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Abstract
Recent proliferation of motion capture systems enables motion data to be saved as an archive system, and the data
are usually extracted by selecting an appropriate file by its name or annotation explaining the content of motions.
Such semantic-based retrieval, however, is not suited to unstructured files that include many types of elemental
motions, due to the difficulty in giving comprehensible annotations. Moreover, expected motion clips are often
included as a part of entire sequences, and the data therefore should be manually clipped using some authoring
tools.
This paper proposes an image-based user interface for retrieving motion data using a self-organizing map for
supplying recognizable icons of postures. The postures are used as keys for retrieval, and the desirable segments
of the motion data can be accurately extracted by specifying their starting and ending postures. The number of
possible motion segments is flexibly controlled by changing the scope of postures used as the keys.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation H.3.3 [Information Search and Retrieval]: Retrieval models H.5.2 [User Interfaces]: Graphical user
interfaces (GUI)

1. Introduction

In creating humanoid animations, intensive use of motion
capture data has become a common strategy for producing
plausible movements. Thus editing these motion data re-
quires smart tools for cutting and pasting some successive
frames. Such tools must be interactive in retrieving a desir-
able segment of a motion clip. File names or attached anno-
tations are usually determined to show some hints about the
content of included motions. However, making such annota-
tions often requires elaborate work for the careful selection
of appropriate words that explain whole aspects or features
included in the motion data. In addition, data classification
and categorization are subject to individual interpretation,
making it difficult to select appropriate words for complex
or subtle motions in such a way that most users can identify
the same images of motions without misunderstanding the
content. More importantly, cutting and concatenating motion
clips are essential tasks for editing animations. Semantic-
based retrieval, however, lacks the capability of accurately
clipping the proper segment of the data.

For these reasons, we have developed a new type of graph-

ical user interface for retrieving motion data using non-
verbal, image-based keys. We utilize the technology, called
self-organizing maps (SOM), for mapping large data sets
of high dimensionality onto two-dimensional discrete space.
This technology is often used in the application of informa-
tion visualization because of its capability to distribute data
elements while preserving the topological relations of met-
rics in a higher dimensional space onto a 2D square map.
Representative postures are automatically selected by clus-
tering nodes of the map, and are then converted to image
icons to be used for navigating the selection of key-postures.
By this graphical interface, users can easily detect desirable
motion segments by simply clicking key-nodes.

Not only postures but also their velocity or acceleration
are essential variables for representing motions, but such
time-dependent information requires additional visual cues
or indications on each postures, which often complicates the
appearance of a map. Since an exact amount of velocity or
acceleration is difficult to perceive with static images, se-
mantic selection may be adequate for narrowing down the
data including similar postures and different dynamics. For
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these reasons, our system employs no visual information for
dynamical attributes.

The outline of this paper is as follows: Section 2 explains
the relevant works and Section 3 introduces a method of
computing a motion map and constructing a graphical user
interface by embedding posture icons and drawing motion
trajectories. Section 4 explains a way of efficiently search-
ing for motion segments among a large amount of data set
by narrowing possible files with successive keys. In Section
5, we show the results of usability tests, and finally give con-
cluding remarks and discussion.

2. Related work

Data-driven motion generations were first proposed for
blending motion segments to reconstruct new motions
[UAT95, WH97, RCB98, BH00]. Recent availability of mo-
tion capture data enables variety of behaviors to be auto-
matically generated by concatenating elemental motion clips
with transition graphs [TH00, KGP02, LCR∗02, AFO03].
These method requires detecting similar motion segments
for blending and transitions, and automated extraction
method is proposed [KG04]. This method uses a motion clip
as a query, and is therefore unsuited to retrieve data from
scratch. In other words, existing method of extracting mo-
tion segments requires a motion sample to detect matching
segments. Our method, on the other hand, extracts motion
segments by conjecturing postures included in a requested
motion clip.

Our system displays many selectable images for user in-
puts, and such strategy was first introduced into computer
graphics community as design galleries [Mea97] for setting
parameters of rendering and animation. However, we have
not found similar work related to the retrieval of motion
capture data using relevant images. Our methodology bears
some similarity to the methods of multivariate data analy-
sis proposed in the field of information visualization. Since
enormous space is required for listing all relevant works in
the field, we here refer to only surveying papers and books
[CMS99, HMM00, Spe01, dOL03].

