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Abstract
We present techniques to efficiently compute the distance under max-norm between a point and a wide class of
geometric primitives. We formulate the distance computation as an optimization problem and use this framework
to design efficient algorithms for convex polytopes, algebraic primitives and triangulated models. We extend them
to handle large models using bounding volume hierarchies, and use rasterization hardware followed by local
refinement for higher-order primitives. We use the max-norm distance computation algorithm to design a reliable
voxel-intersection test to determine whether the surface of a primitive intersects a voxel. We use this test to perform
reliable voxelization of solids and generate adaptive distance fields that provides a Hausdorff distance guarantee
between the boundary of the original primitives and the reconstructed surface.

1. Introduction

The notion of a distance function between two elements of
a metric space is fundamental in various branches of math-
ematics and applied sciences e.g., approximation theory and
numerical analysis. It is considered a fundamental problem
in geometric computation and related areas including robot
motion planning 27, implicit and volume modeling 15, 32, 47,
surface reconstruction 12, 21, physically-based modeling 4,
computer-aided design 14, etc. This problem has been ac-
tively studied in different fields and most of the algorithms
have been proposed for efficient computation of Euclidean
distance between two sets.

In this paper, we mainly focus on the max-norm (or l∞)
distance computation. Under this norm, the distance be-
tween two points x and y (in d dimensions) is represented
as D∞(x,y) and is defined as

D∞(x,y) = max
i

|xi − yi|, i = 1,2, . . . ,d (1)

We can extend this definition for distance between a point
p and a set S ⊆ R

d†. Computing distances under the max-
norm is different from the Euclidean-norm: l∞ is not in-
duced by an inner product space, so notions of orthogonality

† D∞(p,S) = infs∈S D∞(p, s)

for distance computation cannot be used. The max-norm dis-
tance problem arises in different application including plan-
ning under uncertainty using Markov decision processes in
machine learning 19, 44, defining discrete objects under the
supercover model 3, image analysis 30, dynamics and con-
trol systems 17, 48, tolerance analysis and NC machining 14, 40,
and volume graphics 15, 47. Unlike Euclidean distance com-
putation, no efficient and practical algorithms are known for
max-norm computation.

One of our motivations for max-norm computation arises
from voxelization of geometric primitives in R

3. Given a
geometric scene description, voxelization deals with tech-
niques that generate a discrete set of voxels to approximate
the continuous scene as faithfully as possible 43. Voxeliza-
tion is used in ray tracing 46 and volume rendering 32, 47,
implicit modeling 22, 24, shape representation 15 and model
repair 36. In order to produce an accurate voxelization and
guarantee Hausdorff-distance approximation, it is essential
to know whether or not some part of the geometric model
passes through a voxel. We refer to this test as the voxel-
intersection test. Since voxels and iso-distance balls for max
norm are both cuboids, an exact voxel-intersection test can
be performed by computing the max norm distance between
the center of the voxel and the primitive.

Main Contributions In this paper, we present algorithms
for efficient max-norm distance computations between a
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point and a wide class of geometric primitives. We ana-
lyze the problem of max-norm computation and reduce it to
an optimization problem. Based on our optimization frame-
work, we present efficient and specialized algorithms for
convex polytopes, algebraic primitives and polygonal mod-
els. We also present efficient techniques based on bound-
ing volume hierarchies and rasterization hardware to extend
these algorithms to large models. Overall, we show that max-
norm computation is no more expensive than the Euclidean
case. On the contrary, in many cases it is cheaper to com-
pute because the corresponding distance functions are linear
rather than quadratic and we utilize this property to develop
efficient algorithms.

We demonstrate the application of max-norm distance
computation to perform the voxel-intersection test. It is used
to generate an adaptive distance field (ADF) of complex
models defined using Boolean operations where the under-
lying models consist of polyhedra, quadrics and tori. The
efficient voxel-intersection tests takes a small percentage of
additional time in terms of ADF generation and guarantees
no missed components and a bounded Hausdorff-error on the
approximated samples as well as the reconstructed surface.

Some of our new results include:

• An optimization-based framework for max-norm compu-
tation.

• An equation solving approach for algebraic primitives.
• Specialized algorithms for convex polytopes, quadric and

triangulated models.
• An efficient graphics hardware-based approximate solu-

tion for general models.
• An efficient and exact voxel-intersection test for voxeliza-

tion and ADF computation based on l∞ norm.

Organization The rest of the paper is organized as follows.
We briefly survey related work on distance computation and
voxelization in Section 2. We reduce the max-norm compu-
tation problem to an optimization problem in Section 3 and
present specialized algorithms for convex polytopes, alge-
braic primitives and triangulated models. We extend these
algorithms using bounding volume hierarchies and graph-
ics hardware to handle large models and non-convex prim-
itives in Section 4. We use our algorithm to perform voxel-
intersection tests and ADF generation in Section 5 and high-
lights its performance on different benchmarks in Section 6.

