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Abstract
We present flow tiles, a novel technique for representing and designing velocity fields. Unlike existing procedural
flow generators, tiling offers a natural user interface for field design. Tilings can be constructed to meet a wide
variety of external and internal boundary conditions, making them suitable for inclusion in larger environments.
Tiles offer memory savings through the re-use of prototypical elements. Each flow tile contains a small field and
many tiles can be combined to produce large flows. The corners and edges of tiles are constructed to ensure
continuity across boundaries between tiles. In addition, all our tiles and the resulting tiling are divergence-free and
hence suitable for representing a range of effects. We discuss issues that arise in designing flow tiles, algorithms
for creating tilings, and three applications: a crowd on city streets, a river flowing between banks, and swirling
fog. The first two applications use stationary fields, while the latter demonstrates a dynamic field.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: tiles, tiling, fluid simulation, velocity field

1. INTRODUCTION

Flows are used to drive the motion of many natural phenom-
ena, and their representation and creation is a vital part of
many animation applications. Simulation of fluids and gases
is the most obvious example but velocity fields are also used
to guide agents [Rey99] and force the motion of natural fea-
tures, such as grass [PC01] or clouds [DKY∗00]. Applica-
tions of flows are limited, however, by two significant prob-
lems: flows are hard to design if specific flow features are
desired, and the resolution required to represent detailed mo-
tion severely limits the scale of effects that can be generated.
This paper presents flow tiles, an approach to creating veloc-
ity fields that addresses design and scalability.

Each flow tile defines a small, stationary region of velocity
field. They can be pieced together to form large stationary
fields and then used to drive fluids, crowds or other effects.
Figure 1 shows one such field. Different stationary fields can
be interpolated in time to generate dynamic flows. Flow tiles
share two primary advantages with other tiling applications,
such as texture or terrain tiling, due to their re-use of a small
set of prototypes (the tiles). Firstly, tiles make design easier
and more efficient. Not only is it fast and simple to piece

tiles together to create something larger, but the outcome of
placing a tile is obvious and does not depend on blending,
interpolation or other inter-tile effects. Furthermore, while
tiles may encode a design that is difficult to create, they can
be replicated by an unskilled user. For example, terrain tiles
in computer games [Pea01] empower novice level designers
but also constrain them to a consistent style, making their
designs useful to the wider community. The second major
advantage is that the data contained in each tile need only be
stored once, no matter how often it is used. Tileable texture
images highlight this feature, and flow tiles share it.

As with any tile set, to create visually seamless tilings
the tiles themselves must meet certain requirements. The
corners and edges of tiles are constrained by continuity
requirements where tiles meet. Aperiodic square tilings
that avoid obvious repetition artifacts (such as Wang
Tiles [Sta97, CSHD03]) require the creation of tiles with
particular edge combinations. Flow tiles also have con-
straints imposed by conservation of mass and boundary con-
ditions; for many applications whatever flows into a tile
must flow out again. In Section 3 we detail the design re-
quirements for flow tiles and present an interpolation-based
method for generating tile sets.
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Figure 1: Flow tiles drive a river flow. Each of the tiles
in the zoomed grid at the top contain small examples of
divergence-free velocity fields. A user interactively placed
the tiles, including interior and exterior boundary condi-
tions. In the section of tiling shown, boundary conditions
were used to force the flow around a bridge pylon. Below
is the flow embedded in an application, used to drive leaves
in the river.

Environmental conditions typically impose boundary con-
ditions on flows; a river stays within its banks and flows to
the sea, crowds do not pass through walls, and so on. Flow
tiles support interior and exterior boundary conditions on
their tiling, and can be conveniently inserted into applica-
tions using a texture-mapping like approach. Boundary con-
ditions on the entire tiling impose constraints on the place-
ment of individual tiles within the field, not just those that
abut a boundary. For instance, if a flow that conserves mass
is used to fill a dead-end alley, the net flow must be zero
across the opening into the alley, even if there are many tiles
placed within the alley. In Section 4 we characterize the con-
straints on tile placement and present algorithms for laying
out tiles.

This paper contributes a new approach to designing and
storing flow fields that improves their controllability and ef-
ficiency. Flow tiles rely on a designer to create plausible
fields, although the constraints built into the tiles and tiling
algorithms aid the designer in satisfying important physical
requirements; flow tiles will not let you lead a crowd into
a blind alley. They sacrifice the guaranteed plausibility of
other methods, such as simulation, but gain storage and com-
putational efficiency in addition to direct control.

