
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

M. Otaduy and Z. Popovic (Editors)

Animating Non-Humanoid Characters

with Human Motion Data

Katsu Yamane1,2, Yuka Ariki1,3, and Jessica Hodgins2,1

1Disney Research, Pittsburgh, USA
2Carnegie Mellon University, USA

3Nara Institute of Science and Technology, Japan

Abstract

This paper presents a method for generating animations of non-humanoid characters from human motion capture

data. Characters considered in this work have proportion and/or topology significantly different from humans,

but are expected to convey expressions and emotions through body language that are understandable to human

viewers. Keyframing is most commonly used to animate such characters. Our method provides an alternative for

animating non-humanoid characters that leverages motion data from a human subject performing in the style of the

target character. The method consists of a statistical mapping function learned from a small set of corresponding

key poses, and a physics-based optimization process to improve the physical realism. We demonstrate our approach

on three characters and a variety of motions with emotional expressions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

This paper presents a method for generating whole-body

skeletal animations of non-humanoid characters from human

motion capture data. Examples of such characters and snap-

shots of their motions are shown in Figure 1 along with the

human motions from which the animations are synthesized.

Such characters are often inspired by animals or artificial

objects, and their limb lengths, proportions and even topol-

ogy may be significantly different from humans. At the same

time, the characters are expected to be anthropomorphic, i.e.,

convey expressions through body language understandable

to human viewers, rather than moving as real animals.

Keyframing has been almost the only technique available

to animate such characters. Although data-driven techniques

using human motion capture data are popular for human an-

imation, most of them do not work for non-humanoid char-

acters because of the large differences between the skeletons

and motion styles of the actor and the character. Capturing

motions of the animal does not help solve the problem be-

cause animals cannot take directions as human actors can.

Another possible approach is physical simulation, but it is

Figure 1: Non-humanoid characters animated using human

motion capture data.

very difficult to build controllers that generate plausible and

stylistic motions.

To create the motion of a non-humanoid character, we first

capture motions of a human subject acting in the style of the

target character. The subject then selects a few key poses

from the captured motion sequence and creates correspond-

ing character poses on a 3D graphics software system. The

remaining steps can be completed automatically with little

user interaction. The key poses are used to build a statistical

model for mapping a human pose to a character pose. We

can generate a sequence of poses by mapping every frame

c© The Eurographics Association 2010.

DOI: 10.2312/SCA/SCA10/169-178

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SCA/SCA10/169-178

K. Yamane, Y. Ariki, & J. Hodgins / Animating Non-Humanoid Characters with Human Motion Data

of the motion capture sequence using the mapping function.

Finally, an optimization process adjusts the fine details of

the motion, such as contact constraints and physical realism.

We evaluate our approach by comparing to principal com-

ponent analysis, nearest neighbors, and Gaussian processes,

and verify that our method produces more plausible results.

Compared to keyframe animation, our method signifi-

cantly reduces the time and cost required to create anima-

tions of non-humanoid characters. In our experiment, our

method uses two hours for a motion capture session, 18

hours for selecting and creating key poses, and 70 minutes

of computation time to generate 18 animations (7 minutes in

total) of three characters, while an animator can spend weeks

to create the same amount of animation by keyframing.

This paper is organized as follows: after reviewing the

related work in Section 2, we present the overview of our

method in Section 3. Sections 4 and 5 describe the two main

components of our approach: the statistical model for map-

ping human poses to characters, and the dynamics optimiza-

tion. Finally, we show the results in Section 6, followed by a

discussion of limitations and future work in Section 7.

2. Related Work

While a number of algorithmic techniques have been de-

veloped for animating human characters, most of them are

not applicable to non-humanoid characters because they as-

sume that the target character has human-like proportions

and topology [LS99, PW99, CK00, SLGS01], An exception

is the work by Gleicher [Gle98], where he extended his mo-

tion retargetting technique to non-humanoid characters by

explicitly specifying the correspondence of body parts in the

original and new characters. Hecker et al. [HRMvP08] de-

scribed an online system for game applications that can map

motions in a motion library to any character created by play-

ers. Although the mapping algorithm is very powerful and

flexible once a motion library is created, the animator has to

annotate the motions in detail.

Baran et al. [BVGP09] developed a method for transfer-

ring deformation between two meshes, possibly with differ-

ent topologies. A simple linear mapping function can gen-

erate plausible meshes for wide range of poses because of

their rotation-invariant representation of meshes. Although

this algorithm is more powerful than ours in the sense that

it handles the character’s mesh directly, working with the

skeleton makes it easier to consider the dynamics and con-

tact constraints.

In theory, Simulation- and physics-based techniques can

handle any skeleton model and common tasks such as loco-

motion and balancing [WK88,LP02, JYL09,MZS09]. How-

ever, they are typically not suitable for synthesizing complex

behaviors with specific styles due to the difficulty in devel-

oping a wide variety of controllers for characters of different

morphologies.

Learning from artists’ input to transfer styles between

characters has been studied in Ikemoto et al. [IAF09]. They

use artists’ input to learn a mapping function based on Gaus-

sian processes from a captured motion to a different char-

acter’s motion. Their method requires that another anima-

tion sequence, edited from the original motion capture data,

is provided to learn the mapping function. Such input gives

much richer information about the correspondence than the

isolated key poses used in our work, but it is more difficult to

edit a full motion sequence using commonly available soft-

ware. Bregler et al. [BLCD02] also developed a method that

transfers a 2D cartoon style to different characters.

