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Abstract
We present a new framework for interactive shape deformation modeling and key frame interpolation based on a
meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate
rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive
frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal dis-
placements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework
for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the
presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex
shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and
interpolate deforming 3D shapes.

1. Introduction

Deformable shapes are used extensively in physics-based
simulations for the animation of elastic and plastic solids.
Although recent advances allow for interactive simulations,
controlling the behavior of the deforming objects (for ex-
ample by tweaking the physical forces) is difficult and the
desired result is often only obtained after many iterations
using trial and error. Instead of resorting to physics-based
simulations, one could also explicitly model the poses of
the deformable object at certain keyframes and interpolate
a smooth motion in between (cf. Fig. 1). In many situations,
such an approach accelerates the modeling process of an an-
imated scene while quickly producing plausible behavior.

In this paper, we propose a shape modeling framework based
on a meshless finite element formulation that allows efficient
and realistic deformation modeling of complex shapes. From
a coarse set of strategically placed sample points, called
nodes, we compute a continuous deformation field that ad-
equately represents the desired shape deformation. The op-
timized deformation field respects the original shape in the
sense that it prefers locally rigid and volume preserving de-
formations.

Based on the shape modeling algorithm, we present a novel
animation modeling framework that, given a few keyframe
poses of the possibly deformed shape, computes a smooth
and plausible trajectory that defines how the shape deforms
and moves over a specified time interval. At every time in-
stance, the shape is guaranteed to be realistically deformed

Figure 1: Our method allows rapid modeling of deformable shapes
and their motion. Left: keyframe poses obtained using our deforma-
tion algorithm. Right: smooth interpolated motion obtained using
our shape interpolation algorithm.

using the same constraints as above. Moreover, we show
how collisions between the deforming shape and obstacles
can be easily avoided. To maintain interactive modeling, we
propose an adaptive temporal sampling strategy that keeps
the number of unknowns low by only introducing computa-
tional frames at problematic time instances and interpolating
a smooth motion in between.

Contributions We design a method for deforming highly
complex shapes in real-time with guaranteed first-order ac-
curacy of the interpolated deformation field. For this pur-
pose, we extend existing work on meshless finite elements
by introducing a novel coupling of nodes based on material
distance. We then extend this deformation module to an an-
imation modeling framework through highly efficient shape
interpolation. By using our deformation field interpolation
and only introducing frames in problematic areas, we greatly
reduce the number of unknowns to be solved for. This al-
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lows to create long and complex animation sequences. The
key to efficiency is the decoupling of geometry and deforma-
tion and the use of specialized spatial and temporal sampling
algorithms that introduce an adequate but low number of de-
formation handles in critical frames.

1.1. Related Work
This paper is related to a large body of work in geomet-
ric shape modeling, inverse kinematics, shape interpolation,
motion planning, animation control, and meshless finite ele-
ments. We limit the discussion to the most relevant work in
these areas.

Shape Modeling The core component of this paper is a
deformation algorithm that allows to realistically deform a
shape by specifying handle constraints. This problem has
received considerable attention in recent literature. In the
following we summarize the most closely related work and
refer to [NMK∗05, BS08] for an extensive survey on other
deformation models.

A number of related methods perform shape deforma-
tions by direct mesh optimization such as [SK04, SYBF06,
LSCO∗04, SLCO∗04]. The underlying motivation of these
methods is to explicitly preserve the local shape properties
while applying user-specified deformations. In a conceptu-
ally similar way, inverse-kinematics based methods restrict
the space of natural deformations by either exploring the set
of example poses [SZGP05] or by inferring the deforma-
tions on the skeleton structure of the shape [SZT∗07]. Al-
though mesh-based methods give a high degree of freedom
in manipulating the shape, they suffer from the restrictive
complexity of constraining and estimating per-vertex defor-
mations. Multiresolution methods such as [BK03, SYBF06,
BSS07] have been designed to improve efficiency.

Motivated by the intuition that in many scenarios, shape
deformations can be encoded using only a few motion pa-
rameters, researchers have proposed techniques that use de-
formable models with a significantly reduced dimensionality
as compared to the full geometric complexity (e.g., [JP02,
JT05, DSP06, AFTCO07]). In this paper we use a reduced
space deformation technique that allows computing long an-
imation sequences for highly detailed deformable shapes.
Of the large body of work in this area, the most immedi-
ately pertinent are [BPGK06] in which a prism based shell
energy is formulated and solved efficiently, and [BPWG07]
where a similar elastic energy is extended to rigid volumetric
cells. Although the latter provides a simplified deformation
field, it is both topology unaware and employs an interpo-
lation scheme that results in solving a large sparse linear
system making it prohibitively slow in our setting. Huang
et al. [HSL∗06] present a gradient domain mesh deforma-
tion technique that preserves volume and rigidity of limb
segments of articulated figures. They propose a subspace
technique by solving the problem on a control mesh. Some-
what differently, Funck et al. [vFTS06] design a set of vector

field based deformation tools that guarantee non-intersecting
and volume-preserving shape deformations. Their system
seems to be more geared towards model creation as op-
posed to shape deformations. Our work is most similar in
spirit to [SSP07] where the deformation field is discretized,
solved for and interpolated using a sparse topology graph.
Although we use a similar paradigm, we avoid estimating
the rotation and translation components of the deformation
field separately, and employ an interpolation scheme which
guarantees first-order consistency. Moreover, our method in-
troduces less unknowns for the same number of nodes. Fi-
nally, Stoll [Sto07] presents a tetrahedral deformation ap-
proach that iterates between a linear Laplacian step and a
differential update step. Again, their deformation interpola-
tion method is not guaranteed to be consistent.

