self-similarity of the characteristic map. Specifically,
the patches have the form:

2−iPw
0 (λiPj(u,v))Id +λi(1−Pw

0 (λiPj(u,v)))Pj(u,v)

for 0 ≤ u,v ≤ 1.

We use the following approach to verify that the Jacobian
of this map is positive. We formally replace 2−(i−N) with a
new variable z, (N is subtracted to ensure that z ∈ [0,1]) and
similarly for λi−N . This results in the expression:

2−NzPw
0 (λNtPj(u,v))Id +λNt(1−Pw

0 (λNtPj(u,v)))Pj(u,v)

which is a polynomial in four variables z, t,u,v, all changing
in the range 0 to 1. We can verify that the values of the Ja-
cobian of this map are positive for all values of the variables
converting to Bezier form. Note that continuous ranges z and
t include all discrete values we need to verify positivity for.

This procedure is repeated for each valence. We note that
one needs to use interval arithmetic for Bezier coefficients
as explicit closed form expressions are rather complex. Fi-
nally, for large values of k, the control meshes of the char-
acteristic map patches converge to a limit. Thus, using in-
terval arithmetic, the test can be performed for all values of
k > k0 simultaneously, with k0 chosen sufficiently large so
that cos(2π/k0) is close to 1. We choose k0 = 40.
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