The key technology of our image-based system is the
smart distribution of a huge number of postures. The ap-
propriate mapping of the posture space enhances the abil-
ity to detect desirable postures. This problem is considered
nonlinear dimensionality reduction whose numerical meth-
ods include principal component analysis (PCA), multidi-
mensional scaling (MDS), isomap [TdSL00], locally lin-
ear embedding [RS00], and self-organizing maps (SOM)
[Koh88, Koh90, Koh01]. These methods can arrange com-
plex high-dimensional data sets while reflecting the metric
relationships between the data elements in the topology of
their arrangement, by which some kind of abstraction is au-
tomatically produced. Our method utilizes SOM for map-
ping posture data in a 2D plane because of its capability in

distributing the data uniformly. In other words, SOM dis-
tributes input samples (postures) so that their probability of
placement on the map becomes uniform. Some methods of
information visualization introduced SOM for the classifi-
cation of textual data with respect to their context [RI96]
and ontology [EP02], whereas our method constructs SOM
with the numerical data representing a posture at each frame.
Constructing SOM usually requires a huge computational
cost. This defect, however, does not affect the real-time re-
sponse of interactive retrievals because the computation of
SOM can be preprocessed.

3. Motion map

Our system uses human postures as keys for retrieval, but
it is not a simple task to specify postures from scratch. Us-
ing sketch-based input can supply an intuitive user-interface
[DAC∗03], but still requires many manipulations for specify-
ing even a single posture. We therefore introduce a strategy
of displaying many postures to be selected as keys, which
requires a technique for efficiently distributing all necessary
postures to cover whole display space.

We here employ SOM for the arrangement of posture data
included in motion files, and call the resulting map of pos-
tures a motion map, which is used in constructing a graphical
user interface for motion data retrieval. In the following sub-
section, we explain the computation of the motion map in
detail.

3.1. SOM for posture space

For each sample posture, an input vector x ∈ ℜn is defined
as

x = {P1 , P2 , . . . , PnJ} ,

where nJ denotes the total number of joints, and 3D vector Pi
is the relative position of i-th joints from a root position. For
normalizing root orientations, they are rotated along a verti-
cal axis so as to turn a posture toward a standard direction.
Figure 1 shows the sampled joints for input vectors whose
total dimensions is n = 30 (nJ)×3 (space dimension) = 90.

The motion map is defined as a grid array whose nodes
are uniformly arranged, and each node of the (i, j)-th loca-
tion associates a parametric real vector mi, j ∈ ℜn, which is
called a model vector, by which discrete locations of pos-
tures are determined. It is noteworthy that the model vector
mi, j is not a substitution of the input vector x, but is an im-
age (or approximation) computed by taking a mixture of the
input vectors. The original incremental SOM algorithm up-
dates the model vector of each node with the input vector as
follows:

mi, j(t +1)= mi, j(t)+hi, j(x, t)[x(t)−mi, j(t)] , mi, j(0) = 0 ,

where t = 0,1,2, . . . denotes the number of iterations. The
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Figure 1: Joint locations used as input vectors.

position of each posture is then determined by the node lo-
cation (p,q) whose model vector has the minimum distance
against the input vector of the posture as

mp,q = min
i, j

{d(x, mi, j)} , (1)

where d(x, mi, j) represents a distance between x and mi, j
that is defined by Euclidean distance in ℜn;

d(x, mi, j) :=‖ x−mi, j ‖ .

The function hi, j(x, t) is called a neighboring function which
plays an important role as a smoothing kernel. We adopted a
widely used kernel using the Gaussian function as the neigh-
boring function

hi. j(x, t) = α(t)exp
(

−
(i− p)2 +( j−q)2

2σ2(t)

)

,

where the index (p,q) is obtained by the equation (1). The
function α(t) denotes the learning-rate factor, and σ(t) is the
width of the kernel. The values of these functions are mono-
tonically decreased according to the progress of iterations.
We experimentally designed these functions as

α(t) =

{

0.8∗ (1.0− t
6nL

) i f α(t) > 0.01
0.01 otherwise

,

σ(t) = 0.25∗ (nx +ny)∗ (1.0−
t

nL
) ,

where nL denotes the total number of iterations that is exper-
imentally set at 1000 for ensuring convergence, and nx and
ny are the numbers of the grid along each 2D coordinate.

Constructing the SOM involves a large computational cost
because motion data usually contain huge samples (over 30
postures per second). Moreover, the distribution of postures
on the resulting map is often biased according to the den-
sity of similar postures. For these reasons, we remove sim-
ilar postures from samples used as input vectors. For each
posture included in motion files, we compare the dissimi-
larity against all postures registered as samples. The posture

in process is added to the samples if its dissimilarity met-
ric, which is computed by the distance of their input vectors
d(x, y), exceeds a given threshold against all the samples. By
this preprocess, we can efficiently decrease the number of in-
put vectors (samples) and thereby reduce the bias caused by
the dense postures.