2. Prior Work

In this section, we give a brief overview of prior work on
distance computation, voxelization and adaptive sampling.

2.1. Distance Computation

The problem of distance computation between various prim-
itives under Euclidean norm is well studied in computational
geometry, robotics, and simulated environments. Some well-
known algorithms and surveys of distance computation un-
der Euclidean norm can be found in Lin et al. 28, 29.

The distance computation under max-norm in itself has
not been extensively studied in the literature. However, there
is considerable amount of work for various geometric or
proximity computations under l∞ norm. These include the
study of l∞ Voronoi diagram and its combinatorial and com-
plexity 6, 8, 16, 25, 37, 38, and l∞ skeleton computations 2. In
particular, Papadopoulou et al. 38 have presented O(n logn)
algorithms to compute the 2D l∞ Voronoi diagram of poly-
gons and highlighted its application to VLSI layout and man-
ufacturing. However, no practical algorithms or implementa-
tions are known for 3D l∞ Voronoi diagrams of point sets or
higher order primitives.

2.2. Distance Fields and Voxelization

Many efficient algorithms are known to compute the dis-
tance fields and their gradients at any point in space. A good
overview of these algorithms has been given in Cuisenaire’s
dissertation 11. A key issue in generating discrete samples
is the underlying sampling rate. Some of the common al-
gorithms use an adaptive refinement strategy based on an
octree, and only split those cells that contain a piece of
the final surface in a top-down manner. However, the cri-
terion for performing the containment test, i.e., whether the
surface passes through a voxel, may not be robust. Many
authors have used curvature information in generating the
distance samples 18, 42. Moreover, Frisken et al. 15, 39 have
presented bottom-up and top-down methods for generating
ADFs based on piecewise tri-linear interpolation.

3. Distance Computation under l∞ Norm

The problem of computing the distance under any norm from
a point to a set can be posed an optimization problem. Our
goal is to utilize the special structure of the distance function
and the underlying set S to formulate efficient algorithms.
Computing the max-norm distance of a point from a set is
substantially different from the Euclidean case in several re-
spects. First, the distance metric is not smooth with respect
to its variables. Secondly, unlike l2 space, l∞ space is not
an inner product space. The relationship between orthogo-
nality and minimum distances in inner product spaces can
be very powerful in formulating these problems without us-
ing optimization. In the minimum distance problem, these
differences translate to changes in both the algorithmic ap-
proach and the characteristics of the solution. In the rest of
this section, we first present an optimization based frame-
work to compute the max-norm and later present special-
ized algorithms for convex polytopes, algebraic primitives
and triangulated models.

3.1. Optimization Framework

Let S be a set consisting of points satisfying fi(x) ≤ 0, i =
1,2, . . . ,n, where each fi is a non-linear analytic function.
Our goal is to compute the distance from a point p to the set
S. Without loss of generality, we assume that the point p is
the origin and does not belong to S.
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We explain our algorithm for the 2D case first. Con-
sider partitioning the plane into regions such that the dis-
tance from any point in a region to the origin is determined
by the same coordinate. This partition exists because of
the definition of the norm. As shown in Fig. 1(b), the re-
gions where the x1-coordinate determines the l∞ distance
is given by the sets Rx11 = {x1 − x2 ≥ 0 ∧ x1 + x2 ≥ 0}
and Rx12 = {x1 − x2 ≤ 0 ∧ x1 + x2 ≤ 0}. Each region, Rx11

and Rx12 , is bounded by two linear constraints. The regions
where x2 determines the distance, Rx21 and Rx22 , are obtained
by similar linear constraints. The four regions for the two-
dimensional case is shown in Fig. 1(b).

Now let us assume that we are restricted to one such re-
gion, say Rx11 . By adding the additional constraint for x to
belong to S, our constraint space is restricted to a portion
of the primitive lying inside Rx11 . We can find the shortest
distance from the origin to this part of the surface by mini-
mizing x1. Note that if our constraint space was contained in
Rx12 , our objective function would be to minimize −x1. This
is a simple linear function.

Extending this formulation to the d-dimensional case, we
see that the underlying space is partitioned into 2d regions
(each region formed by 2(d−1) linear constraints) and each
coordinate determines the distance in two regions. For ex-
ample, the regions where the ith coordinate determines the
distance are Rxi1 =

⋂

j 6=i, j=1,...,d(xi − x j ≥ 0 ∧ xi + x j ≥ 0)
and Rxi2 =

⋂

j 6=i, j=1,...,d(xi−x j ≤ 0 ∧ xi +x j ≤ 0). We have
now reduced our minimum distance computation problem to
solving 2d non-linear optimization programs. Each program
has the form

minimize hTx,

subject to fi(x) ≤ 0, i = 1,2, . . . ,n, (2)

and gT
j x ≥ 0, j = 1,2, . . . ,2(d −1).

where hT =
(

0,0, . . . ,±1,0, . . . ,0
)

(the non-zero entry
and its sign is determined by the one of the 2d regions) and
gj is determined by the bounding constraints of regions Rxik .