Our method employs a statistical model called

shared Gaussian process latent variable models (shared

GPLVM) [ETL07] to map a human pose to a character pose.

Shon et al. [SGHR05] used a shared GPLVM to map human

motion to a humanoid robot with many fewer degrees of

freedom. Urtasun et al. [UFG∗08] developed a method to

incorporate explicit prior knowledge into GPLVM, allowing

synthesis of transitions between different behaviors and

with spacetime constraints. Grochow et al. [GMHP04] used

another extension of GPLVM (scaled GPLVM) to bias the

inverse kinematics computation to a specific style. These

techniques use multiple sequences of motions to learn the

models. In our work, we use a small set of key poses, rather

than sequences, to learn a mapping function that covers a

wide range of behaviors. We believe that it is much easier

for actors and animators to create accurate character poses

than to create appealing motion sequences, and that the

dynamics, or velocity information, can best come from the

actor’s captured motion.

3. Overview

Figure 2 shows an overview of our animation synthesis pro-

cess. The rectangular blocks indicate manual operations,

while the rounded rectangles are automatic operations.

We first capture motions of a trained actor or actress

performing in the style of the target character. We provide

instructions about the capability and characteristics of the

character and then rely on the actor’s talent to portray how

the character would act in a particular situation.

The actor then selects a few key poses among the captured

motion sequences. The poses should be selected so that they

cover and are representative of the space of the poses that

appear in the captured motions. The last task for the actor

is to create a character pose corresponding to each of the

selected key poses. If necessary, an animator can operate a

3D graphics software system to manipulate the character’s

skeleton. This process is difficult to automate because the

actor often has to make intelligent decisions to, for example,

realize the same contact states on characters with completely

different limb lengths. The actor may also want to add poses

that are not possible for the human body, such as an extreme

c© The Eurographics Association 2010.

170

K. Yamane, Y. Ariki, & J. Hodgins / Animating Non-Humanoid Characters with Human Motion Data

capture

actor’s

performance

create character

key poses

select human

key poses
learn

static

mapping

static

mapping

dynamics

optimization

Section 4

Section 5

animation

Figure 2: Overview of the system. Rectangular blocks in-

dicate manual operations and rounded rectangles are pro-

cessed automatically.

back bend for a character that is much more flexible than

humans.

The key poses implicitly define the correspondence be-

tween the body parts of the human and character models,

even if the character’s body has a different topology. The re-

maining two steps can be completed automatically without

any user interaction. First we build a statistical model to map

the human pose in each frame of the captured motion data to

a character pose using the given key poses (Section 4). We

then obtain the global transformation of the poses by match-

ing the linear and angular momenta of the character motion

to that of the human motion (Section 5). In many cases, there

are still a number of visual artifacts in the motion such as

contact points penetrating the floor or floating in the air. We

therefore fine tune the motion by correcting the contact point

positions and improving the physical realism through an op-

timization process taking into account the dynamics of the

character.

4. Static Mapping

We employ a statistical method called shared Gaussian la-

tent variable model (shared GPLVM) [ETL07, SGHR05] to

learn a static mapping function from a human pose to a char-

acter pose. Shared GPLVM is suitable for our problem be-

cause human poses and corresponding character poses will

likely have some underlying nonlinear relationship. More-

over, shared GPLVM gives a probability distribution over the

character poses, which can potentially be used for adjusting

the character pose to satisfy other constraints.

Shared GPLVM is an extension of GPLVM [Law03],

which models the nonlinear mapping from a low-

dimensional space (latent space) to an observation space.

Shared GPLVM extends GPLVM by allowing multiple ob-

servation spaces sharing a common latent space. The main

objective of using shared GPLVM in prior work is to limit

the output space with ambiguity due to, for example, monoc-

ular video [ERT∗08]. Although our problem does not in-

volve ambiguity, we adopt shared GPLVM because we only

have a sparse set of corresponding key poses. We expect that

up

front

local coordinate

Figure 3: The local coordinate frame (shown in solid, red

line) for representing the feature point positions.

there is a common causal structure between human and char-

acter motions. In addition, it is known that a wide variety of

human motions are confined to a relatively low-dimensional

space [SHP04]. A model with a shared latent space would be

an effective way to discover and model the space that repre-

sents that underlying structure.

Our mapping problem involves two observation spaces:

the DY -dimensional human pose space and the DZ-

dimensional character pose space. These spaces are associ-

ated with a DX -dimensional latent space. In contrast to the

existing techniques that use time-series data for learning a

model, the main challenge in our problem is that the given

samples are very sparse compared to the complexity of the

human and character models.

4.1. Motion Representation

There are several options to represent poses of human and

character models. In our implementation, we use the Carte-

sian positions of multiple feature points on the human and

character bodies, as done in some previous work [Ari06].

For the human model, we use motion capture markers be-

cause marker sets are usually designed so that they can well

represent human poses. Similarly, we define a set of virtual

markers for the character model by placing three markers on

each link of the skeleton, and use their positions to represent

character poses.

The Cartesian positions must be converted to a local co-

ordinate frame to make them invariant to global transforma-

tions. In this paper, we assume that the height and roll/pitch

angles are important features of a pose, and therefore only

cancel out the horizontal position and yaw angle. For this

purpose, we determine a local coordinate frame to represent

the feature point positions.