Note that our deformation algorithm is also related to work
that uses barycentric-like coordinates to interpolate the de-
formation field inside a coarse control mesh (see [FKR05,
LKCOL07, JMD∗07] for different flavors). Unlike these
methods, however, we restrict the space of possible defor-
mations to only include realistic, shape-preserving deforma-
tions. This facilitates the animator’s task and allows intuitive
shape modeling by only constraining or dragging points on
the shape itself, without having to model and deform a cage.

Motion Modeling The second part of this paper is con-
cerned with computing realistic deformable shape motions.
Typically, these are obtained by controlling or modifying
existing solutions obtained from a physics-based simula-
tion algorithm (e.g., [WP95, PSE∗00, PSE03] for rigid and
[KKiA05, XZY∗07] for deformable shapes). Such methods
often require repeated simulations and adjustments using
trial and error to obtain the required result. However, rather
than modifying existing animations, our aim is to create an
intuitive and interactive algorithm that computes the desired
motions just from specifying a few keyframe poses. This
problem was recently tackled by Hofer et al. [HPR04,Hof04]
for rigid bodies by using curve design algorithms.

Finding motion paths for deformable objects is also related
to morphing or shape interpolation where a smooth plau-
sible deformation is computed interpolating two keyframe
poses. A number of papers has considered this problem (e.g.,
[ACOL00, XZWB05, SK04, KMP07]). However, all these
methods depend on the mesh or geometric complexity and
are hence computationally expensive for long sequences in-
volving detailed objects. Furthermore, none of them provide
results for smooth deformable motion interpolation involv-
ing multiple keyframes in the presence of obstacles.

Meshless Finite Elements Our deformation representa-
tion is based on classical meshless finite elements (see
[FM03] for a good overview), that were recently introduced
in computer graphics for physically based animations (e.g.,
[MKN∗04, PKA∗05, GQ05, GP07]). We use a similar for-
mulation as [MKN∗04], but solve the inverse problem of
computing the deformation field from given position con-
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straints. Moreover, in the work of [MKN∗04] nodes are cou-
pled based on Euclidean distance, which does not allow ad-
equate deformation modeling for nearby, but separated fea-
tures (e.g. two adjacent fingers in a hand model). This prob-
lem was addressed by Pauly et al. [PKA∗05] for the simula-
tion of fracturing materials by using a visibility driven trans-
parency criterion [OFTB96]. However, this method only al-
lows separating parts cut by a crack surface and does not
allow defining an appropriate nodal coupling for general
shapes. To resolve these problems, we propose a novel algo-
rithm that defines an adequate nodal coupling by using dis-
tances within the material that can be efficiently computed
using a fast marching method [Set99]. This allows proper de-
formation modeling with the flexibility of traditional mesh-
less algorithms such as easy sampling and a smooth and con-
sistent deformation field representation.

We have used a similar deformation representation and op-
timization method in the context of reconstructing non-rigid
shape and motion from 3D scanner data [WAO∗08]. Apart
from the different application, this paper presents an efficient
GPU-based mesh deformation algorithm, improved and new
motion modeling constraints, a different nodal sampling and
coupling algorithm and, finally, a novel adaptive time dis-
cretization and interpolation scheme to reduce the computa-
tional cost.

1.2. Overview
We first describe the meshless shape function approximation
theory in Sec. 2 that allows to reconstruct continuous func-
tions with the desired order of consistency from values sam-
pled at irregularly distributed points. It will form the basis
of our shape deformation and motion planning framework.
Next, in Sec. 3 we present our method to model realistic
shape deformations. In Sec. 4, we add the time dimension
and describe how the framework of Sec. 3 can serve as the
basis for a motion planning algorithm for deformable ob-
jects. Sec. 5 gives details on the numerical solver. Sec. 6
concludes the paper with a discussion of the obtained results.

2. Meshless Shape Functions
Our deformation framework solves for the unknown defor-
mation field at discrete points in space and time. In order to
reconstruct a continuous deformation field, we use meshless
shape functions that can be constructed to guarantee any or-
der of desired consistency, independently of the underlying
(possibly irregular) sample spacing. We briefly discuss the
construction of these shape functions. For a more in-depth
derivation and discussion, we refer to [FM03].