We envision the use of flow tiles primarily in real-time
applications where large-scale, smooth flows are required
to drive animation. In Section 5 we present two examples:
the advection of agents to form a crowd flowing through
city streets, and the creation of a river through complex
banks and around obstacles. These applications use station-
ary flows (the field itself doesn’t change over time). We also
discuss time-varying flows, and show their application to
swirling fog.

2. RELATED WORK

Flow tiles are a procedural method for generating velocity
fields. Several approaches to this problem exist, based on
superposition of flows, spectrum methods, and interpolation.

Sims [Sim90], Wejchert and Haumann [WH91], Bar-
rero et. al. [BPC99], Rudolf and Raczkowski [RR00] and
Perbet and Cani [PC01] all use superposition – the linear
combination of basis flows – to generate wind fields that
drive other motion. Their primitives include constant veloc-
ity linear fields, vorticity elements, moving waves, and ran-
dom fields. While providing a convenient interface for de-
signing flows over open regions, these superposition meth-
ods are not well suited to fixed boundary conditions because
it is very difficult to select and weight the basis flows such
that the combination results in the required conditions.

Spectral methods generate spatially and temporally pe-
riodic flow fields that have the advantage of being
trivially tileable. Among spectral methods, Shinya and
Fournier [SF92] use an observation based model while Stam
and Fiume [SF93] used the Kolmogorov spectrum, a model
that describes the amount of turbulence present at various
spatial and temporal scales. While useful in cases where tur-
bulent detail is required, there is little control over the details
of the field and no way to meet anything other than periodic
boundary conditions. Flow tiles offer similar memory sav-
ings through tiling, but with greater control over boundaries
and without periodicity.

Interpolation based schemes require a user to specify a
few velocity or potential field values and then interpolate
to fill a larger region. Neyret and Praizelin [NP01] is one
example of this approach. Interpolation suffers from diffi-
culties in controlling the final result. For example, while
Weimer and Warren’s [WW99] subdivision scheme gener-
ates smooth flows that satisfy the physically-based PDEs,
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the final flow does not necessarily interpolate the original
velocities. Nor does the subdivision maintain boundary con-
ditions. Similarly, the projection onto a divergence free field
of Neyret and Praizelin might change the flow significantly.
Users have no direct way of controlling these effects, apart
from specifying an overwhelming number of sample points.

Physically-based simulation approaches (see
Stam [Sta03] for some recent results), face limitations
on the size of the grid that can be solved in real-time
(or even reasonable time). Total grid widths for real-time
performance are limited to about two orders of magnitude
more than the smallest resolvable feature size in each
dimension. In three dimensions the situation is even worse,
which led Rassmussen et. al. [RNGF03] to develop an ap-
proach for combining, via interpolation and superposition,
2D simulations and a 3D Kolmogorov field to obtain 3D
results. To increase the effective period of the Kolmogorov
field, they suggest using two fields with different periods.
They generate temporal changes in the Kolmogorov field
by interpolating in time between two fields – a technique
that we also employ. While Rassmussen et. al.’s techniques
build larger simulations by combining smaller pieces, they
do not address the design issue nor support fixed boundary
conditions.

From a design perspective, Treuille et. al. [TMPS03] con-
trol smoke simulations using a key-frame based interface
and constrained optimization. Users set keyframes on the ap-
pearance of the smoke and the system solves for a simula-
tion that passes through the keys. However, their approach
is expensive, does not offer WYSIWYG design, and is only
effective on small problems due to the underlying use of sim-
ulation and optimization.

Texture and terrain tilings have seen great use in computer
graphics. Glassner [Gla98a, Gla98b] provides an overview
of infinite tilings of the plane, including aperiodic tilings that
are better than periodic at hiding repetition artifacts. Wang
Tiles [GS87], first introduced to graphics by Stam [Sta97]
and extended by Cohen et. al. [CSHD03], are square tiles
that support aperiodic tilings. Stam provides a hierarchical
tiling approach that guarantees aperiodicity, while Cohen et.
al. use a randomized, scan-line order approach that requires
fewer basis tiles. We also work with aperiodic, square tilings,
but our tiling algorithms are designed to meet boundary con-
ditions and support placing tiles in any order. Neyret and
Cani [NC99] generate texture tilings on arbitrary surfaces
using triangular tiles that support continuity. We share with
their work an emphasis on the corners of tiles. In the area of
terrain tiles for computer games, Peasley [Pea01] discusses
many of the issues surrounding the creation of tiles.