We use the above formulation to develop efficient algo-
rithms for the the case of convex primitives. For the case of
general non-convex implicit functions, we develop a strategy
based on the graphics hardware to compute a good initial
guess. This is presented in section 4.2.

3.1.1. Distance Computation for Convex Primitives

In this subsection, we present an exact algorithm to com-
pute the distance under l∞ norm from a point to a con-
vex primitive. The interior of a convex primitive satisfies
fi(x) ≤ 0, i = 1,2, . . . ,n, where each fi is a convex func-
tion‡. We solve the problem by dividing it into two cases

‡ A function f (x) is convex if f (λx1 +(1−λ)x2) ≤ λ f (x1)+(1−
λ) f (x2),λ ∈ [0,1]

(a) (b)

Figure 1: Computing distance from a point to a convex primitive
under l∞ metric. (a) point inside primitive (b) point outside primi-
tive

depending on whether the point p lies inside or outside the
primitive.

Point inside the primitive Consider the convex primitive
and the point p in 2D as shown in Fig. 1(a). All points that
are equidistant from p lie on the surface of an axis-aligned
square centered at p. This relation is shown by the square
in the Fig. 1(a). Consider growing such a square from the
point p. The shortest distance from p to the surface of the
object is realized by a point on the surface that first touches
the growing square (point q in the figure). However, it is
easy to see that for convex primitives only the vertices of
the square are potential candidates to touch the surface first.
This property reduces the task of finding the distance to that
of finding the minimum from four directed distance queries.
The directions in 2D are all possible combinations of the
vectors

(

±1/
√

2,±1/
√

2
)

.

This technique is easily extensible to the d−dimensional
case. We can write the max-norm distance as

D∞(p,S) =
1√
d

min
i

D~vi(p,S), i = 1,2, . . . ,2d ,

where ~vi is chosen from the set {−1/
√

d,1/
√

d}d and D~v
is the directed distance along vector ~v. Algorithms to com-
pute the directed distance between a point and a surface are
efficient and well-known 24. This formulation is robust even
in the presence of degeneracies like parallel facet configura-
tions of the convex object and the unit ball.

Point outside the primitive Consider the case when p lies
outside the object as shown in Fig. 1(b). In this case, we
use the optimization formulation presented in section 3.1.
However in this case, the constraints described in Eq. 2 are
all convex. This reduces the more general optimization for-
mulation to a special convex programming problem. Many
convex programming problems can be solved accurately and
efficiently using interior point methods 35. In section 3.1.2,
we study the restricted class of convex primitives that are
composed of linear and quadric surfaces that are of interest
in applications like geometric modeling.
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3.1.2. Distance Computation for Convex Polytopes and
Quadrics

For quadrics, we can write the interior of the primitive us-
ing quadric constraints xTAx + bTx + c ≤ 0, where A
is a symmetric positive definite matrix, b is a fixed vector,
and c is a constant scalar. The corresponding convex pro-
gram is converted to a special case called second-order cone
program for which a number of efficient and implementable
interior-point algorithms are known 31. These algorithms are
iterative in nature, and each iteration takes time that is linear
in the number of constraints. Using equation (2), the second-
order cone program we solve is

minimize hTx,

subject to ‖ Aix+bi ‖2≤ cT
i x+di, i = 1,2, . . . ,n,

and gT
j x ≥ 0, j = 1,2, . . . ,2(d −1).

The constraints listed above also include the special case
of convex polytopes (by making A = 0), where the second-
order cone program reduces to the more familiar linear pro-
gram. Many simple and practical linear-time algorithms for
solving linear programming problems in a fixed dimension
are known 41. Given a quadric primitive in 3D, we solve six
cone programs (each with four linear and one quadratic con-
straint) and choose the minimum value among them to find
the true distance.

3.2. Equation Solving Approach for Algebraic Primi-
tives

In this subsection, we present an approach based on equa-
tion solving to compute l∞ distance between a point p and
a primitive defined by an algebraic equation f (x) = 0. This
approach is applicable to both convex as well as non-convex
algebraic primitives. If D is the distance between the point
and the primitive, then under the l∞ metric, a cube of length
2D centered at p touches the primitive at a point x. The point
x can lie on a vertex, edge, or a face of the cube (see Fig. 2).
This gives rise to three cases:

• If x lies on the vertex of the cube (Fig. 2(a)), the task of
computing max-norm distance between p and the primi-
tive reduces to finding the distance along 8 directions de-
fined by

(

±1/
√

3,±1/
√

3,±1/
√

3
)

. This can be reduced
to an equation solving problem. For example, if the vertex
is along the direction

(

1/
√

3, 1/
√

3, 1/
√

3
)