Given N discrete sample points xi ∈Rd and associated func-
tion values fi ∈ R, we wish to retrieve the continuous func-
tion f (x) : Rd 7→ R that approximates the function the sam-
ples are taken from. We additionally require the approxima-
tion to reconstruct functions up to order n exactly. As shown
in [FM03], one can derive shape functions Φi(x) : Rd 7→ R

associated with each sample point xi that yield the desired
approximation f (x) of the form

f (x) =
N

∑
i=1

Φi(x) fi. (1)

Given a complete polynomial basis p(x) of order n (for ex-
ample for d = 3 and n = 1 we have p(x) = [1 x y z]T , with
x = [x y z]T ), the shape functions are defined as

Φi(x) = pT (x)[M(x)]−1wi(x)p(xi). (2)

Here we use the compactly supported weight functions
wi(x) = max(0,(1−d2(x,xi)/r2

i )3) that smoothly decay
with increasing distance d(x,xi), where ri is the support ra-
dius associated to the sample point xi. The matrix M(x) is
called a moment matrix and is defined as

M(x) =
N

∑
i=1

wi(x)p(xi)pT (xi). (3)

By using compactly supported weight functions, the summa-
tion in Eq. 1 can be limited to all sample points xi s.t. wi(x) >
0. Note that the shape functions only depend on the discrete
sample points xi and not on the associated function values
fi. Hence, given a fixed sampling, the shape functions can
be reused to approximate any function.

The derivative of Eq. 1 to the k-th component of x, is ob-
tained as

∂ f (x)
∂x(k)

=
N

∑
i=1

∂Φi(x)
∂x(k)

fi, (4)

where ∂Φi(x)/∂x(k) can be computed from Eq. 2 using the
product rule and by using the fact that ∂(M−1)/∂x(k) =
−M−1(∂M/∂x(k))M

−1 with ∂M/∂x(k) obtained from
Eq. 3. As will be discussed below, Eq. 4 will be used to
constrain the shape deformations to be locally rigid and
volume preserving, to deform the shape’s surface normals
and to constrain the shape’s velocity. Similarly, second-order
derivatives can be computed [FM03] that will be used to con-
strain the shape’s acceleration.

Note that Müller et al. [MKN∗04] present a different method
to compute derivatives. Their approach only allows com-
puting derivatives at sample points xi, as opposed to Eq. 4
that allows evaluation at general positions x. Moreover, their
derivative approximation is only first-order accurate, while
Eq. 4 presents an exact analytic formula for the derivatives
of the function f (x).

3. Shape Deformations
In this section we propose an efficient representation and op-
timization strategy to realistically deform complex shapes.
We will use the above defined shape function approxima-
tion from the meshless finite element literature to efficiently
represent a shape’s deformation field. Using this representa-
tion, we define energy terms that penalize non-rigid defor-
mations and changes in the shape’s volume, while enforcing
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u(x)

Figure 2: The goal is to find the deformation field u(x) that deforms
the shape in the desired way. We represent this field at discrete nodes
xi and use meshless shape functions to approximate the deformation
field over the whole shape as u(x) = ∑i Φi(x)ui, where the displace-
ment vectors ui are the unknowns we will solve for.

the user’s input constraints. We propose a novel nodal sam-
pling algorithm and define the nodal coupling based material
distances to ensure adequate deformation modeling. The re-
sulting deformation framework can be used to interactively
model complex shapes. It will also serve as the core com-
ponent in the deformable keyframe interpolation and motion
planning framework that we will discuss in the next section.

3.1. Deformation Field Representation
The object’s shape is sampled using a coarse set of nodes (we
will discuss our sampling algorithm in Sec. 3.3). The dis-
placements of these nodes will completely define the shape’s
deformation. Given a set of N nodes xi ∈ R3 with support
radii ri and deformations ui ∈ R3, the continuous deforma-
tion field is defined using Eq. 1 as (see also Fig. 2)

u(x) =
N

∑
i=1

Φi(x)ui. (5)

We use a complete linear basis of order n = 1 (p(x) =
[1 x y z]T , and x = [x y z]T ) in the shape function con-
struction. This allows us to reconstruct rigid motions exactly.
Eq. 5 maps every point x in the undeformed shape to its im-
age x+u(x) in the deformed shape. For ease of notation we
will denote this mapping as

f(x) = x+u(x). (6)

Given the above formulation, our goal is to find the nodal
displacement vectors ui so that the resulting continuous de-
formation field u(x) (or equivalently f(x)) fulfills desirable
properties. In the following we will define these goal prop-
erties and show how ui can be found using an energy mini-
mization procedure. Note first that, because the shape func-
tions are not interpolating, the nodal displacement vectors
ui are in general not equal to the actual deformations u(xi)
evaluated at the node positions (ui 6= u(xi)). The former are
hence often called fictitious displacements, while the latter
are the real nodal displacements.

3.2. Deformation Field Optimization
We wish to find a continuous deformation field f(x) = x +
u(x) that maps the shape to its deformed pose while satisfy-
ing following constraints (see also Fig. 3).