Figure 2 shows the example of a motion map, in which
posture images are drawn at their corresponding nodes,
where the circled area zooms in on the map. The motion
map was computed by 436 posture samples extracted from
55,114 frames of 51 data files, where all motions are mea-
sured against the same performer. It took about 17 minutes
on a Pentium-4 2.4 GHz processor for 21×21 nodes.

Figure 2: Motion map.

3.2. Generations of posture icons

All postures allocated at every node can be used as keys, but
iconic representation of all images, as shown in Figure 2,
often imposes psychological load in selecting adequate pos-
tures. Simply reducing the resolution of the grid array, how-
ever, compromises the accuracy of the search. Therefore, it is
necessary to select adequate representative postures for dis-
play so as to cover the entire outlines of all the motion files
without losing any of the essential components.

We here introduce a clustering technique to automatically
extract such postures. Motion map arranges postures so that
their topological relationship reflects the distance relation on
input vector space, but the uniformity of distance cannot be
ensured between neighboring postures. From this property,
the existing methods, such as K-means [Mac67], sometimes
clusters the nodes into disconnected regions on the map.

c© The Eurographics Association 2004.

261



Y. Sakamoto & S. Kuriyama & T. Kaneko / Motion Map

Moreover, partitioning algorithms of clustering methods re-
quire predetermining the number of clusters, but it is difficult
for users to choose its optimal value. Therefore, we intro-
duce a clustering method that divides regions by detecting
borders between neighboring nodes.

For each node of the motion map, we first compute the
average of the difference against four neighboring nodes as

m̃i, j =
1
4 ∑

(k,l)=(i±1, j),(i, j±1)

(mi, j −mk,l) ,

and we then create a vertical border at the node that satisfies

m̃i−1, j < m̃i, j and m̃i, j > m̃i+1, j ,

where this border represents a ridge or valley of the map.
The horizontal and slanting borders are similarly created by
comparing the m̃i, j with m̃i, j±1 and m̃i±1, j±1, respectively.

After creating all borders, we divide the map by label-
ing the connected region. The labeling technique is similar
to those used in clustering raster images; it scans each line
of nodes from top to bottom, and each node is visited from
left to right while copying or creating labels according to the
existence of the borders. Similar scanning process follows
for merging the labels so that the connected nodes have a
unique label if they have no border. As a result, all the nodes
that have the same label comprise a clustered region. This
map-driven clustering automatically determines the number
of clusters according to the pattern of the distributed pos-
tures. Figure 3 shows the label of clustered regions obtained
by our method, where the thick lines indicate borders.

Figure 3: Clustered regions of motion map.

An icon of the posture, which navigates the selections of
key-postures, is then generated from the model vector of the
node that is nearest to the center of each clustered region.
The iconic images generated at every region are shown in
Figures 6 and 9. Instead of using the actual human appear-
ance of postures, our iconic representation uses simple skele-
tal objects so as to reduce superfluous visual information.
This simplification relies on the study of structural object
perception using Geon [HB92, ITW01]. However, this hy-
pothesis should be confirmed through a usability test.

Figure 4 shows the graphical user interface of our proto-
type system. For enhancing usability, the image of the pos-
ture at the node pointed by a mouse is rendered from dif-
ferent viewpoints, and the result of the retrieval is displayed
using a pop-up list menu with a button that prompts to ex-
pand searching scope.

����� ��������������� ���� !�� 

����"� ��#$ ���%�� � &
%  ������'����(� % �

)+* ,+- .

/10 243

56,87

Figure 4: Prototype of GUI.

3.3. Motion trajectory

Each motion file is a sequence of postures, and it can be rep-
resented as a trajectory on the map drawn by a polyline con-
necting corresponding nodes. The trajectory requires a high
resolution grid so as to have distinguishable shapes of the
trajectories between the motion files. However, the compu-
tational cost in creating a motion map increases in proportion
to the number of nodes. We therefore introduce virtual nodes
to increase the resolution of the map with small computa-
tional cost. The virtual nodes are automatically created by
uniformly subdividing square regions, as shown in Figure 5,
and the model vectors at the created nodes are simply deter-
mined using a spherical bilinear interpolation of the quater-
nions at the surrounding actual nodes. This computation re-
quires little cost and could be preprocessed for greater detail
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with the cost of storage. The trajectory of the motion data
is drawn by traversing the nearest nodes for each posture
per-frame, computed by the equation (1). Figure 6 shows an
example of the trajectory drawn for a walking motion. This
visualization technique is useful for observing the sequence
of postures included in a motion clip. In addition, this inter-
face could be utilized as a tool for analyzing the features of
each motion clip or concatenating motion clips by detecting
frame periods that have similar postures.
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Figure 5: Creation of virtual nodes.