, then we
have the following equations:

f (x) = 0

x− y = 0 (3)

x− z = 0

• If x lies on the edge of the cube (Fig. 2(b)), say an edge
along z axis, it has to be a local minima/maxima with re-
spect to z-coordinate. The partial derivative d f

dz is zero at

(a) Vertex (b) Edge (c) Face

Figure 2: Distance between a point p and a primitive (shown as
shaded): Under the l∞ metric, a cube of length equal to twice the
distance and centered at p touches the primitive at a point x (shown
by black dot). The point x can lie on a vertex, edge, or face of the
cube.

x. Moreover, x lies on the plane x− y = 0 (or x + y = 0).
This gives rise to three equations:

f (x) = 0
∂ f
∂z

(x) = 0 (4)

x− y = 0

• If x lies on a face of the cube (Fig. 2(c)), say a face per-
pendicular to x axis, it has to be a local minima/maxima
with respect to y and z-coordinates. The partial derivatives
∂ f
∂y and ∂ f

∂z are zero at x. This gives rise to three equations:

f (x) = 0
∂ f
∂y

(x) = 0 (5)

∂ f
∂z

(x) = 0

Depending on whether the closest point x lies on a vertex,
edge, or face of the cube, it needs to satisfy the above equa-
tions. We solve the above equations for each vertex, edge
and face of the cube. In general, the solution set of three
equations in three unknowns is zero-dimensional, and hence
finite. We obtain a set X of feasible values for x. We cal-
culate minx∈X ‖ x− p ‖∞ to obtain the max-norm distance
D∞(p,S).

For algebraic primitives, we need to solve a system of
multivariate (in our case, three variables) polynomial equa-
tions. For general polynomial systems, there are no closed
form solutions. Hence, this problem has been studied exten-
sively in the symbolic and numerical algebra community and
a number of solutions have been proposed 9, 10, 33. A general
technique to solving such systems is to use symbolic tech-
niques to eliminate all but one of the variables and reducing
the problem to solving univariate polynomials. Consider, for
example, the system in equation (3). It is easy to see that
the variables y and z can be replaced by x using the sec-
ond and third equation. Substituting these values into f gives
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us the univariate equation f (x,x,x) = 0. In general, more
systematic algorithms to perform the elimination are known.
Once we reduce the system to a univariate polynomial, effi-
cient, practical algorithms for computing its roots are avail-
able 5, 26. For the case of quadric primitives, all the system
of equations (equations (3), (4) and (5)) reduce to simple
quadratic equations. In case of torus, we take advantage of
symmetry to reduce the problem to solving a polynomial of
degree 8.

To handle transformed primitives, we apply the inverse
transformation to the space before applying the function. Let
y = T (x) be a rigid transformation applied to a primitive
defined by a function f . Then the transformed primitive is
defined as f (T−1(y)) = 0 in the world coordinate system.
We solve the equations in this space.

Degenerate systems and extraneous solutions

It was mentioned earlier that, in general, a system of three
equations in three unknowns results in a finite solution
set. However, there are some degenerate configurations in
which the solution set may not be zero-dimensional. Con-
sider, for example, a torus whose axis is along the x-axis.
In this case, ∂ f /∂y and ∂ f /∂z vanish simultaneously along
two circles on the torus. Therefore, the solution to equa-
tion (5) are precisely these circles which is one-dimensional.
While algorithms exist to compute one point from each high-
dimensional component 9, we resort to special case handling
of such configurations for the primitives we encounter.

During the elimination process in root-finding methods,
the reduced univariate polynomial may accumulate extrane-
ous factors. Therefore, solution of the univariate polynomial
may contain roots that do not satisfy the original system of
equations. We eliminate such roots by back substitution.

3.3. Triangulated Models

In case of a non-convex polyhedron or triangulated models,
we compute the l∞ distance by finding distance for each
polyhedral element in the primitive (i.e., polygon or triangle)
and minimizing it overall. We explain how we compute l∞
distance between a point and a triangle efficiently and also
propose a hierarchical method to extend this triangle-based
computation to a polyhedral primitive.

3.3.1. Distance Computation for a Triangle

In section 3.1.2, we presented a procedure to compute l∞
distance to a convex polytope based on a linear programming
technique. The distance computation for a triangle 4T is a
simple variation of the same technique. In case of a triangle,
we reduce the problem to computing intersections between
the target triangle 4T and 12 auxiliary partitioning triangles
4B. In fact, these 12 4B’s represent the linear constraints gj
highlighted in Section 3.1.2; these 12 constraints are illus-
trated in Fig. 3(a). Notice that even though these gj’s form
unbounded partitions of 3D space, in practice, we bound the

(a) 12 Partitioning
Triangles

(b) l∞ Computation
for a Triangle

Figure 3: Computing distance from a point to a triangle under l∞
metric.

partitions by using an axis-aligned bounding box of 4T such
that the boundary of each partition becomes a triangle 4B.