3. DESIGNING FLOW TILES

Tiles must provide a set of flow fields that can be combined
to form large tilings. In this paper we discuss only 2D tiles,

mtop
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mrightmleft

vtl

vbl vbr

vtr

Figure 2: Our method for indexing tiles required eight num-
bers: one for each corner indicating the velocity at that cor-
ner, and one for each edge indicating the flux across the
edge.

although most of the discussion extends naturally to 3D,
space-filling tiles. We use square tiles due to their simplic-
ity for tiling, similarity to texture maps, ease of represen-
tation and convenience for numerical computations. Square
tiles somewhat restrict the domains we can tile, an issue we
cover in Section 5. With applications in mind we focus on
divergence-free tiles, or those that conserve mass. We allow
flows to be warped when placed into applications which in-
creases their usefulness, although at the expense of any guar-
antees about compressibility. Our choice of divergence-free
tiles has many consequences for the representation and de-
sign of tiles, which we discuss below. The tiles we present
are stationary (the field does not change over time) but by
combining tilings over time we can generate dynamic flows.
Finally, we assume that flow tilings are going to exist in-
side larger environments and will be required to meet spe-
cific boundary conditions.

3.1. Characterizing Flow Tile Sets

We choose to work with finite tile sets, as this is an explicit
way of restricting memory usage and also simplifies the user
interface. For efficient tiling, we require a way of indexing
particular tiles in the tile set. For example, Stam [Sta97] in-
dexes tiles with their edge “colors”, Neyret and Cani [NC99]
use the corners (they have only one edge per combination of
endpoints), and Cohen et. al. [CSHD03] use both edges and
corners. Tiling algorithms use rules to determine the types of
edges and/or corners that will be used in the tiling, and then
choose a tile from the set that matches the requirements.

The flow tile indexing strategy is based upon the four ve-
locities at the corner of each tile, and the net flow, or flux
across each edge of the tile. Flux is also referred to as the
volume flow rate in the fluids literature. We focus on corners
because they are the places where four tiles overlap, and can
be used to determine edges [NC99]. We explicitly track the
flux across each edge because it is essential in controlling
the divergence-free properties of tiles. The labeling scheme
is shown in Figure 2.

Each corner index for a tile is a positive integer that in-
dexes an array of possible corner velocities. The set of ve-
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locity options are provided by a user and there are no con-
straints on the choices, although including the zero velocity
is very useful for meeting boundary conditions.

Each edge index is an integer that multiplies a base unit
of flux to determine the total flux across the edge. Flux is
defined as the integral of the normal component of the ve-
locity at each point along the edge. In our diagrams we indi-
cate the flux with an arrow normal to the tile edge, but note
that the flux depends on the velocity at every point along
the edge. There may also be velocity components tangen-
tial to the edge but they do not influence the flux. Fluxes are
positive for flow toward the right and up, and negative for
flow toward the left and down. We require a finite set of flux
quantities to define horizontal tile edges, and another set to
define vertical edges; only tiles with matching corners and
fluxes can be placed together.

Our flux definition scheme, using a base multiplied by an
integer, arises from a desire for divergence-free tiles. Such
tiles have the property that whatever flows in also flows out,
which is important for most applications. The divergence-
free condition requires

fle f t + fbottom = fright + ftop (1)

where fle f t is the flux across the left edge, and so on. We
must choose edge fluxes that can be combined to form tiles
that meet this condition. Furthermore, we would like to max-
imize the ability to combine tiles in a tiling, so given a set
of edges and corners, we want as many valid tiles as possi-
ble. We hence choose fluxes that are integer multiples of a
fixed unit of flux. The designer chooses the base flux, fbase,
and the minimum and maximum multiple for each direction,
mx,min, mx,max, my,min, my,max. We then have:

fle f t = mle f t fbase mx,min ≤ mle f t ≤ mx,max
fright = mright fbase mx,min ≤ mright ≤ mx,max
ftop = mtop fbase my,min ≤ mtop ≤ my,max

fbottom = mbottom fbase my,min ≤ mbottom ≤ my,max

A particular tile’s edge is indexed by the integer multiple
used to compute its flux. The fbase terms cancel out of many
operations related to fluxes, allowing us to work with the in-
dices themselves. In particular, the divergence-free condition
can be re-written as:

mle f t +mbottom = mright +mtop (2)

3.2. Counting Flow Tiles

The combinatorics of flow tiles are important for assessing
the cost of storing a tile set. Roughly speaking, the num-
ber of tiles in a complete set grows with c4(Mx + My)

3,
where c is the number of possible corner velocities and
Mx = mx,max−mx,min and My = my,max−my,min are the num-
ber of choices offered for fluxes across the vertical and hor-
izontal edges (we omit the proof for space reasons). We will

refer to a tile set using the triple (Mx,My,c). To give a fla-
vor for the numbers, selecting one corner velocity and three
possible fluxes across each edge, a (3,3,1) set, contains 19
tiles. A (5,5,1) set increases the number to 85. Providing 5
corner options and three flux options, a (3,3,5), increases the
number to 11,875.