Figure 6: Trajectory of walking motion.

4. Retrieval mechanism of a motion segment

After constructing a motion map, our system creates a hash
table for efficiently searching possible files and segments.
The entry of the table is an index of each node, and each
element of the table consists of file ids and frame indices
whose postures correspond to the node of the entry, where
the correspondence is determined by computing the equa-
tion (1). Successive frames belonging to the same node are
compactly stored by their start and end indices. The process
of searching motion segments is as follows (see Figure 7):

Step.1 All elements of the first key-node entry are copied to
a retrieval list.

Step.2 Each element of the retrieval list searches the cor-
responding element of the following key-node entry that
has the same file id and the end frame index larger than its
own end index. If the corresponding elements are plurally
detected, the element of the smallest end index is selected,
by which the shortest segment is intentionally composed.

Step.3 The element of the retrieval list is deleted if corre-
sponding element is not detected. Otherwise, the value of
its end index is replaced with those of the corresponding
element.

Step.4 If the next key-node exists, go back to Step.2, other-
wise go to the next step.

Step.5 Display all surviving elements of the retrieval list as
the result of the searching process.
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Figure 7: Schematic representation of searching process.

As the hash table registers each posture of motion data
against a single node entry, it is often difficult for users to
precisely select a key-node. For increasing flexibility and re-
liability in retrieval processes, our system supplies a way
of selecting key-nodes by introducing a distance thresh-
old T that determines the subset of nodes. All nodes are
treated as keys if their model vectors satisfy the inequality of
d(mp,q, mi, j) < T , where mp,q is the model vector of the
selected node. All these key nodes then compose the hash ta-
ble elements for the entry of the selected node. The threshold
T is gradually increased by a constant value through user in-
teractions. Figure 8 shows the effects of changing the thresh-
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old T to expand a region of the key-nodes, where the dark
quadrilaterals denote such regions.
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Figure 8: Expanding key-nodes for extended search.

5. Usability test

We experimented two types of usability tests for 10 subjects
using a desktop PC of Pentium-4 2.4 GHz. The first test em-
ployed a data set that was captured by ourselves, and the sec-
ond test employed those extracted from a commercial data
set.

The first test evaluates the efficiency in retrieval by mea-
suring the time and the number of trials spent in detecting
a requested motion segment. Experimental data set consists
of ordinary and task motions including various moving and
manipulating behaviors whose motion map is shown in Fig-
ure 6. The map was learned from 51 data files, from which
many motion segments can be clipped. Therefore, it includes
several hundreds of motion segments that can be retrieved.
Among such huge number of motion collection, we selected
typical 8 motion clips as targets for retrieval. They were ran-
domly displayed on a PC console using a commercial anima-
tion tool with a realistic shape of a humanoid. After provid-
ing an explanation on the usage of the systems, all subjects
were allowed to freely operate the system for 3 trials of re-
trieval operations for their adaptations.

Table 1 shows the results of this usability test. The column
of Target represents the kind of motion selected as target, and
the column of Trial indicates the average (and maximum in
brackets) number of trials for all subjects, spent in detect-
ing the appropriate motion segment. The column of Time
denotes the average time required for each trial, and Failure
indicates the rate of subjects that could not detect the ade-
quate segment.

Table 1: Usability test (ordinary motions)

Target Trial (ave [max]) Time (sec.) Failure

Carry 1.5 [ 2 ] 11.1 0.2
Throw 1.0 [ 1 ] 17.1 0.3
Push 1.3 [ 2 ] 17.1 0.3
Sit 1.2 [ 2 ] 20.7 0.0
Reach 1.8 [ 2 ] 17.0 0.2
Kick 1.6 [ 4 ] 18.3 0.0
Spear 1.4 [ 3 ] 28.5 0.1
Lie 1.1 [ 2 ] 10.0 0.0

A unique posture of lying makes retrieving task easy,
which is demonstrated by the small number and the short pe-
riod of trials. We found that posture icons are often missed if
they are located at the peripheral of the motion map, and this
affects the long trial times and many failures for the Throw
and Push whose representative postures are located at the
lower right corner. Posture icons are also difficult to select
if their locations have many nearby posture icons; for ex-
ample, the Carry caused failures and the Sit took the long
trial time. The motions of the Reach and Kick are relatively
basic movements, and thus they are included in various mo-
tions. We consider that this ubiquitous property affects the
large number and the long period of trials. The conspicuous
long trial time for the Spear may be caused by the ambiguity
against both carrying and reaching motions.