Once we have the 4B’s, the next step is to compute all pos-
sible intersecting lines between 4T and 4B’s, and to extract
their end points. Then, the l∞ distance from a query point to
4T is the minimum of l∞ distances from the query point to
all the end points as well as to the vertices comprising 4T .
For example, as illustrated in the left figure of Fig. 3(b), the
distance from o to a triangle 4T

p1p2p3 is the minimum of the
distances from o to the vertices p1,p2,p3 as well as to t1, t2,
which are the end points of the intersections between 12 par-
titioning triangles and 4T

p1p2p3 . and we take the minimum of
the distance values from o to p1,p2,p3, t1 and t2.

4. Complex Models

In the previous section, we have presented efficient algo-
rithms for max-norm distance computation to convex poly-
topes, quadrics and triangles. In this section, we present two
algorithms to extend them to large models. These are based
on bounding volume hierarchies and use of graphics hard-
ware.

4.1. Bounding Volume Hierarchy

A simple way to compute l∞ distance for a non-convex
polyhedron P is to compute the distance for every triangle
4i ∈P and take its minimum. However, we can speed up this
naive method by constructing a hierarchical bounding vol-
ume (BVH) of P and culling away unnecessary triangles by
traversing the hierarchy. For the hierarchical representation,
we employ a surface convex decomposition scheme similar
to Ehmann et al. 13. Here, a leaf node in the BVH is cre-
ated by decomposing P into a collection of convex surface
patches Pi and computing its convex hull. Notice that, due to
the convex hull computation, the node creates some extrane-
ous triangles that do not belong to P. Let us call these types
of triangles virtual, and otherwise call them real. Then, the
entire BVH is recursively built by merging children nodes in
the hierarchy and computing their convex hull.

Once we have precomputed the BVH, at query-time, we
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traverse the BVH in a top-down manner starting from a root
node. During the traversal, we maintain three types of dis-
tance values:

• UB : Upper bound to the distance value from a given query
point o to the polyhedron P.

• Ub : Upper bound to the distance value from o to the cur-
rently visited node N in the BVH. Ub is obtained by com-
puting minimum distance only to the real triangles con-
tained in N.

• Lb : Lower bound to the distance value from o to N. Lb is
obtained by computing minimum distance to all the real
and virtual triangles contained in N.

While we traverse the BVH, Ub is compared to UB, and if
Ub is smaller than UB, then UB is updated to Ub. As a result,
as we go down to the deeper level of the BVH, U B decreases
and it finally computes the actual distance to P. Using U B

and Lb of a currently visited node N, we perform culling as
follows: whenever we encounter N in the BVH whose Lb is
greater than UB, we can immediately reject all the triangles
contained in N.

The problem of computing D∞() gets much harder when
dealing with non-convex curved or implicit primitives. To
avoid solving a general non-linear optimization problem as
described in section 3.1, we tessellate the primitives within
some Hausdorff distance error bound ε and obtain an esti-
mate for D∞() using the graphics hardware. This is followed
by a refinement step using local optimization. We describe
the hardware algorithm next.

4.2. Distance computation using graphics hardware

Our approach is based on the algorithm presented by Hoff et
al. 20 for constructing generalized Voronoi diagrams using
graphics hardware for 3D polygonal objects. The distance
field is computed by rendering the 3D polygonal mesh ap-
proximations to the distance function where the depth of the
rendered mesh at a particular pixel location corresponds to
the distance to the nearest polygon feature. The resulting dis-
tance field can be obtained by reading back the depth buffer.
The 3D distance field is computed one slice at a time.

We compute a distance field under the l∞ metric. For
each site, we define a distance function, which gives, for
any point, the distance to that site with respect to l∞ met-
ric. In contrast to l2, the l∞ distance functions for the case
of a point, line segment and a polygon are linear. They can
be represented exactly by a collection of polygons.

4.2.1. Distance functions

We present the max-norm distance functions associated with
different primitives.

Points: The distance function for a point site p is shown in
Fig. 4. Its graph is a frustum of a square pyramid. The region
of influence for a point is the entire slice. The bottom square

base of the pyramid corresponds to a region of constant dis-
tance. The four slanting faces of the pyramid correspond to
the planes x = z, x = −z, y = z, y = −z. The distance at
a point on the region of influence is half the length of the
smallest isothetic cube centered at the point and touching p
at one of the cube faces.

(a) (b)

Figure 4: Distance function for a point (shown in black) is a frus-
tum of a square pyramid. Figs (a) & (b) show the region of influence
and distance function respectively. The region of influence (shaded
region on the slice) is the entire slice.

Line Segments: The distance function for a line segment l is
composed of three parts: one for the segment itself and one
for each endpoint. The endpoints are treated the same way
as points. The distance function and region of influence for
the line segment is shown in Fig. 5. The distance function
is composed of four planar regions. The distance at a point
on the region of influence is half the length of the smallest
isothetic cube centered at the point and touching l along one
of the cube edges.

(a) (b)

Figure 5: Distance function of a line segment (shown in black):
Figs (a) & (b) show the region of influence and distance function
respectively. The region of influence is the shaded region on the
slice. The distance function is composed of four planar regions.