In practice we have found that tile sets created from a
small number of velocity and flux options produce very com-
plex flows when tiled. This is because the variety in appear-
ance comes from the combination of tiles, not the complexity
of the tiles themselves. The situation is analogous to build-
ing a complex mosaic out of plain colored tiles. We have also
found that applications use only a small subset of the tile
set. The potentially large set is required to provide designers
options when laying out tiles interactively, but unused tiles
need not be created or stored. Furthermore, boundary con-
ditions and constraints on tiling tend to force the re-use of
only a small subset of possible tiles, again freeing us from
the need to create and store all the possibilities. As a specific
example, the river example of Figure 1 uses only 21 distinct
tiles, out of a potential set measured in the tens of thousands.
If larger tile sets are required, we can exploit rotational sym-
metry to reduce the storage cost. With symmetry, and assum-
ing the only corner velocity is 0, the (3,3,1) set is reduced to
only 6 tiles, shown in Figure 4.

The flux is an integral quantity, and there are an infinite
number of velocity fields along an edge that all have the
same corner velocities and integrate to the same flux. We
could use an additional index for each edge to specify a par-
ticular edge velocity field, but we use only one edge velocity
field uniquely defined by the corner velocities and the flux
(see Section 3.4). This reduces the number of tiles in a set
at the expense of greater repetition of particular edges in the
tiling.

Tilings are created by placing tiles without overlap, so
a single velocity vector is enough to define each corner.
Greater overlap, and hence greater continuity in the flow
across tiling seams, could be incorporated by specifying a
small piece of corner velocity field. For example, tiles with
one unit of overlap would require a 2×2 velocity field for
each corner. Our tile filling and tiling algorithms can be eas-
ily adapted to support this.

3.3. Representing Flows

Flow tiles must store a continuous velocity field. As with
grid based fluid simulation algorithms we store the field
using a discrete set of samples on an axis aligned grid.
Most fluid solvers for graphics store face-centered ve-
locities [FM97] because this arrangement makes it sim-
pler to handle boundary conditions and projection onto a
divergence-free field. Each edge of the 2D grid (face in 3D)
stores the velocity component normal to the edge at its mid-
point. Such a representation requires 2n(n+1) values for a
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Figure 3: The stream function method for representing
divergence-free velocity fields. We show a small portion of
the bottom left of a grid. Values of a scalar stream function,
S, are stored at vertices of the grid. To evaluate a velocity,
(ẋ, ẏ), we first find four surrounding stream function values
by interpolating the vertex values. The velocity is then ob-
tained by taking the curl of the stream function.

2D grid with n×n cells. In a divergence-free field, however,
there are constraints upon the velocity values. Exploiting this
allows us to halve the storage cost of a field.

Every 2D divergence-free incompressible field can be rep-
resented as the curl of a scalar function, the stream function
S(x,y), multiplied by a vector in the third dimension, z:

v(x,y) = ∇× (S(x,y)z)

Discretizing the curl operator and storing the stream func-
tion, instead of the velocity field, gives us the arrangement
shown in Figure 3, with stream function values stored at the
vertices of the grid. The velocity, (ẋ, ẏ), at a point, (x,y),
is evaluated by interpolating the stream function to find
S(x− .5,y), S(x+0.5,y), S(x,y− .5) and S(x,y+ .5). Then:

ẋ = Sx,y−.5 −Sx,y+.5
ẏ = Sx+.5,y −Sx−.5,y

(3)

Evaluating these expressions is no more expensive than in-
terpolating the face-centered scheme, and the stream func-
tion representation has two advantages: the memory cost is
lower, at (n+1)2 for an n× n cell grid, and it is simpler to
construct tiles with specific fluxes across the edge. The total
flux across a tile edge is arrived at by adding (or subtracting)
the stream function values at the endpoints of the edge. All
the intermediate stream function values cancel out in a sum-
mation of the velocities across the edge. We can therefore
ensure a particular flux across an edge by setting the corner
stream function values appropriately, with no concern about
the field at interior points along the edge. We exploit this in
creating flow tiles.

The discussion above assumes square grid cells in the
derivation of the velocity from the stream function. Scaling
terms would be required for non-square cells. We discuss

this further in Section 5 in the context of mapping the tiling
onto an environment.