The local coordinate is determined based on the root po-

sition and orientation as follows (Figure 3). We assume that

two local vectors are defined for the root joint: the front and

up vectors that point in the front and up directions of the

model. The position of the local coordinate is simply the

projection of the root location to a horizontal plane with a

constant height. The z axis of the local coordinate points in

c© The Eurographics Association 2010.

171

K. Yamane, Y. Ariki, & J. Hodgins / Animating Non-Humanoid Characters with Human Motion Data

Y Z

human character

key

poses
key

poses

Y Z
motion

capture

mapped

poses

latent space

GPLVM GPLVM

GPLVM GPLVM

mapping

learning

Figure 4: Outline of the learning and mapping processes.

The inputs are drawn with black background.

the vertical direction. The x axis faces the heading direction

of the root joint, which is found by first obtaining the single-

axis rotation to make the up vector vertical, and then apply-

ing the same rotation to the front vector. The y axis is chosen

to form a right-hand system.

For each key pose i, we form the observation vectors yi

and zi by concatenating the local-coordinate Cartesian posi-

tion vectors of the feature points of the human and character

models, respectively. We then collect the vectors for all key

poses to form observation matrices Y and Z. We denote the

latent coordinates associated with the observations by X .

4.2. Learning and Mapping

The learning and mapping processes are outlined in Figure 4,

where the inputs are drawn with a black background. In the

learning process, the parameters of the GPLVMs and the la-

tent coordinates for each key pose are obtained by maximiz-

ing the likelihood of generating the given pair of key poses.

In the mapping process, we obtain the latent coordinates for

each motion capture frame that maximize the likelihood of

generating the given human pose. The latent coordinates are

then used to calculate the character pose using GPLVM.

An issue in shared GPLVM is how to determine the di-

mension of the latent space. We employ several criteria as

detailed in Section 6.2 for this purpose.

4.2.1. Learning

A GPLVM [Law03] parameterizes the nonlinear mapping

function from the latent space to observation space by a ker-

nel matrix. The (i, j) element of the kernel matrix K rep-

resents the similarity between two data points in the latent

space xi and x j, and is calculated by

Ki j = k(xi,x j) = θ1 exp

{

−
θ2

2
||xi − x j||

2

}

+θ3 +β−1δi j

(1)

where Φ = {θ1,θ2,θ3,β} are the model parameters and δ

represents the delta function. We denote the parameters of

the mapping functions from latent space to human pose by

ΦY and from latent space to character pose by ΦZ .

Assuming a zero-mean Gaussian process prior on the

functions that generates the observations from a point in the

latent space, the likelihoods of generating the given observa-

tions are formulated as

P(Y |X ,ΦY) =
1

√

(2π)NDY |KY |DY

exp

{

−
1

2

DY

∑
k=1

y
T
k K

−1
Y yk

}

P(Z|X ,ΦZ) =
1

√

(2π)NDZ |KZ |DZ

exp

{

−
1

2

DZ

∑
k=1

z
T
k K

−1
Z zk

}

where KY and KZ are the kernel matrices calculated using

Eq.(1) with ΦY and ΦZ respectively, and yk and zk denote

the k-th dimension of the observation matrices Y and Z re-

spectively. Using these likelihoods and priors for Φy, Φz and

X , we can calculate the joint likelihood as

PGP(Y ,Z|X ,ΦY ,ΦZ) = P(Y |X ,ΦY)P(Z|X ,ΦZ)

×P(ΦY)P(ΦZ)P(X). (2)

Learning shared GPLVM is essentially an optimization pro-

cess to obtain the model parameters ΦY , ΦZ and latent coor-

dinates X that maximize the joint likelihood. The latent co-

ordinates are initialized using Kernel Canonical Correlation

Analysis (CCA) [Aka01].

After the model parameters ΦZ are learned, we can obtain

the probability distribution of the character pose for given

latent coordinates x by

z̄(x) = µZ +Z
T

K
−1
Z k(x) (3)

σ2
Z(x) = k(x,x)− k(x)T

K
−1
Z k(x) (4)

where z̄ and σ2
Z are the mean and variance of the distribution

respectively, µZ is the mean of the observations, and k(x) is

a vector whose i-th element is ki(x) = k(x,xi).

4.2.2. Mapping

The mapping process starts by obtaining the latent co-

ordinates that correspond to a new human pose using a

method combining nearest neighbor search and optimiza-

tion [ETL07]. For a new human pose ynew, we search for

the key pose yi with the smallest Euclidean distance to ynew.

We then use the latent coordinates associated with yi as the

initial value for the gradient-based optimization process to

obtain the latent coordinates x̂ that maximize the likelihood

of generating ynew, i.e.,

x̂ = argmax
x

P(ynew|x,Y ,X ,ΦY). (5)

The optimization process converged in all examples we have

tested. We use the latent coordinates x̂ to obtain the distribu-

tion of the character pose using Eqs.(3) and (4).

5. Dynamics Optimization

The sequence of poses obtained so far does not include the

global horizontal movement. It also does not preserve the

contact constraints in the original human motion because

they are not considered in the static mapping function.

c© The Eurographics Association 2010.