Polygons: The distance function for a polygon is composed
of a distance function for the polygon itself and one for each
vertex and edge. The distance function for a triangle 4 is
a plane as shown in Fig. 6. The region of influence is a tri-
angle. The distance at a point on the region of influence is
half the length of the smallest isothetic cube centered at the
point and touching 4 at one of the cube vertices. The region
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of influence is obtained by projecting the vertices of the tri-
angle onto the slice along one of four directions: (1,1,1),
(−1,1,1), (1,−1,1) and (−1,−1,1). If n̂ = (n1,n2,n3) de-
notes the normal of triangle 4 , we choose the direction vec-
tor (s1,s2,1) where si (i = 1,2) is 1 or −1 depending on
whether ni is greater than zero or not. If the polygon inter-
sects the slice, the intersection is computed and the polygon
is decomposed into two sub-polygons. Each sub-polygon is
treated as above.

(a) (b)

Figure 6: Distance function of a triangle (shown in black) is a
plane. Figs (a) & (b) show the region of influence and distance func-
tion respectively. The region of influence is a triangle (shaded region
on the slice).

4.2.2. Sources of Error

There are two sources of error in the distance computation:

• Tessellation Error: It arises from approximating a non-
convex implicit or curved primitive by a polygonal mesh.

• Hardware Precision Error: This error is introduced by
the limited precision of the graphics hardware.

The total error is the sum of the above two errors. We bound
the tessellation error by performing a bounded-error tessel-
lation of the non-convex or curved primitive. In this manner,
we obtain a bound on the total error. We obtain conservative
estimates on the distance by offsetting the distance functions
of the primitives by an amount equal to the error bound.

4.3. Non-convex Implicit Primitives

We refine the estimate obtained from the graphics hardware
by performing non-linear optimization as a post-processing
step. Since the estimate obtained from the hardware proce-
dure is usually close to the right answer, this can be refined
quite efficiently using a local optimization tool.

Let the implicit function surface be given by the equation
f (x) = 0. Without loss of generality, let the point from which
we are computing this distance be the origin o and let f (o) >
0. Under these assumptions, the constraint set that we will be
using in the optimization process is G(x) : f (x) ≤ 0.

We use the hardware not only to compute the distances
but also to find which triangle realized the minimum dis-
tance at every point. We then use the point-triangle distance

(a) (b) (c)

Figure 7: Voxel-Intersection Test: Figs (a) & (b) show a surface
(shown as shaded) that passes through a voxel without intersecting
any edges. The presence of such voxels can result in missed compo-
nents and unwanted handles in the reconstructed surface as shown
in Fig. (c). We use the l∞ distance (indicated by the dotted cube) to
perform a voxel-intersection test. The surface intersects the voxel if
and only if l∞ distance between the center of the voxel (black dot)
and the surface is less than half the voxel size.

test described in section 3.3.1 to determine the exact point q
that minimizes the distance. Now if q satisfies the constraint
G(x), then we use this as the starting point in the optimiza-
tion. If it does not, we perturb q so that it does. We use the
fact that the original tessellation is within a Hausdorff er-
ror of ε. If n̂ is the unit normal to the triangle containing
q, then one of the points q± 2εn̂ is expected to satisfy our
constraint. We use this point as our initial estimate and then
refine it using a non-linear optimization solver like LOQO 1.

5. Reliable Voxelization Algorithm

A number of iso-surface extraction algorithms have been
proposed for conversion from a volume representation of
an object to a polygonal mesh representation of the sur-
face. Many of these are grid-based and use the Marching
Cubes algorithm or its variants 22, 24, 32. These algorithms de-
tect whether a surface intersects a voxel by checking for sign
change in the implicit function across the edges of the voxel.
The accuracy of these algorithms is mainly dependent on
the resolution of the underlying grid. Insufficient grid res-
olution can cause components to be missed or create un-
wanted handles as shown in Fig. 7. As a result, these algo-
rithms cannot provide Hausdorff distance guarantees on the
output of the reconstruction. In case of adaptive grids, it is
possible that a surface passes through a coarse voxel with-
out intersecting any edges, while it intersects the edges of a
neighboring voxel that is at a finer resolution (see Fig. 8).
This can result in cracks in the reconstructed surface. These
problems occur because the surface intersects the voxel al-
though the voxel doesn’t exhibit a sign change. We present
a voxel-intersection test and use this test to perform reliable
voxelization and adaptive grid generation in order to provide
Hausdorff guarantees.