3.4. Filling Tiles

We fill flow tiles using a simple interpolation scheme based
on bi-cubic patches. Other alternatives for tile design include
specifying the field by hand, extracting tiles from another
flow-generation method, such as the Kolmogorov spectrum,
or taking a snapshot of a simulation on the tile.

The goal of our interpolation scheme is to take the cor-
ner velocities and flux chosen for a tile and produce a stream
function on a grid of a given size (the tile dimensions). We
work only with the stream function when filling tiles be-
cause it frees us from divergence-free considerations; any
stream function generates a divergence-free velocity field.
Our interpolation technique works for tile sizes greater than
or equal to 3×3 (4×4 stream samples).

The corner velocities and edge fluxes completely deter-
mine the stream function values in the corners of the tile
(up to an additive constant). Consider filling a tile of size
nx × ny, with indices into the stream function in the domain
(−.5, . . . ,nx + .5)× (−.5, . . . ,ny + .5). Using the fluxes as-
signed to this tile, we set the corner values:

S
−.5,−.5 = 0

Snx+.5,−.5 = S
−.5,−.5 + fbottom

S
−.5,ny+.5 = S

−.5,−.5 − fle f t

Snx+.5,ny+.5 = S
−.5,ny+.5 + ftop

Using the velocities and Equation 3 we can set the three
stream function values surrounding each corner. For exam-
ple:

S.5,−.5 = S
−.5,−.5 + ẏ0,0

S
−.5,.5 = S

−.5,−.5 − ẋ0,0

S.5,.5 = S
−.5,.5 + ẏ0,0

where ẋ0,0 and ẏ0,0 are the horizontal and vertical compo-
nents of the velocity at the bottom left corner. Values around
the other corners are set similarly.

The above construction around each corner results in 16
known stream values. We use a bi-cubic Bezier patch to fill
the remainder of the grid. We solve a linear system to find
the control points for the patch that interpolates the values
around the corners, and then evaluate the patch at other grid
locations to determine the remaining stream function values.
The result is a smooth, continuous flow within the tile. The
(3,3,1) tile set, suppressing rotationally symmetric tiles, is
shown in Figure 4.

4. TILING

Tiling is the process of laying out tiles to meet continuity and
boundary conditions. The tiling scheme meets two goals: to

c© The Eurographics Association 2004.

237



Chenney / Flow Tiles

Figure 4: The six tiles from a (3,3,1) set that remain when
rotational symmetries are removed. There is only one cor-
ner option: zero velocity. Each edge has three flux options:
-1, 0 or 1. Dots show the center of each grid cell, with
a line drawn from the dot in the direction of the velocity,
scaled according to the velocity’s magnitude. The fluxes,
(bottom,right,top,left), for each tile are, in clockwise order
from the top left: (0,0,0,0), (1,0,0,-1), (1,1,0,0), (1,1,1,1),
(1,1,-1,-1) and (1,0,1,0).

support user interaction similar to that for terrain tiles or tex-
ture mapping, and to incorporate flows into larger environ-
ments. The latter necessitates support for exterior and inte-
rior boundary conditions. The challenges in achieving these
goals arise from the divergence-free constraint, combined
with the use of a finite tile set. For a sense of the problems,
consider Figure 5, in which the aim was to fill a 3×3-tile re-
gion with zero boundary conditions. Even though the partial
tiling shown is divergence-free, it cannot be completed be-
cause a tile is required with more flux across an edge than ex-
ists in the tile set. Hence, constraints imposed on tile place-
ment by the edges of existing tiles are not sufficient to ensure
valid complete tilings with a fixed tile set.

The tiling algorithm places tiles on a rectangular grid.
Boundary conditions can be set on the flux across any edge
in the tiling and the velocity at any corner. The specified flux
or velocity must be one of those used to create the tile set. A
user may also specify periodic external boundaries or com-
pletely free boundaries. If an application does not require
all of the rectangular grid, the boundaries of the unwanted
region can be set to have zero velocity and flux; the flow
cannot cross such boundaries.

The basic operation for tiling is a selection function that
returns a set of tiles given a partial tiling and an unfilled loca-
tion. The selection operation guarantees that the tiling can be
completed if one of the selected tiles is used in the given lo-
cation. Tiling can thus proceed in any order, including those
requested by a user in an interactive program.

0
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0 0 0
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0

0

0 0 0

1
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-1
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d e f

g h i
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Figure 5: A tiling that cannot be completed, despite the fact
that all the tiles placed so far satisfy their neighbor condi-
tions. In this example, tiles a-e from a (3,3,1) set have been
placed. Next to be placed is f, but there exists no tile in the
set with the required top edge flux of 2. Our tiling algorithm
ensures that all partial tilings have a completion.