172

K. Yamane, Y. Ariki, & J. Hodgins / Animating Non-Humanoid Characters with Human Motion Data

Dynamics optimization is performed in three steps to

solve these issues. We first determine the global transforma-

tion of the character based on the linear and angular mo-

menta of the original human motion. We then correct the

contact point positions based on the contact information. Fi-

nally, we improve the physical plausibility by solving an op-

timization problem based on the equations of motion of the

character, a penalty-based contact force model, and the prob-

ability distribution given by the static mapping function.

5.1. Global Transformation

We determine the global transformation (position and orien-

tation) of the character so that the linear and angular mo-

menta of the character match those obtained by scaling the

momenta in the human motion. We assume a global coordi-

nate system whose z axis points in the vertical direction and

x and y axes are chosen to form a right-hand system.

The goal of this step is to determine the linear and angular

velocities, v and ω, of the local coordinate frame defined in

Section 4.1. Let us denote the linear and angular momenta of

the character at frame i in the result of the static mapping by

Pc(i) and Lc(i) respectively. If the local coordinate moves at

v(i) and ω(i), the momenta would change to

P̂c(i) = Pc(i)+ mcv(i)+ ω(i)× p(i) (6)

L̂c(i) = Lc(i)+ Ic(i)ω(i) (7)

where mc is the total mass of the character, p(i) is the the

whole-body center of mass position represented in the local

coordinate, and Ic(i) is the moments of inertia of the char-

acter around the local coordinate’s origin. Evaluating these

equations requires the inertial parameters of individual links

of the character model, which can be specified manually or

automatically from the density and volume of the links.

We determine v(i) and ω(i) so that P̂c(i) and L̂c(i) match

the linear and angular momenta in the original human mo-

tion capture data, Ph(i) and Lh(i), after applying appropriate

scaling to address the difference in kinematics and dynamics

parameters. The method used to obtain the scaling parame-

ters will be discussed in the next paragraph. Given the scaled

linear and angular momenta P̂h(i) and L̂h(i), we can obtain

v(i) and ω(i) by solving a linear equation

(

mcE − [p(i)×]
0 Ic(i)

)(

v(i)
ω(i)

)

=

(

P̂h(i)− P̂c(i)
L̂h(i)− L̂c(i)

)

(8)

where E is the 3× 3 identity matrix. We integrate v(i) and

ω(i) to obtain the position and orientation of the local co-

ordinate in the next frame. In our implementation, we only

consider the horizontal transformation, i.e., linear velocity

in the x and y directions and the angular velocity around the

z axis because the other translation and rotation degrees of

freedom are preserved in the key poses used for learning, and

therefore appear in the static mapping results. We extract the

appropriate rows and columns from Eq.(8) to remove the ir-

relevant variables.

The scaling factors are obtained from size, mass, and in-

ertia ratios between the human and character models. Mass

ratio is sm = mc/mh where mh is the total mass of the human

model. The inertia ratio consists of three values correspond-

ing to the three rotational axes in the global coordinate. To

calculate the inertia ratio, we obtain the moments of inertia

of the human model around its local coordinate, Ih(i). We

then use the ratio of the diagonal elements (six siy siz)
T =

(Icxx/Ihxx Icyy/Ihyy Iczz/Ihzz)
T as the inertia ratio. The size

ratio also consists of three values representing the ratios in

depth (along x axis of the local coordinate), width (y axis),

and height (z axis). Because we cannot assume any topolog-

ical correspondence between the human and character mod-

els, we calculate the average feature point velocity for each

model when every degree of freedom is rotated at a unit ve-

locity one by one. The size scale is then obtained from the

velocities vh for the human model and vc for the character

model as (sdx sdy sdz)
T = (vcx/vhx vcy/vhy vcz/vhz)

T . Us-

ing these ratios, the scaled momenta are obtained as P̂h∗ =
smsd∗Ph∗, L̂h∗ = si∗Lh∗ where ∗ = {x,y, z}.

5.2. Contact Point Adjustment

We then adjust the poses so that the points in contact stay

at the same position on the floor, using the contact states in

the original human motion. We assume that a corresponding

human contact point is given for each of the potential contact

points on the character. Potential contact points are typically

chosen from the toes and heels, although other points may be

added if other parts of the body are in contact. In our current

system we manually determine the contact and flight phases

of each point, although some automatic algorithms [IAF05]

or additional contact sensors may be employed.

Once the contact and flight phases are determined for each

contact point, we calculate the corrected position. For each

contact phase, we calculate the average position during the

contact phase and use its projection to the floor as the cor-

rected position. To prevent discontinuities due to the correc-

tion, we also modify the contact point positions while the

character is in flight phase by smoothly interpolating the po-

sition corrections at the end of the preceding contact phase

∆c0 and at the beginning of the following one ∆c1 as

ĉ(t) = c(t)+ (1−w(t))∆c0 +w(t)∆c1 (9)

where c and ĉ are the original and modified positions respec-

tively, and w(t) is a weighting function that smoothly transi-

tions from 0 to 1 as the time t moves from the start time t0
of the flight phase to the end time t1. In our implementation,

we use w(t) = h2(3− 2h) where h = (t − t0)/(t1 − t0).

c© The Eurographics Association 2010.

173

K. Yamane, Y. Ariki, & J. Hodgins / Animating Non-Humanoid Characters with Human Motion Data

5.3. Optimizing the Physical Realism

Finally, we improve the physical realism by adjusting the

vertical motion of the root so that the motion is consistent

with the gravity and a penalty-based contact model.