5.1. Voxel-Intersection Test

The surface can pass through a cell without intersecting any
of the edges. We use an exact test based on computing the
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(a) (b)

Figure 8: Cracks: Fig. (a) shows a surface passing through a coarse
voxel (left voxel) without intersecting any of the edges, while it in-
tersects the edges of a neighboring voxel (right voxel) that is at a
finer resolution. This can result in cracks in the reconstructed sur-
face as shown in the right figure.

l∞() distance between the center of a voxel and the primi-
tive. Our test is based on the fact that a voxel is intersected by
the surface if the l∞() distance at the center of the voxel is
less than half the voxel size (see Fig 7). The above statement
is valid even when the voxels are not regular-sized cubes.
Given a voxel with dimensions a, b, c along the three co-
ordinate axes, a weighted norm defined as maxi wi|xi − yi|,
where wi = 1/a, 1/b, and 1/c, for i = 1, 2, and 3 respec-
tively, preserves the exactness of the voxel-intersection test.
The framework developed in section 3.1 can be modified
easily to account for the weighted norm.

5.2. Adaptive Grid Generation for Hausdorff Guarantee

Given a surface S, the goal of grid generation is to compute a
set of discrete samples to approximate S. Suppose the recon-
struction algorithm applied to the set of samples generates
Ŝ. A Hausdorff guarantee on Ŝ requires that given any ε > 0,
it is possible to bound the two-sided Hausdorff distance be-
tween S and Ŝ to be less than ε. We noted earlier that we
cannot provide such a guarantee if the grid has complex vox-
els, i.e, the surface intersects the voxel boundary even though
the voxel does not exhibit sign change across any edge. Our
algorithm generates an adaptive grid without any complex
voxels. Suppose we are given an error bound ε. Note that
this bound can be under any distance metric.

1. Check if the voxel is intersecting using the voxel-
intersection test.

2. if no intersection, STOP.
3. if complex voxel or voxel size is greater than the ε,

SUBDIVIDE else STOP.

We apply the Marching Cubes algorithm to each voxel of
the resulting grid. The Hausdorff distance between the re-
constructed surface and the actual surface is guaranteed to
be less than ε. Note that the voxel-intersection test provides
us with an early termination condition (Step 2). This makes
the adaptive grid generation algorithm very efficient.

6. Implementation and Performance

In this section, we describe the implementation of our l∞
distance computation algorithms and highlight its perfor-
mance.

6.1. Implementation

We implemented our algorithms using C++ programming
language on a 1.6 GHz Pentium IV PC with a GeForce 3
graphics card and 500 MB main memory.

We applied our equation solving approach to compute l∞
distance to quadrics and tori. The query took 45-50 µsec for
quadrics. In case of torus, we had to solve a degree 8 polyno-
mial which took 300 µsec and the distance query took 1−1.2
msec.

Model Tri Convex Pcs Out Query In Query

Wrinkled Torus 2000 412 2.46 6.14

Cup 500 190 0.6 3

Spoon 1344 275 1.34 4.89

Table 1: Benchmark Results for Non-Convex Polyhedra. Each
column, respectively from left to right, denotes a benchmarking
model, triangle counts of the model, a number of decomposed con-
vex pieces in the model, average query time in msec for a point
outside the model, average query time in msec for a point inside the
model.

Our algorithm for non-convex polyhedra requires convex
surface decomposition. In order to meet this requirement, we
modified a public collision detection library, SWIFT++ 13, to
take advantage of its decomposition scheme. We also used
a public triangle-triangle intersection routine developed by
Möllwer et al. 34 for fast intersection computations between
target and partitioning triangles.

In our experiment, an average query time for a triangle
takes 10 µsec. The benchmarking results for polyhedra are
also presented in Table 1. Depending on the location of a
query point with respect to the polyhedron, the query time
takes from 0.6 msec to 6.14 msec. When the query point is
located inside the polyhedron, the query takes longer, and
this query corresponds to the notion of penetration depth 7

for a point.

The advantage of using graphics hardware is its SIMD-
like capability that enables us to perform queries at a number
of points in parallel. It took 8 secs, 2.7 sec and 5.6 secs to
compute l∞ distance on a uniform 128x128x128 grid for the
wrinkled torus, cup and spoon benchmarks respectively.

6.2. Voxelization

In many applications, it suffices to have localized distance,
i.e, accurate distance values only within a small neighbor-
hood of a point. In case of voxelization, we require distance
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Model Voxelization Close-up

Figure 9: This figure shows our voxelization algorithm applied to the Happy Buddha model. The model consists of 1,087,716 triangles. It
took 16.22 secs to compute l∞ distance on a 128× 128× 128 uniform grid and perform voxelization using our voxel-intersection test. The
middle and right figures show an entire view and a close-up view of the voxelization superimposed on the model. We have rendered in wireframe
the voxels occupied by the model. (also see Fig. 11 in color section)

(a) (b) (c)

Figure 10: Non-convex and curved primitives: This figure shows the reconstruction of CAD benchmarks consisting of 1-5 solids each defined
using 3-5 Boolean operations on non-convex and curved primitives including tori and ellipsoids. On an average, it took 15 secs to generate an
adaptive grid for each solid based on l∞ distance computation. We reconstructed a boundary representation from the adaptive grid using an
improved dual contouring algorithm 45.

values upto half the voxel size in order to perform the voxel-
intersection test. Given such a distance bound B, we can
further improve performance by employing simple culling
techniques. We are interested only in distance values within
a cube of length 2B centered at a point. We cull away a prim-
itive if its axis-aligned bounding box does not intersect the
cube.