0

0

0 0

0

0

00

a

b

c
d

?

my,min ≤ a ≤ my,max
mx,min ≤ b ≤ mx,max
mx,min ≤ c ≤ mx,max
my,min ≤ d ≤ my,max

a+b = 0
a− c = 0
b−d = 0
c+d = 0

Figure 6: An example tiling grid and the constraints in the
integer program used to select tiles for the bottom left corner.
The values a, b, c and d are the integral flux values across
the edge. The inequalities enforce the limitations of the fi-
nite tile set, while the equalities enforce the divergence-free
constraint for each tile.

4.1. Tile Selection

The intuition behind tile selection is that every tile choice
pushes advected mass into it neighbors, who push it on into
other neighbors, and so on across the grid. At some point
the tiling reaches a place where three edges are constrained,
as in Figure 5, and we have no choice in the flux across an
edge. We must be certain, at this point, that there is a tile
with the required flux. Tile selection gives us this certainty,
by ensuring every partial tiling can be completed.

Tile selection for a given position is based on identifying
the range of possible values for the fluxes and corner ve-
locities of candidate tiles. To identify valid corners, we first
check if that corner is explicitly constrained, either by the
user or and existing tile. If so, the velocity must match, oth-
erwise any velocity is allowed. We identify valid edge fluxes
one at a time, using two integer programs for each edge. Fig-
ure 6 is an example of the constraints for one such program:
there is one constraint for every free edge in the tiling lim-
iting its value to those available in the tile set, and one con-

c© The Eurographics Association 2004.

238



Chenney / Flow Tiles

straint per open tile slot to enforce the divergence-free con-
straint for that slot. The objective function for a given edge’s
first linear program maximizes its flux, while the second
minimizes it. After solving the integer programs, we have
bounds for the valid edge fluxes, and we search the tile set
for tiles that meet the bounds.

Some tiles, however, are still not acceptable. For instance,
minimizing and maximizing the right edge flux may give a
range of [0,2], and the top might also give [0,2]. But it may
be the case that a right edge of 2 is only acceptable with
a top edge of 0, and vice versa. We therefore filter the set
of tiles by testing each one in turn for feasibility. In other
words, we add additional constraints to the integer program,
representing a candidate tile, and test if a solution exists that
meets the constraints. If so, the tile is returned as one of the
possibilities for the location.

Solving an integer program is a key step in our se-
lection algorithm. Integer programming is appropriate be-
cause we have bounds on the flows across edges, deter-
mined by the possible tile edges, and constraints imposed
by the divergence-free constraint and boundary conditions.
The program in Figure 6 implicitly accounts for the zero
boundary conditions on the tiling. In practice, we associate
variables with each boundary edge and use constraints to en-
force boundary conditions explicitly.

To solve the integer programs we use a standard simplex
method linear program solver. The integer programs we are
dealing with are network flow problems [Van01] and the In-
tegrality Theorem for such problems ensures that a simplex
solver returns integer results. This allows us to bypass ex-
pensive integer program solvers. While special purpose net-
work flow solvers exist, we instead use the Osi/Clp linear
program solver from the COIN package [LH03]. It supports
hot-start solutions where an existing solution with modified
bounds or a new objective is re-solved at significantly lower
cost than if started from scratch. This is highly beneficial in
our application, because when solving for a particular tile
slot we change the objective function but not the constraints
– they depend on the overall configuration of the tiling, not
a particular edge.

It is difficult to produce tight bounds on the cost of tiling.
While the number of variables for each program is known
(an n×n tiling contains 2n(n+1) variables, some with fixed
values), and the number of constraints depends on the free
slots, the use of a simplex solver makes predicting perfor-
mance a challenge. Furthermore, the number of programs
solved depends on the set of potentially feasible tiles found
in the first phase of the search. A scan-line order 10×10 ran-
dom tiling algorithm requests the solutions to over 650 pro-
grams which are computed in a total under 1.5 seconds. A
4×4 random tiling takes 0.077 seconds on a 1.3GHz PC,
while a 32×32 tiling takes 113 seconds.

Figure 7: A 4×4 tiling under construction in an editor. The
user specifies constraints on the flux across edges and the
velocities at the corners of tiles. When an empty location is
selected, in this case the top left corner, the editor presents a
set of tiles appropriate to that location, shown on the right.
The user can select one of the options to place in the loca-
tion. In the situation shown, the user is choosing the top-left
tile, which has boundary conditions above and to the left,
and velocity constraints on three of its corners. Hence all of
the tiles offered have nearly identical left and top edges.