Figure 3: Illustration of the effect of the different shape modeling
constraints. Left: handle constraints are specified to fix the bottom
of the box and to move the top to the desired position. Middle: with
only the rigidity constraint the total volume is increased by 53%.
Right: the total volume remains within 3% of the original when the
volume constraint is added.

Handle Constraints Handle constraints restrict the move-
ment of certain points of the shape. For example, the user
may want to fix the legs while pulling one of the arms of the
model to deform its shape. Thus, a handle constraint simply
states that the deformation field f(xk) should move a given
point xk to a prescribed target position x′k. Given a set of K
handle constraints (xk,x′k), we will minimize:

Ehandle =
K

∑
k=1

‖f(xk)−x′k‖
2. (7)

Rigidity The deformation field is completely rigid if at
all points ∇fT (x)∇f(x) = I, where ∇ = (∂/∂x,∂/∂y,∂/∂z).
Hence, to obtain as-rigid-as-possible shape deformations,
we will minimize:

Erigidity =
Z

x∈V
‖∇fT (x)∇f(x)− I‖2

F dx, (8)

where the integration is over the (undeformed) shape’s vol-
ume V and ‖ · ‖F is the Frobenius norm. To facilitate op-
timization, we will only penalize non-rigid behavior at the
nodal positions. This leads to the discretized equation

Erigidity =
N

∑
i=1

Vi‖∇fT (xi)∇f(xi)− I‖2
F . (9)

Here, ∇f(x) = I +∇u(x), where ∇u(x) is computed using
the analytic derivative formula of Eq. 4. The scaling by the
node volume Vi = 4/3πr3

i can be omitted when using uni-
form node radii (ri = r). In the following we will directly
write down the discretized equation (cf. Eq. 9) and leave out
the continuous one (cf. Eq. 8) for the sake of brevity.

Volume Preservation The deformation field preserves the
shape’s volume if and only if det(∇f(x)) = 1 over the whole
shape. Thus, the deformed shape’s volume matches its orig-
inal volume as closely as possible if we minimize

Evolume =
N

∑
i=1

Vi(det(∇f(xi))−1)2. (10)

The optimal deformation field f(x) can now be found by
minimizing the total sum of constraint energies:

E = λ1Ehandle +λ2Erigidity +λ3Evolume, (11)

where the parameters λ1, λ2 and λ3 vary the contribution of
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Figure 4: Topology aware nodal sampling of the shape’s interior.
Left: the set of candidate points consists of the mesh vertices and
a dense set of interior grid points. Middle: nodes are created itera-
tively by picking the point furthest away from all previously created
nodes. A grid-based fast marching method is used to compute dis-
tances within the shape. The figure shows the first node and its in-
fluence region. Right: the resulting nodal coupling adequately sep-
arates parts that are close in Euclidean distance, but far in topolog-
ical sense such as the legs in the picture.

each of the different constraints. It can be easily seen from
Eq. 7, 9 and 10 that E is a multivariate polynomial of total
degree 6 in the unknowns (the fictitious nodal displacements
ui). Minimizing Eq. 11 hence requires a non-linear solver.
Note however, that taking analytic derivatives with respect
to the unknowns is straightforward.

3.3. Nodal Sampling & Coupling
Given a sampling of the object with N nodes, there are 3N
unknowns in the deformation optimization procedure. Our
goal is to keep this number as low as possible, while al-
lowing realistic shape deformations. When using a coarse
set of nodes, it is however important to appropriately define
the nodal influence regions (i.e., the non-zero extent of the
weight functions wi(x) in Eq. 2). Simply using Euclidean
distances could possibly introduce undesirable artifacts (for
example, a node in one leg of a human would incorrectly in-
fluence the other leg). In this section we propose a fast nodal
sampling algorithm that strategically covers the shape with a
low number of nodes while guaranteeing appropriate nodal
coupling.

The sampling algorithm creates nodes from a set of candi-
date points defined as the union of the mesh vertices and a
dense set of interior grid points (see Fig. 4, left). It itera-
tively picks the point xi from this set that is furthest away
from the already created nodes xi−1, xi−2,. . . , x0 until the
whole shape is sufficiently covered (the first node is picked
randomly). The distance d(x,xi) to the node xi is computed
within the shape by solving the Eikonal equation using a
grid-based fast marching method [Set99] (see also the mid-
dle image in Fig. 4). This distance represents the material
distance and corresponds to the length of the shortest path
from x to xi without leaving the shape. Using this distance in
the weight function wi(x) to define the nodal shape functions
(Eq. 2) ensures that nodes influence the appropriate regions.
As noted above, this allows adequate modeling of shape de-
formations with nearby features such as the fingers of a hand,
or the legs of a human.

Figure 5: Nodal sampling for the dragon model. The right image
shows the coupling of the nodes as their shortest connecting paths
within the dragon. The lengths of these paths are computed using a
fast marching algorithm and are used in the shape function compu-
tations. Note that this results in a nodal coupling that respects the
topology of the object.