The second usability test employed 17 motion files of var-
ious dancing styles. The motion map in Figure 9 was com-
puted by 329 posture samples extracted from 3095 frames,
and it took 6.5 minutes for 19×19 nodes. These motion files
seem to be appropriately named, but the content is perceiv-
able only to persons with experience. This test is utilized for
evaluating the capability of our system in narrowing down
possible files from a single posture.

Figure 9: Motion map for 17 dance styles.

After similarly displaying the movie of each dancing
style, all subjects, who have little knowledge about the styles
of dance, were instructed to select a key-posture that is sup-
posed to be special to the style. Each trial was continued
until the resulting retrieval list includes the file of the target
style.

Table 2 shows the same information as Table 1 where the
additional column of Choice is the average number of pos-
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sible files in the retrieval list. A small number of files is re-
trieved except the Develop, which demonstrates the capa-
bility in fully narrowing down possible files. The style of the
Develop can be categorized into escort dance, and it includes
support postures that are also included in other 8 files. This
property is considered as a cause of the many possible files.

Table 2: Usability test (dance motions)

Target Trial Time Failure Choice

Develop 1.8 [ 4 ] 21.1 0.0 7.9
Generic 1.2 [ 2 ] 15.7 0.1 1.1
Chorus 1.2 [ 2 ] 6.41 0.0 1.5
Wiggin 1.9 [ 4 ] 21.9 0.0 2.2
Jive-kick 1.8 [ 3 ] 15.2 0.0 2.9

6. Conclusions

We have proposed a new type of retrieval system using key-
postures for detecting motion segments from a large amount
of data set. The contributions of our system are summarized
as follows:

• Motion map is automatically constructed without using
any manual categorizations and annotations.

• Motion map simply arranges the postures of motion data
all together on a plane, which can hide a complex structure
of file directories.

• Motion map displays a sequence of posture by drawing
the trajectory of node transition onto a high resolution grid
array.

• Posture icons supply simple visual cues for key selections
by using representative postures obtained with a map-
driven clustering.

• Motion clips are automatically extracted by giving start-
ing and ending postures.

• Segments of similar motions are simultaneously retrieved,
which allow users to check all possible motion clips at one
try. This property is especially useful to motion syntheses
that blend plural similar motion clips.

Iconic and non-verbal representation can supply intuitive
user interfaces common in different languages and cultures.
This property is especially useful in detecting specific mo-
tion segments from a long motion sequence of an artistic
performance, such as a dance or drama, which are difficult
to consistently annotate using a few words.

The target motions selected in the first usability test are
easily annotated, and our image-based retrieval seems to
have no big advantages over semantic-based ones. More in-
vestigation is needed with regard to the target motions that
are difficult to annotate. We actually tried to compare the
trial time against the semantic-based retrieval system that
was developed as a hyper-text document. The time required
to detect a relevant motion file for each target was measured

for 3 subjects on the same condition as the proposed map-
based retrieval. The efficiency varies depending on each sub-
ject and target, and we could not find any meaningful dif-
ferences or features from the results. However, there was
a tendency for many subjects to quickly adapt our inter-
face and easily increase their performances. The efficiency
in semantic-based retrieval deeply depends on the design of
hyper-links, but there is no common data set for fairly eval-
uating the efficiency of motion retrieval. We should explore
standard criteria for measuring the performance of retrieval.

Our system cannot distinguish the same motion category
of different subjects (performers) because the difference be-
tween individuals is negligible. In addition, arrangement of
static postures cannot reflect the dynamical feature of the
motions; for example, it is impossible to distinguish and re-
trieve motions that have the same movements but at differ-
ent velocities. Such defects could be compensated by adding
semantic controls, or introducing some graphic interactions
that can reflect dynamical variables. Our experimental data
(of the first usability test) includes several hundreds of mo-
tion clips, but the scalability of the motion map should be
fully investigated against further scales of data set.

The motion map has the potential to be utilized not only
for data retrieval, but also for analyzing minute differences
of individual movements by zooming in the motion trajec-
tories drawn on a high-resolution map. Moreover, it could
be used for interactive data editing. For example, a suitable
frame correspondence during a transition period can be vi-
sually detected by drawing the trajectory of each motion se-
quence on the map. Trajectory drawings also could supply
an intuitive tool for evaluating motion graphs, and motion
blending might be controlled by manually drawing an inter-
polation path on the map. Such editing methodology may
produce a new type of sketching interface in creating char-
acter animations.
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