5. APPLICATIONS

Flow tiles are suited to the generation of large, aperiodic ve-
locity fields that meet specific boundary conditions. Tiling
offers an WYSIWYG user interface for designing flows. We
present three applications that can take advantage of flow
tiles: the design of a river flowing between banks and around
bridge pylons; the advection of a crowd of agents through
city streets, and swirling fog over a pool. To create the first
two environments, we incorporated flow tiles into the con-
tent creation pipeline for a student developed game engine.

Random tilings provide an automated method of produc-
ing velocity fields. To produce a random tiling, we proceed
in scan-line order across the tile grid. For each position, we
request the set of tiles that satisfy the constraints and choose
one uniformly at random. Random tilings are interesting for
some natural effects, such as turbulent wind fields, but fre-
quently an animator has something else in mind.

We have built an interactive editor for tilings that is inte-
grated with a tool set for game content creation. The editor,
shown in Figure 7, allows a user to load a tile set, specify
a region to be tiled and set boundary conditions. The user
can then interactively create the tiling by clicking on a tile
location and choosing one of the valid tiles provided by the
system. Using the selection process of Section 4.1, the sys-
tem can guarantee the user that their tiling can be completed,
regardless of the order in which they place tiles. If desired,
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Figure 8: A zoomed in view showing the mapping for the
city example between a polygonal model (the gray triangles)
and a tiling (the heavy black lines). Vertices in the model are
associated with points in the tiling using flow coordinates.
As with texture coordinates, these allow us to map points in
the tiling, and hence velocities, back into the world.

the system can automatically locate positions with only one
valid option, and fill those for the user.

After a tiling is created, it is exported to another tool that
binds the tiling into an environment (see Figure 8). This is
done by identifying points in the environment with points
in the tiling using flow coordinates, just as texture mapping
uses texture coordinates to map points on surfaces to texture
locations. Boundary conditions in the tiling are typically as-
sociated with obstacles in the environment, such as a river
bank or the wall of a building. For good results, the flow co-
ordinates must map the tiling grid into the environment with-
out introducing flips, although tears in the grid are reason-
able provided they are along tile boundaries. Figure 1 shows
such a tear where the river forks. The tear prevents excess
tiles in the region under the ground and allows sharp corners
in the environment with minimal distortion of the tiling.

As with texture mapping, flow coordinates may be spec-
ified such that the resulting mapping deforms the grid. The
physical interpretation of this is the that the advected ma-
terial is compressible, which is reasonable for crowds – the
agents move closer together or farther apart. For animations
of incompressible fluids, such as water, a plausible visual in-
terpretation is that mass is being pushed under or above the
2D surface. While our current system does not modify the
third dimension, we could use the local deformation to add
waves or other effects.

Given a set of flow coordinates, we triangulate the world
space polygons. Each triangle in world space corresponds
to a triangle in the flow tiling. To determine the velocity

Figure 9: A frame showing people moving through a city,
driven by a flow tiling of the streets. Internal boundary con-
ditions prevent people from walking through building walls.

at a point in the world, (x,y), we first express the point in
the barycentric coordinate system, (α,β,γ), defined by the
world space triangulation. We transfer these barycentric co-
ordinates to the tiling and use flow coordinates to define
another coordinate system from which we can extract the
point’s (u,v) location in flow space. This is essentially equiv-
alent to standard texture mapping, except instead of a color
we have a velocity to transform back into world space.

The velocity in flow space, (u̇, v̇) is transformed first into
the barycentric coordinate system defined by the flow coor-
dinates, (α̇, β̇, γ̇):

α̇ =
∂α
∂u

u̇+
∂α
∂v

v̇

The equations for β̇ and γ̇ are similar. The terms ∂α/∂u and
so on are the partial derivatives of the barycentric coordi-
nates with respect to the flow coordinate system. They are
found by expressing α, β and γ as functions of u, v and the
flow coordinates, and taking the partial derivatives. They can
be stored with the triangle for fast look-up. The velocities in
world space are computed from the barycentric velocities:

ẋ =
∂x
∂α

α̇+
∂x
∂β

β̇+
∂x
∂γ

γ̇

with a similar equation for ẏ. The terms ∂x/∂α are found by
expressing the world coordinates in terms of α, β and γ and
taking partial derivatives. They turn out to be components of
the world coordinates of the triangle vertices.