To guarantee non-singular moment matrices (cf. Eq. 3), ev-
ery point x in the shape has to be within the support radius
of at least 4 non-planar nodes. In the current implementation
we prescribe a uniform nodal influence radius ri = r. During
node creation we count for each of the original dense candi-
date points the number of covering nodes, i.e., those nodes
xi that are within a material distance ri. The sampling algo-
rithm ends if every point is covered by at least 4 non-planar
nodes. The proposed strategy results in a roughly uniform
and sufficiently dense nodal sampling.

Note that the fast marching algorithm does not return exact
distances. However, it is consistent, in the sense that it con-
verges to the true distances if the grid resolution is increased.
Moreover, the computed approximate distances are continu-
ous, which guarantees smooth shape and surface deforma-
tions. Because the nodal sampling and coupling is computed
in a preprocessing step and does not change during interac-
tion, performance is not a real issue. Typical samplings take
in the order of 1 to 5 seconds.

Fig. 5 shows the resulting sampling for the dragon.

3.4. Surface Deformation
Deforming the shape’s surface in our framework can be done
in a straightforward and very efficient manner. In a prepro-
cessing step, we compute for each mesh vertex x the set of
nodes that have non-zero support at the vertex. Given these
nodes, the shape functions Φi(x) and the gradient of the
shape functions∇Φi(x) are computed using Eq. 1 and Eq. 4
respectively. This computation is only done once before be-
ginning a modeling session. During modeling, the deformed
vertex position x′ is computed using Eq. 6 as x′ = f(x).
Note that this simply amounts to computing a linear combi-
nation of the neighboring nodes’ deformation vectors using
the precomputed shape functions. Similarly, the updated (un-
normalized) vertex normal n′(x) can be computed from the
local gradient of the deformation field as the matrix-vector
product n′(x) = ∇f(x)n(x). Here, we can perform a com-
putational trick and reduce the matrix-vector multiplications
by scalar-vector multiplications by noting that this expres-
sion is equivalent to n′(x) = n(x)+ ∑

N
i=1(∇Φ

T
i (x)n(x))ui,

where the scalars ∇Φ
T
i (x)n(x) are constant and can be pre-

computed. Again, this amounts to adding to the undeformed
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Figure 6: Deformation of the dragon model obtained using a coarse
set of only 60 nodes. The nodal deformations are computed on the
CPU, while the high resolution surface is deformed faithfully on the
GPU. The interaction was performed at a rate of 55 fps for the model
with 100k vertices and 10 fps for the model with 500k vertices.

normal a weighted sum of the displacement vectors ui where
the weights are the precomputed ∇Φ

T
i (x)n(x).

The deformed vertex position and normal can be efficiently
computed on the GPU. We store for each vertex x the indices
to the node neighbors and the accompanying scalars Φi(x)
and ∇Φ

T
i (x)n(x) in GPU texture memory. During model-

ing, we only have to send the computed nodal displacement
vectors ui to the graphics board, which is several orders of
magnitude smaller than the number of vertices. Using mul-
tiple render passes and fragment shaders we compute and
write for each vertex its deformation for the position and nor-
mal to intermediate texture memory. Then, in a final render
pass, we update the vertex position and normal in a vertex
shader using two final texture lookups to retrieve this infor-
mation.

An example of a deformation of a high resolution dragon
model is shown in Fig. 6.

4. Deformable Shape Motions
In this section we extend our framework to allow the com-
putation of smooth deformable shape motions in the pres-
ence of obstacles. Using similar techniques as above, we can
represent and solve for a time dependent deformation field.
Again, by sampling the deformation field only at a sparse
discrete number of time instances and by using the meshless
shape approximation scheme of Sec. 2, a continuous time
dependent deformation field is obtained over the whole time
interval. We propose an adaptive temporal sampling strategy
that limits the number of unknowns and allows rapid motion
path modeling.

4.1. Deformable Motion Field Representation
Each node xi’s motion path is now sampled at T discrete
times t j , and defined by the fictitious deformation vectors
ui,t j (see Fig. 7). We call these discrete time representations
frames. If each frame was treated separately, the deformation
at x would be represented using Eq. 5 as

ut j (x) =
N

∑
i=1

Φi(x)ui,t j . (12)

t2t1

u(x, t)

t
t3

keyframe 1 keyframe 2 keyframe 3

Figure 7: The goal is to find a smooth motion of the deformable
shape that interpolates the keyframes. The continuous time de-
pendent deformation field is defined from the frames as u(x, t) =
∑

T
j=1 ∑

N
i=1 Φ j(t)Φi(x)ui,t j where the unknowns ui,t j are the nodal

displacements we will solve for. There is one displacement vector
ui,t j for each node i in each frame t j.