We represent the position displacement from the original

motion along a single axis by a set of N weighted radial basis

functions (RBFs). In this paper, we use a Gaussian for RBFs,

in which case the displacement ∆z is calculated as

∆z(t) =
N

∑
i=1

wiφi(t), φi(t) = exp

{

−
(t −Ti)

2

σ2

}

(10)

where Ti is the center of the i-th Gaussian function and σ

is the standard deviation of the Gaussian functions. In our

implementation, we place the RBFs with a constant interval

along the time axis and set σ to be twice that of the interval.

We denote the vector composed by the RBF weights as w =
(wi w2 . . .wN)T .

The purpose of the optimization is to obtain the weights w

that optimize the three criteria: (1) preserve the original mo-

tion as much as possible, (2) maximize the physical realism,

and (3) maximize the likelihood with respect to the distribu-

tion output by the mapping function. Accordingly, the cost

function to minimize is

Z =
1

2
w

T
w+ k1Zp + k2Zm (11)

where the first term of the right hand side tries to keep the

weights small, and the second and third terms address the

latter two criteria of the optimization. Parameters k1 and k2

are user-defined positive constants.

Zp is used to maximize the physical realism and given by

Zp =
1

2

{

(F − F̂)T (F − F̂)+ (N − N̂)T (N − N̂)
}

(12)

where F and N are the total external force and moment re-

quired to perform the motion, and F̂ and N̂ are the external

force and moment from the contact forces.

We can calculate F and N by performing the standard in-

verse dynamics calculation (such as [LWP80]) and extract-

ing the 6-axis force and moment at the root joint.

We calculate F̂ and N̂ from the positions and velocities

of the contact points on the character used in Section 5.2,

based on a penalty-based contact model. The normal contact

force at a point whose height from the floor is z (z < 0 if

penetrating) is given by

fn(z, ż) =
1

2
kP

(

√

z2 +
4 f 2

0

k2
P

− z

)

− kDg(z)ż (13)

g(z) =

{

1− 1
2 exp(kz) (z < 0)

1
2 exp(−kz) (0 ≤ z)

where the first and second terms of Eq.(13) correspond to

the spring and damper forces respectively. When ż = 0, the

asymptote of Eq.(13) is fn = −kPz for z →−∞ and fn = 0

for z → +∞, which is the behavior of the standard linear

spring contact model with spring coefficient kP. The for-

mulation adopted here smoothly connects the two functions

to produce a continuous force across the state space. The

constant parameter f0 denotes the residual contact force at

z = 0 and indicates the amount of error from the linear spring

contact model. The second term of Eq.(13) acts as a linear

damper, except that the activation function g(z) continuously

reduces the force when the penetration depth is small or the

point is above the floor. The spring and damping coefficients

are generally chosen so that the ground penetration does not

cause visual artifacts.

The friction force f t is formulated as

f t(r, ṙ) = µ fnF̂t (14)

F̂t = h(ft0)Ft0

ft0 = ||Ft0||, Ft0 = −ktP(r− r̂)− ktDṙ

h(ft0) =

{

1−exp(−kt ft0)
ft0

(ε < ft0)

kt (ft0 < ε)

where r is a two-dimensional vector representing the con-

tact point position on the floor, r̂ is nominal position of the

contact point, µ is the friction coefficient, kt , ktP and ktD are

user-specified positive constants, and ε is a small positive

constant. Friction force is usually formulated as µ fnFt0/ ft0,

which is a vector with magnitude µ fn and direction Ft0. To

solve the singularity problem at ft0 = 0, we have introduced

the function h(ft0) that approaches 1/ ft0 as ft0 → ∞ and

some finite value kt as ft0 → 0. The optimization is gener-

ally insensitive to the parameters used in Eq.(14).

The last term of Eq.(11), Zm, represents the negative log-

likelihood of the current pose, i.e.,

Zm = −∑
i

logP(zi) (15)

where i denotes the frame number and zi is the position vec-

tor in the observation space formed from the feature points

positions of the character at frame i. Function P(z) gives the

likelihood of generating a given vector z from the distribu-

tion given by Eqs.(3) and (4).

6. Results

We prepared three characters for the tests: lamp, penguin,

and squirrel (Figure 5). The lamp character is an example of

character inspired by an artificial object but yet able to per-

form human-like expressions using the arm and lamp shade

as body and face. The completely different topology and lo-

comotion style from humans make it difficult to animate the

character. The penguin character has human-like topology

but the limbs are extremely short with limited mobility. Al-

though it still does biped walking, its locomotion style is

also very different from humans because of its extremely

short legs. The squirrel character has human-like topology

c© The Eurographics Association 2010.

174

K. Yamane, Y. Ariki, & J. Hodgins / Animating Non-Humanoid Characters with Human Motion Data

Figure 5: Three characters used for the experiment: lamp,

penguin and squirrel.

but may also walk on four legs. The tail is occasionally an-

imated during the key pose creation process, but we do not

extensively animate the tail in the present work.

The software system consists of three components.

• An in-house C++ code library for reading motion capture

data and key poses, converting them to feature point data,

computing the inverse kinematics, and evaluating Zp of

the cost function.

• A publicly available MATLAB implementation

of the learning and mapping functions of shared

GPLVM [Law03].

• MATLAB code for evaluating Zm of the cost function and

performing the optimization using the MATLAB function

lsqnonlin.