The final part of our game development pipeline is a run-
time engine that understands flow coordinates and the map-
ping into tilings. We have used it to create two demonstra-
tions of flow tiles: a city model with tiles that define the flow
of people through the city streets (Figure 9), and a river that
flows within its banks, around a bridge pylon, and then forks
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(Figure 1). The city example uses a tile set with five flux op-
tions for each edge and five corner velocities. The river uses
five fluxes in the up/down stream direction and three options
across the stream, along with five corner velocities.

Flow tiles drive the crowd using the velocity to define the
direction of travel for each member. The use of divergence-
free flows to define crowd motion ensures that, under reason-
able conditions, the agents do not require any form of colli-
sion detection. Provided the agents start off non-intersecting
and with some buffer space around them, and the field is
close to incompressible, the flow will keep them apart from
each other and the walls of building. Due to the fixed na-
ture of the tiles, the crowd does not interact in any way,
but for animations of an emergency evacuation or a panick-
ing crowd this is not important. Interaction could be added
by including local areas of simulation where agents ceased
following the field and instead interacted using some other
method. A limitation of flow tiles is that streamlines never
cross, which means that characters can never, for instance,
cross each other at the middle of an intersection. This could
be addressed by overlaying multiple tiles in a single tiling
space, with collision detection required in the overlay region.

The river example (Figure 1) advects leaves in the flow
around a bridge pylon and a fork in the river. Flux and cor-
ner velocity constraints were used to add rotational motion
to the flow in the wake of the bridge. The fork was achieved
by cutting the tiling grid along an internal edge and pulling
the two halves apart. In a relatively large flow application
such as this, simulation would be too expensive for real-time
performance, particularly given the other demands on pro-
cessor time and memory in a computer game or interactive
environment. Flow tiles are efficient to store (they use only
20% of the space required to store the field without repeating
tiles) and fast to evaluate for a velocity.

Flow tiles can be extended to generate time-varying flows
by interpolating between tilings. By the superposition prin-
ciple, the linear combination of two divergence-free flows
is also divergence free. A user could define a sequence of
key-frame tilings, which would be looped to generate long
running animations. An alternative, which we have imple-
mented with random tilings, is to design a few key tilings
and apply them in a random sequence generated an the fly.
We have used such a field to drive a swirling fog animation,
a frame of which is shown in Figure 10.

6. CONCLUSION

Flow tiles are particularly useful in applications where large,
designed flows are required for use at interactive rates. How-
ever, there are several artifacts and limitations that arise from
flow tiles, primarily due to the way that we specify and fill
tiles, and the use of a regular grid.

Our linear interpolation technique for fill the interiors of
tiles makes the generation of small scale turbulence difficult,

Figure 10: A frame from a swirling fog animation generated
using time-varying flow tilings.

and it is not physically motivated. Moreover, using inter-
polation based tiles is equivalent to simply specifying edge
fluxes and corner velocities, and interpolating those directly,
without going to the effort of designing tiles. We emphasize,
however, that the techniques outlined for defining the con-
straints on tiles and tiling apply regardless of how tiles are
filled. One superior approach would be to design more com-
plex edge velocity profiles and use simulation or an adaption
of a spectrum method to fill the tiles. The subdivision flow
technique of Weimer and Warren [WW99] could also be ex-
tended to meet boundary constraints and hence fill tiles.

The number of tiles in a set grows rapidly as the number
of corner options is increased. Tiles with only a couple of
corners produce noticeable artifacts at the regularly spaced
vertices of the tiling grid. The grid could be distorted to re-
duce the regularity of the artifacts, which are most obvious
in randomly generated, incoherent fields. Symmetry could
also be exploited to allow more corner options without larger
sets. Large tile sets also pose a problem in interactive tiling
because the number of potential tiles for a given position
may be very large, although this can be alleviated by asking
a user to specify more information about the desired tiles.

We use square tiles on a regular grid, which limits the
topologies onto which tiles can be mapped with low distor-
tion. Our tiling selection algorithm, however, works on any
mesh of edges, thus allowing us to generate divergence-free
flows for arbitrary polygonal tile shapes, including triangles.
In particular, Neyret and Cani’s [NC99] surface tiling ap-
proach could be adapted for triangular flow tiles. The great-
est challenge is extending to other shapes the techniques for
filling tiles and controlling divergence.

The primary advantage of flow tiles is the ability to meet
boundary conditions – allowing our flows to be inserted into
larger environments – and the provision of a WYSIWYG
interface for creating fields. Our flows are divergence-free,
making them suitable to drive a wide range of natural effects,
such as fluid flow or crowd motion, and are efficient to store
and access, allowing their use in interactive environments
such as games.
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