By assigning a support radius rt j to each frame t j, we can
obtain a smooth time dependent deformation at position x
and time t by approximating over the neighboring frames

u(x, t) =
T

∑
j=1

Φ j(t)ut j (x). (13)

Here we use one dimensional shape functions (d = 1) that
guarantee second order consistency (n = 2) by using the
complete polynomial basis p(t) = [1 t t2]. This allows us
to reconstruct most deformable motions with only a small
number of frames. Substituting Eq. 12 in Eq. 13 yields the
final expression

u(x, t) =
T

∑
j=1

Φ j(t)
N

∑
i=1

Φi(x)ui,t j

=
T

∑
j=1

N

∑
i=1

Φ j(t)Φi(x)ui,t j . (14)

Hence, the real deformation at position x at time t is a linear
combination of the fictitious deformations ui,t j of the spa-
tially neighboring nodes xi at neighboring frames. These fic-
titious deformations are the unknowns we will solve for.

Note that we decouple space and time and use separate shape
functions to approximate the displacement field within the
shape and to define the continuous displacement field over
time. As will be shown below, we fix the spatial sampling,
but adapt the temporal sampling iteratively, when solving for
the optimal deforming motion. While doing so, we only have
to recompute the one dimensional Φ j(t), which is cheap,
without having to update the nodal sampling and spatial
shape functions Φi(x).

4.2. Deformable Motion Field Optimization
Within a frame t j, we use the rigidity and volume preserv-
ing penalties as defined before in Sec. 3.2. To solve for a
temporally changing deformation field, we add the follow-
ing constraints.

Keyframes The user can specify the desired position for the
shape at certain keyframe times tk,k∈ 1 . . .K. Keyframes are
typically defined at the beginning and end of a motion, but
can also constrain shape poses at intermediate times. These
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Figure 8: Illustration of the effect of the different temporal con-
straints. Top left: smooth interpolation between two keyframes using
the keyframe and acceleration constraints. Lower left: result after
prescribing the velocity in the first frame (gray arrow). Top right:
result after adding an obstacle. Bottom right: result after adding the
velocity and obstacle constraints.

keyframes are converted into handle constraints (cf. Sec. 3.2)
by specifying one handle constraint for each node in each
keyframe. Note that the user can specify the shape in a
keyframe in a deformed pose or can only constrain a subset
of the shape in a keyframe. We denote the resulting energy
function as Ekey f rame in the following.

Velocity Constraints Along with specifying the shape’s
keyframe poses, the user can specify a velocity vk that the
deformation field should satisfy at the keyframes tk. This ve-
locity should match the temporal derivative of the shape’s
deformation field at time tk, for all points in the shape. For
all keyframes together and discretized at the nodes, we have
to minimize

Evelocity =
K

∑
k=1

N

∑
i=1

Vi‖
∂u
∂t

(xi, tk)−vk‖2. (15)

The analytic time derivatives of the deformation field
are computed from the shape function’s time derivatives
∂Φ j(t)/∂t using Eq. 4.

Acceleration To obtain smooth motion, we bound the
shape’s acceleration. Very similar to the above velocity con-
straint this yields the energy penalty

Eacceleration =
T

∑
j=1

N

∑
i=1

rt jVi‖
∂

2u
∂t2 (xi, t j)‖2, (16)

where rt j is the support radius of frame t j. The second
derivatives of the displacement field with respect to time can
be computed analytically by computing ∂

2
Φ j(t)/∂t2 as de-

tailed in [FM03]. Note again that the resulting expression
for the acceleration is a simple linear combination of the fic-
titious nodal displacements, i.e., the unknowns ui,t j .

Obstacle Avoidance We define a final penalty function that
prevents penetration of the deforming object with possible
obstacles in the scene. We assume that the obstacles can be
represented by a (time dependent) distance field d(x, t) and
that a point x is penetrating at time t if d(x, t)≥ 0. Using this

distance field representation, we obtain the following energy
penalty function

Eobstacles =
T

∑
j=1

N

∑
i=1

rt jVid
2(f(xi, t j), t j), (17)

where f(x, t) = x + u(x, t). Note that although this energy
penalizes collisions for the nodes at the frames, it does not
prevent collisions of all points at all times. To prevent arti-
facts rising from only constraining the nodes, we fatten the
nodes to spheres (by using their support radii ri) and con-
strain these spheres to be outside the obstacles (hence, we
use d(f(xi, t j), t j) + ri instead of d(f(xi, t j), t j) in the above
equation). If the union of these spheres covers the whole
shape, this adequately prevents penetrations at the frames t j.
However, nothing restricts the shape from colliding with ob-
stacles at other time instances, as the interpolation scheme is
collision oblivious. To deal with this issue, Sec. 4.3 presents
an adaptive time discretization scheme that iteratively adds
new frames t j where these problems occur.

Given the discrete spatial and temporal sampling, the op-
timal time dependent deformation field f(x, t) = x + u(x, t)
can now be found by minimizing the total energy

E = λ1Ekey f rame +λ2Erigidity +λ3Evolume

λ4Evelocity +λ5Eacceleration +λ6Eobstacles, (18)

where λ1 to λ6 are again parameters to modify the contribu-
tion of the various constraints. Similar to the energy function
of Eq. 11, the above equation is a polynomial of total degree
6 in the unknown nodal displacements ui,t j .

We now discuss how the deformation field is temporally dis-
cretized by iteratively creating and solving for new frames.