The parameters used in the examples are as follows:

• Eq.(11): k1 = 1× 10−5, k2 = 1

• Eq.(13): kP = 1× 104, kD = 1, f0 = 1, k = 20

• Eq.(14): µ = 1, ktP = 0, ktD = 100, kt = 20, ε = 1×10−6

6.1. Manual Tasks

We recorded the motions of a professional actor expressing

six emotions (anger, disgust, fear, happiness, sadness and

surprise) for each of the three characters. Before the mo-

tion capture session, we showed a picture of each character

and verbally explained the kinematic properties (e.g., no or

extremely short legs, may walk on four legs). The capture

session lasted about two hours.

The actor and an animator worked together with a 3D

graphics software system (Maya) to select key poses from

the motion capture data and create corresponding poses for

the characters. Some of the key poses are shown in the sup-

plemental movie. It took 18 hours in total to select and create

115 key poses from 18 motion sequences, which averaged

approximately 9 minutes per pose. The average interval be-

tween key poses in the motions is 3.6 seconds, which is ob-

viously much longer than the interval in standard keyframe

animations. Table 1 summarizes the statistics of the data ob-

tained through this process.

Table 1: Statistics of the measured and created data. Each

column shows the duration of the sequence in seconds (left)

and the number of key poses selected from each sequence

(right).

emotion lamp penguin squirrel

anger 18.6 16 14.3 3 22.9 14

disgust 34.4 1 23.3 7 20.0 3

fear 29.7 2 25.2 4 28.5 18

happiness 20.1 7 23.7 11 25.8 9

sadness 19.5 3 29.6 4 26.7 3

surprise 10.7 1 26.1 4 19.2 5

total 133 30 142 33 143 52

6.2. Static Mapping

We trained a shared GPLVM for each character using the

key poses created by the actor and animator. An issue in us-

ing GPLVM is how to determine the dimension of the latent

space, DX . We use two criteria to determine DX .

The first criteria is the error between the given and

mapped character key poses. The error improved by increas-

ing DX up to 15 but did not improve much more at DX > 15.

We also found that 70 iterations is enough for optimizing the

model parameters.

Another desired property is that the character motion be-

comes continuous when the human motion is continuous.

Figure 6 shows the first two dimensions of the trajectories

in the latent space when a human motion capture sequence

(happy lamp) is input to the models when we used 2, 15

and 30 dimensional spaces. The 2-dimensional space, often

used in the literature, is obviously not enough to describe the

wide range of postures found in our data set. Although a 15-

dimensional space is enough to reconstruct the training data,

the trajectory in the latent space is still jerky and results in

unnatural jumps in the character motion. We therefore use a

30-dimensional space for all examples.

The first and second columns of Figure 7 show snapshots

of the original human poses and the results of static mapping.

Note that the character stays above a fixed point on the floor

because the horizontal movement has been removed from

the key poses before learning the mapping function.

6.3. Dynamics Optimization

The third to fifth columns of Figure 7 depict the results of

each step in the dynamics optimization process. First, a hor-

izontal movement is attached to the mapped poses as shown

in the third column. The contact point positions are corrected

using the contact state information in the human motion as

shown in the fourth column. Finally, an optimization process

takes place to add physical realism to the motion and the re-

sult shown in the last column is obtained.

c© The Eurographics Association 2010.

175

K. Yamane, Y. Ariki, & J. Hodgins / Animating Non-Humanoid Characters with Human Motion Data

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

x1

x
2

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

x1

x
2

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

x
2

x1

Figure 6: Trajectories in the latent space when a human motion capture sequence is input to the model, projected to the first

two dimensions of the latent space. From left to right: 2-, 15- and 30-dimensional latent spaces. The trajectory is represented

by a line with triangles that denote the latent coordinates of individual frames. The (green) circles represent the key poses from

the same motion sequence as the trajectory, and (red) crosses are the key poses from other motions.

Figure 7: Results from each step. From left to right: original human motion, after the static mapping, after adding horizontal

movement based on the momentum, after correcting the contact point positions, and after adding physical realism.

We show some of the numerical results during this pro-

cess. Figure 8 shows the scaled human momentum and char-

acter momentum in the forward direction. The two graphs

in Figure 9 show the required contact force (calculated by

inverse dynamics) and the contact force from the contact

model. The left and right graphs denote the forces before

and after the optimization. The optimization algorithm tries

to match the two forces by modifying the trajectory, which

changes both the required and actual contact forces.

6.4. Examples

We show additional examples of the synthesized animations

in the supplemental movie.

We compare shared GPLVM with the following mapping

techniques:

• Principal component analysis and linear mapping (PCA):

We obtain the 30-dimensional spaces that contain human

and character key poses using principal component anal-

ysis, and then obtain a linear mapping between the two

low-dimensional spaces.

• Linear interpolation of nearest neighbors (NN): We find

the N nearest key poses using the Cartesian distance of

the vector composed of human marker data, and obtain the

weighted sum of the character feature point data where the

weight is inversely proportional to the distance. We have

tested with N = 3 (NN3) and N = 10 (NN10).

• Gaussian Process (GP): We obtain the Gaussian process

model that maximizes the likelihood of generating the

character key poses from the human key poses. We then

use the mean of the distribution obtained by each motion

capture data frame as the output of the model.

We use the happy lamp example and the mapped motions are

processed by the dynamics optimization algorithm to obtain

the final results.