We applied our algorithm to voxelize polyhedral bench-
marks on a uniform grid. Figs. 9, 11 (see color section) show
the voxelization of the Dragon and Happy Buddha models. It
took 16.2 and 18.4 secs respectively to compute l∞ distance
on a 256x256x256 uniform grid and perform voxelization
using our voxel-intersection test. Table 2 shows the perfor-
mance of our algorithm applied to different benchmarks at
varying grid resolution. The voxelization time is largely de-
pendent upon model complexity. We note that it increases
rather slowly with an increase in resolution. This is on ac-

count of localized distance computation and culling. As grid
resolution increases, the voxel size decreases thus providing
a smaller distance bound and resulting in more culling.

6.3. Adaptive Grid Generation

We applied our grid generation algorithm to different bench-
marks. Fig. 10 shows the reconstruction of CAD benchmarks
consisting of 1-5 solids each defined using 3-5 Boolean op-
erations on non-convex and curved primitives including tori
and ellipsoids. On an average, it took 15 secs to generate
an adaptive grid per solid. In order to reconstruct a bound-
ary representation, we computed signed directed distance at
each of the grid points of the adaptive grid 24 and performed
iso-surface extraction using a variant of the dual contouring
algorithm 45. It took 15-20 secs to computed directed dis-
tances at each grid point. Note that the directed distance is
used only for reconstruction and is different from l∞ dis-
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Model Tri Voxelization Time (s)

N = 64 N = 128 N = 256

Bunny 69,451 1.65 2.01 3.51

Dragon 871,414 12.52 13.26 16.21

Buddha 1,087,716 15.21 16.22 18.49

Table 2: Performance: This table shows the performance of our
voxelization algorithm applied different benchmarks. Each column,
respectively from left to right, denotes a benchmarking model, trian-
gle counts of the model and voxelization time in sec at a resolution
of N ×N ×N for N = 64,128,256.

tance that we compute during grid generation. The recon-
struction from the adaptive grid took less than a second.

When performing iso-surface extraction on an adaptive
grid, the reconstruction algorithm often needs to perform
crack patching 42. Our grid generation algorithm generates
an adaptive grid that does not require any crack patching.

6.4. Comparison with Prior Voxel-Intersection Tests

There has been prior work on determining whether an im-
plicit surface intersects a voxel. These algorithms are based
on Lipschitz condition and interval arithmetic 23. However,
these algorithms are rather slow and conservative in practice.
Frisken et al. 39 check whether the surface passes through a
voxel by comparing the Euclidean distance to the surface
with half diagonal length. This is equivalent to testing if the
surface passes through a bounding sphere of the voxel. This
is a conservative test and can cause too much subdivision.
Voxels that lie completely outside but close to the surface
may intersect the bounding sphere and be unnecessarily sub-
divided. In contrast, we use an exact test based on the l∞
distance which can be computed efficiently using the tech-
niques described above.

7. Conclusion and Future Work

We have presented algorithms to efficiently perform max-
norm distance computations between a point and a wide
class of geometric primitives. We have demonstrated its ap-
plication to perform a reliable voxel-intersection test for
ADF generation of complex models. The efficient voxel-
intersection test has low additional overhead, guarantees no
missed components, and a bounded Hausdorff-error on the
approximated samples as well as the reconstructed surface.

In the future, we would like to apply our techniques to
compute the l∞ distance between objects. Many of the algo-
rithms presented in this paper can be generalized to distance
computation between two objects. We would like to explore
other applications of max-norm distance. We are also work-
ing on subdivision and surface extraction algorithms for im-
proved reconstruction when performing geometric opera-
tions such as Boolean combinations 45.
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Model Voxelization Close-up

Figure 11: This figure shows our voxelization algorithm applied to the Dragon and Happy Buddha models. The two models consists of
871,414 and 1,087,716 triangles respectively. It took 13.26 and 16.22 secs respectively to compute l∞ distance on a 128×128×128 uniform
grid and perform voxelization using our voxel-intersection test. The middle and right column of figures shows an entire view and a close-up
view of the voxelization superimposed on the model. We have rendered in wireframe the voxels occupied by the model.

(a) (b) (c)

Figure 12: Non-convex and curved primitives: This figure shows the reconstruction of CAD benchmarks consisting of 1-5 solids each defined
using 3-5 Boolean operations on non-convex and curved primitives including tori and ellipsoids. On an average, it took 15 secs to generate an
adaptive grid for each solid based on l∞ distance computation. We reconstructed a boundary representation from the adaptive grid using an
improved dual contouring algorithm 45.

c© The Eurographics Association 2003.
271