4.3. Adaptive Temporal Sampling
In the (single frame) deformation modeling part of Sec. 3,
the total number of unknowns to solve for is 3N, where N
is the number of nodes. In the motion planning setting, the
total number of unknowns multiplies to 3NT , where T is the
number of frames. To keep this number sufficiently low, we
propose an adaptive time sampling strategy that introduces
frames iteratively in problematic regions (see Fig. 9).

Initially, we only have frames t j that correspond to the
keyframes specified by the user (see top left image in Fig. 9).
We optimize the displacement field as discussed above and
evaluate the error at a dense number of frames in between the
frames t j (we typically evaluate at 10 intermediate frames).
We then introduce a new frame t j at the time instance tmax
where the error is maximal. We solve again and iterate un-
til a desired accuracy is obtained. When we introduce a new
frame at time tmax, we initialize the nodes’ deformation vec-
tors at the new frame as ui,tmax = ∑

T
t=1 Φ j(tmax)ui,t j . This

yields a good initial guess for the subsequent solve.

The proposed adaptive sampling strategy greatly reduces the
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Figure 9: The user wants to find a smooth motion between two de-
formed shapes of the armadillo, that are specified as keyframes in
the top left image. The linearly interpolated motion between these
two frames is inadequate and has high energy where the armadillo
moves through one of the obstacles (left column). Our algorithm
adds a new frame and solves for the armadillo’s deformed shape
at this time step. The resulting motion largely avoids the obstacles
(middle column). This process is iterated until a sufficiently low en-
ergy is obtained for 10 frames (right column).

number of unknowns and introduces frames only at prob-
lematic regions, for example when there is high accelera-
tion, or when the deforming shape is penetrating an obstacle
(see for example Fig. 9). Thanks to the second order consis-
tency in the temporal shape functions Φ j(t), we can repre-
sent most motions by only a very low number of frames. The
frames’ support radii rt j (and hence weight functions wtj (t))
are adapted to the frame spacing to ensure that every time
instance t is covered by at least 3 neighboring frames. This
guarantees non-singular moment matrices and safe compu-
tation of the temporal shape functions. If only two frames are
present (as in the beginning of Fig. 9), we use simple linear
interpolation to define the shape’s deformation field.

5. Numerical Solver
In addition to reducing the number of unknowns, our non-
linear energy function formulation has a few additional ad-
vantages. Most importantly, it makes it easy to compute the
gradient of the objective function analytically because u(x, t)
and all of its derivatives are linear combinations of the un-
knowns. Moreover, the objective function is a low-degree
polynomial in the unknowns, and thus standard optimization
techniques perform well in the vicinity of the solution. In the
deformation tool, we use the current positions of the nodes
as the initial guess for the new deformation, during manip-
ulations of the object. This ensures a good initialization be-
cause instantaneous deformations are small and we expect
a stable deformation field. During multiframe deformable
motion field optimization, we use the aforementioned mesh-
less function interpolation to initialize deformations for in-
termediate frames. This means that if every individual point
follows a trajectory that is locally well approximated by a

100k 4.6/4.4 9.5/4.6 15.2/4.7 31.6/5.5
250k 4.9/51.5 9.6/52.2 14.5/51.8 33.0/55.2
500k 5.1/95.9 9.4/94.8 15.6/97.6 32.5/102.9

20 50 100 200nodes
vertices

Table 1: Timing statistics (ms) for the dragon deformation of Fig. 6
for different numbers of vertices and nodes. Each entry shows the
average time spent solving on the CPU and on deforming and ren-
dering the triangle mesh on the GPU.

quadratic, our initial guess will be very close to the op-
timal solution. In practice, we use the non-linear LBFGS
solver from OPT++. As mentioned above, our energy func-
tion may have several local minima. In order to control the
convergence of the optimizer to the desired solution, we im-
plemented an interactive tool that allows to manually con-
trol the initial guess for the deformation at any intermediate
frame. This is particularly useful during adaptive temporal
sampling, because it allows the user to control the general di-
rection of the motion without specifying handle constraints.
Our video demonstrates one application of this technique.

6. Results & Discussion
We implemented our algorithms in C++ and used Cg for
the fragment and vertex shaders that compute the deformed
mesh vertices. Our models are given as triangle meshes. In
the preprocessing step we compute a regular distance field
and use the same grid for the nodal sampling and the fast
marching. Inversion of the moment matrices is performed
using the Cholesky decomposition code of the JAMA/C++
linear algebra package. The interactive results in the accom-
panying video are rendered using OpenGL and Cg. The re-
sults in the paper are visualized using POV-Ray. All results
in this paper are obtained on a 3.2 GHz Intel Pentium D CPU
with an NVIDIA GeForce 8800 graphics board.