Simple models (PCA and NN) cannot effectively model

the nonlinear relationship between the human and charac-

ter pose spaces with sparse examples. NN works better es-

pecially with 10 neighbors but does not generalize well

c© The Eurographics Association 2010.

176

K. Yamane, Y. Ariki, & J. Hodgins / Animating Non-Humanoid Characters with Human Motion Data

0 1 2 3 4 5

0

50

100

150

200

250

time (s)

m
o

m
e

n
tu

m
 (

k
g

m
/s

)

Figure 8: Example of linear momentum in the forward direc-

tion; dashed (blue): scaled human momentum, solid (red):

character’s momentum after adding the horizontal move-

ment.

0 0.5 1 1.5 2 2.5 3 3.5 4
−50

0

50

100

150

200

250

time (s)

v
e
rt
ic
a
l
c
o
n
ta
c
t
fo
rc
e
 (
N
)

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

200

300

400

500

600

time (s)

v
e
rt
ic
a
l
c
o
n
ta
c
t
fo
rc
e
 (
N
)

Figure 9: Example of vertical contact force before (left) and

after (right) optimization; dashed (blue): required contact

force from inverse dynamics, solid (red): actual contact force

from contact model.

enough. The GP model produces results similar to the shared

GPLVM, but slightly less dynamic. This issue could be fixed

by applying the dynamics optimization to many DOFs but it

may significantly modify the actor’s original intention.

We also test the effect of the number of key poses by using

GP and shared GPLVM learned from fewer key poses. We

use the lamp model and remove the seven key poses from

the happy motion for learning, and synthesize the happy

lamp motion. Neither models can predict the extreme poses

during the first high jump, which is expected because we

do not have any example close to that pose. However, the

shared GPLVM seem to have better generalization capabil-

ity in terms of jump heights and head directions as demon-

strated in the movie.

We also show an example generated by the retargeting

function of Maya. Although the motion preserves some of

the characteristics of the human motion, the fine details, es-

pecially the pose-specific correspondences, are lost.

Finally, the video shows several examples of the synthe-

sized motions. The first three clips show some of the emo-

tional motions to demonstrate that the original expression is

successfully transferred to character motions. The last three

clips show dance motions of the three models. The lamp

and penguin dances are synthesized using only the key poses

shown in Table 1, while we provided six more key poses to

synthesize the squirrel dance.

7. Discussion

The basic idea of this approach is to leverage the creativity

of actors in imagining how non-humanoid characters should

move, in contrast to the current standard animation proce-

dure where animators have creative control via 3D graphics

software. Utilizing human performance can potentially dras-

tically reduce the time required for creating animations be-

cause human performances are completed in real time. The

use of motion capture also opens up a second pool of talent

as actors are skilled at using their bodies to tell a story or

convey an emotion. The problem with non-humanoid char-

acters is that we have to map human motion to characters

with significantly different proportions or topologies, which

is the main technical contribution of this paper.

We tested our algorithm on three characters with different

levels of similarity to humans. Although the squirrel model

is the closest to humans in terms of the proportions and mo-

bility, motions of the lamp and penguin models look more

plausible and expressive. We hypothesize that this result oc-

curs because the set of key poses for the squirrel model is

not sufficient to cover its wide range of motion, and because

viewers do not expect as much expression from the simple

bodies of the lamp and penguin.

Our current system has several limitations. First, we as-

sume that the key poses cover a sufficiently wide variety of

poses that the character may take, relying on human intu-

ition to select an appropriate set of key poses. In our exper-

iments, the actor provided additional key poses for frames

that looked particularly bad in the mapping results gener-

ated by the initial set of key poses. It might also be possible

to provide an interface that indicates less covered areas us-

ing, for example, the variation map shown in Figure 6, or

clustering the human poses in the motion capture data.

Our system currently does not consider the geometry of

the character. This issue can be partially addressed during

the key pose creation step by adjusting the character’s poses

so that they do not cause collisions in the body. However, we

cannot avoid collisions if they happen between the key poses

or with external objects, as shown in some of the examples.

Another limitation is that we cannot animate limbs that do

not exist in the human body, such as the squirrel’s tail. This

issue can be handled by attaching a physical, controllable

limb to the subject, or by manipulating the additional limb

in the key pose creation step.

A few directions remain for future work. Combining this

approach with a motion planning algorithm would be essen-

tial to avoid collisions within the body or the environment

c© The Eurographics Association 2010.

177

K. Yamane, Y. Ariki, & J. Hodgins / Animating Non-Humanoid Characters with Human Motion Data

because non-humanoid characters often have different ge-

ometry. We could take advantage of the probability distribu-

tion given by the mapping function by, for example, modi-

fying less confident poses for collision avoidance.

Observing the process of creating key poses revealed

some possible interfaces for the task. For example, the ani-

mator always started by matching the orientation of the char-

acter’s root joint to that of the human. Another common op-

eration was to match the direction of the faces. These oper-

ations can be easily automated and potentially speed up the

key pose creation process. Determining poses of limbs and

trunk, on the other hand, seems to require high-level reason-

ing that is difficult to automate.

The current algorithm is not realtime due to the optimiza-

tion process. For appliactions that does not require physi-

cal consistency, we can omit the last step in Section 5 and

synthesize motions in realtime because the first two steps

are sufficiently fast. Realtime synthesis would open up some

interesting applications such as interactive performance of

non-humanoid characters by teleoperation. Currently such

performances are animated by selecting from prerecorded

motion sequences and therefore the variety of responses is

limited. A realtime version of our system would allow much

more flexible interaction.

Acknowledgements

Yuka Ariki was at Disney Research, Pittsburgh when she did

the work. The authors would like to thank the following in-

dividuals for their help: Joel Ripka performed the three char-

acters for the motion capture session and created the key

poses; Justin Macey managed the motion capture session

and cleaned up the data; Moshe Mahler created the character

models, helped with the key pose creation process, and ren-

dered the final animations and movie. Also thanks to Leon

Sigal for advices on statistical models.

References

[Aka01] AKAHO S.: A kernel method for canonical correla-
tion analysis. In International Meeting of Psychometric Society
(2001).

[Ari06] ARIKAN O.: Compression of motion capture databases.
ACM Transactions on Graphics 25, 3 (2006), 890–897.

[BLCD02] BREGLER C., LOEB L., CHUANG E., DESHPANDE

H.: Turning to the masters: Motion capturing cartoons. ACM

Transactions on Graphics 21, 3 (2002), 399–407.

[BVGP09] BARAN I., VLASIC D., GRINSPUN E., POPOVIĆ J.:
Semantic deformation transfer. ACM Transactions on Graphics
28, 3 (2009), 36.

[CK00] CHOI K., KO H.: Online Motion Retargetting. The Jour-

nal of Visualization and Computer Animation 11 (2000), 223–
235.

[ERT∗08] EK C. H., RIHAN J., TORR P. H. S., ROGEZ G.,
LAWRENCE N. D.: Ambiguity modeling in latent spaces. In
Workshop on Machine Learning and Multimodal Interaction

(2008), pp. 62–73.

[ETL07] EK C. H., TORR P. H. S., LAWRENCE N. D.: Gaus-
sian process latent variable models for human pose estimation.
In Workshop on Machine Learning and Multimodal Interaction

(2007), pp. 132–143.

[Gle98] GLEICHER M.: Retargetting Motion to New Characters.
In Proceedings of SIGGRAPH ’98 (1998), pp. 33–42.

[GMHP04] GROCHOW K., MARTIN S., HERTZMANN A.,
POPOVIĆ Z.: Style-based inverse kinematics. ACM Transactions

on Graphics 23, 3 (2004), 522–531.

[HRMvP08] HECKER C., RAABE B., MAYNARD J., VAN

PROOIJEN K.: Real-time motion retargeting to highly varied
user-created morphologies. ACM Transactions on Graphics 27,
3 (2008), 27.

[IAF05] IKEMOTO L., ARIKAN O., FORSYTH D.: Knowing
when to put your foot down. In Proceedings of Symposium on
Interactive 3D Graphics and Games (2005).

[IAF09] IKEMOTO L., ARIKAN O., FORSYTH D.: Generaliz-
ing motion edits with gaussian processes. ACM Transactions on

Graphics 28, 1 (2009), 1.

[JYL09] JAIN S., YE Y., LIU C.: Optimization-based interactive
motion synthesis. ACM Transactions on Graphics 28, 1 (2009),
10.

[Law03] LAWRENCE N. D.: Gaussian process latent variable
models for visualisation of high dimensional data. In Advances
in Neural Information Processing Systems (NIPS) (2003).

[LP02] LIU C. K., POPOVIĆ Z.: Synthesis of Complex Dynamic
Character Motion from Simple Animations. ACM Transactions

on Graphics 21, 3 (2002), 408–416.

[LS99] LEE J., SHIN S.: A Hierarchical Approach to Interactive
Motion Editing for Human-like Figures. In Proceedings of ACM

SIGGRAPH ’99 (Los Angeles, CA, 1999), pp. 39–48.

[LWP80] LUH J., WALKER M., PAUL R.: Resolved Accelera-
tion Control of Mechanical Manipulators. IEEE Transactions on

Automatic Control 25, 3 (1980), 468–474.

[MZS09] MACCHIETTO A., ZORDAN V., SHELTON C.: Momen-
tum control for balance. ACM Transactions on Graphics 28, 3
(2009).

[PW99] POPOVIĆ Z., WITKIN A.: Physically Based Motion
Transformation. In Proceedings of SIGGRAPH ’99 (Los Ange-
les, CA, 1999), pp. 11–20.

[SGHR05] SHON A. P., GROCHOW K., HERTZMANN A., RAO

R. P. N.: Learning shared latent structure for image synthesis and
robotic imitation. In Advances in Neural Information Processing
Systems (NIPS) (2005).

[SHP04] SAFONOVA A., HODGINS J., POLLARD N.: Synthe-
sizing physically realistic human motion in low-dimensional,
behavior-specific spaces. ACM Transactions on Graphics 23, 3
(2004), 514–521.

[SLGS01] SHIN H., LEE J., GLEICHER M., SHIN S.: Computer
puppetry: an importance-based approach. ACM Transactions on

Graphics 20, 2 (2001), 67–94.

[UFG∗08] URTASUN R., FLEET D., GEIGER A., POPOVIC J.,
DARRELL T., LAWRENCE N.: Topologically-constrained latent
variable models. In Proceedings of the 25th International Con-

ference on Machine Learning (2008), pp. 1080–1087.

[WK88] WITKIN A., KASS M.: Spacetime constraints. ACM

SIGGRAPH Computer Graphics 22, 4 (1988), 159–168.

c© The Eurographics Association 2010.

178