Fig. 6 shows the result of a real-time deformation of the
dragon model. We obtain an interaction rate of 10 fps for
the model of 500k vertices and at least 55 fps for the deci-
mated model of 100k vertices, both sampled with 60 nodes
(see also the accompanying video). The parameter settings
in Eq. 11 for this example are λ1 = 10000, λ2 = 3, λ3 = 10.
Detailed timings for varying numbers of vertices and nodes
are given in Table 1. The slow-down for the 250k and 500k
models is due to a rendering bottleneck. Note that even for
the 500k model, we obtain similar deformation results as
[BPWG07], but at almost two orders of magnitude faster in-
teraction rate. This is mainly thanks to the much lower num-
ber of necessary deformation nodes in our approach and the
very efficient surface deformation algorithm.

Fig. 9 illustrates the adaptive temporal sampling algorithm.
Starting with only the keyframes, a new frame is iteratively
added where the energy is the largest until a sufficiently ac-
curate motion is obtained with 10 frames. We used 53 nodes
to sample the armadillo, resulting in a total of 3×10×53 =
1590 scalar unknowns to solve for. The total solve time took
6 seconds. The different energies in Eq. 18 are weighted by
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Figure 10: The dragon deforms to avoid the moving obstacle. Note
how the dragon anticipates the impact of the ball thanks to the ac-
celeration constraint.

λ1 = 10000, λ2 = 1, λ3 = 10, λ4 = 10, λ5 = 0.01, λ6 =
1000. We use the same settings for all motion interpolation
examples. In the accompanying movie we also show how the
user can modify the result to obtain a solution corresponding
to a different local minimum of the objective function.

Fig. 10 shows the resulting motion of a deforming dragon
in the presence of a moving obstacle. The initial and final
keyframe are set to the undeformed dragon and its back feet
are fixed over the whole time interval. The intermediate mo-
tion is computed automatically. Note how the dragon antic-
ipates the moving obstacle and tries to avoid it by bending
away due to our acceleration penalty. This motion took 10
seconds to compute with 59 nodes and 25 frames introduced
by the adaptive temporal sampler, where 17 of the 25 frames
are concentrated in the middle of the animation.

Fig. 1 shows a long animation sequence obtained by spec-
ifying 7 keyframe poses of the armadillo. The armadillo is
sampled by 66 nodes, its triangle mesh contains almost 166k
vertices. The keyframe poses were modeled in 2.5 minutes
during which the interaction rate was 60 fps. The number
of frames used for the motion computation was 28 and the
solve time took 16 seconds. To obtain realistic bouncing be-
havior, we allow C1 discontinuities in the resulting motion
path. We achieve this by omitting the acceleration constraint
at the third and fifth keyframe and by restricting the sup-
port of the temporal shape functions to the intervals defined
by the first and third, third and fifth, and the fifth and last
keyframe respectively. Note how the armadillo deforms re-
alistically, even if its shape in two consecutive keyframes
differs significantly.

Finally, we compare our adaptive temporal sampling strat-
egy with uniform sampling for a simple test case involv-
ing rigid motions (see Fig. 11). As can be seen in Table 2,
many more frames are needed when the frames are uni-
formly spaced over the time interval. The adaptive sampler
will however strategically introduce the bulk of the frames
at the end of the animation where the armadillo has to make
a rapid 180 degree rotation and use less frames where the ar-
madillo performs a simple translation. We obtained similar
speedups for deforming objects. For example, for the result
of Fig. 10, a regular time interval sampling would require 65
frames and a total computation time of 27 seconds to con-
verge with the same total energy as for the adaptive sampler.

Our method allows easy and intuitive modeling by just se-

Figure 11: Test scene (keyframes from left to right) for the adaptive
and regular temporal sampling comparisons given in Table 2.

frames energy time

uniform 78 0.8 19s
uniform 29 8.2 7s

33 0.8 6sadaptive

uniform 113 0.4 22s

Table 2: Sampling strategy comparisons for Fig. 11.

lecting and dragging points on the mesh and by simply spec-
ifying a few keyframe poses. We avoid the problem of man-
ually designing an appropriate control cage or of comput-
ing good quality tetrahedralizations in classical finite ele-
ment methods. Our sampling algorithm automatically com-
putes an adequate set of nodes, the only required input is the
shape’s boundary mesh. Nodes are spread uniformly over
the shape’s material and the shape functions adapt automati-
cally to the sample spacing and the input mesh. Our temporal
sampling algorithm automatically introduces frames in criti-
cal regions while keeping the number of unknowns low. We
showed that using this coarse representation complex shapes
and motions can be modeled efficiently.

The proposed technique has a few limitations. First, our tem-
poral deformation approximation scheme does not recon-
struct rotations exactly. Indeed, it is only second order ac-
curate in time. However, most motions are locally quadratic
and can therefore be represented using only a few basis
frames. As future work we plan to design temporal basis
functions that not only reconstruct translations exactly but
also rotations. Second, our sampling algorithm relies on a
proper inside/outside classification of the shape. However,
the meshless representation and optimization procedure does
not require a closed shape and other sampling algorithms
(e.g., [WAO∗08]) could potentially be used to obtain suit-
able nodal samplings for meshes with boundaries. Finally,
we wish to extend our method to allow skeleton based defor-
mations. By defining handle constraints for skeleton bones,
it should be possible to create articulated deformations.
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