EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)

L. B. Kara and K. Singh (Editors)

The 1¢ Recognizer: A Fast, Accurate, and Easy-to-Implement
Handwritten Gesture Recognition Technique

J. Herold! and T.F. Stahovich?

! Department of Computer Science and Engineering, University of California, Riverside, CA 92521, United States
2Department of Mechanical Engineering, University of California, Riverside, CA 92521, United States

Abstract

We present the One Cent Recognizer, an easy-to-implement, efficient, and accurate handwritten gesture recog-
nizer. By applying time series recognition techniques, we have developed a minimally complex technique that is
both much faster than and at least as accurate as the Dollar Recognizer. Additionally, the One Cent Recognizer is
much easier to implement than the Dollar Recognizer. Our technique is primarily enabled by a simple and novel
one-dimensional representation of handwritten pen strokes. This representation is intrinsically rotation invariant,
allowing our technique to avoid costly rotate-and-check searches typically employed in prior template-based ges-
ture recognition techniques. In experiments, our technique has proven to be two orders of magnitude faster than

the Dollar Recognizer:

Categories and Subject Descriptors (according to ACM CCS): [5.2 [Pattern Recognition]: Design Methodology—

Classifier Design and implementation

1. Introduction

Gesture recognition is a primary enabling technology in pen-
based computer interfaces and sketch understanding. Ges-
ture recognition is the process by which a user’s handwritten
pen stroke is recognized as being one of a number of prede-
fined gesture types.

As we show in the related work section, numerous hand-
written gesture recognition techniques have been developed.
Arguably, the most popular of these is the Dollar Recog-
nizer ($1). This aptly named technique’s popularity can be
attributed to its ease of implementation, efficiency, and high
performance.

In this work, we improve on $1 by introducing the One
Cent Recognizer (1%), a technique that requires less code, is
more efficient, and performs at least as well as $1. This tech-
nique is enabled by a novel transformation of raw pen stroke
data into a one-dimensional feature vector. A simple time
series classification technique can then be used to find a fea-
ture vector’s closest match in a training corpus. This novel
transformation is intrinsically rotation invariant, eliminating
the need for rotate-and-check searches typically employed

© The Eurographics Association 2012.

DOI: 10.2312/SBM/SBM12/039-046

in previous approaches, resulting in a substantial speed ad-
vantage for the 1¢ technique.

We perform two rigorous train-and-test cross-validation
schemes to evaluate the efficiency and accuracy of 1¢ and $1.
The first is a user-dependent scheme, which demonstrates
each recognizer’s performance when the testing and training
data are both generated by the same participant. The second
is a user-independent scheme, which demonstrates each rec-
ognizer’s performance when the testing data comes from a
participant who generated none of the training data. These
tests show that 1 is always at least as accurate as $1, and is
always two orders of magnitude faster.

In the following section we discuss related work in hand-
written gesture recognition as well as time series classifica-
tion techniques that serve as inspiration for 1¢. In Section 4
we provide the algorithmic details of our technique. The re-
sults of the user-dependent and user-independent evaluations
are presented in Section 5. We discuss the results and present
conclusions in Section 6 and Section 7. Lastly, in the Ap-
pendix, we present concise pseudocode for 1¢ that can be
used to quickly implement this technique. Additionally, the
appendix contains the URL to an open-source implementa-
tion of 1.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SBM/SBM12/039-046

40 J. Herold & T. Stahovich /1¢

2. Related Work

Wobbrock et. al [WWLO07] developed $1, which is so called
because of its ease of implementation; the pseudocode for
$1 contains only 72 functioning lines. This handwritten ges-
ture recognition technique comprises two major steps: trans-
formation and recognition. In the first step, a raw stroke is
transformed into a template. This transformation begins by
resampling a stroke to a fixed number of points such that the
distances between all successive pairs of points are equal.
Next, the resampled stroke is rotated so that its indicative
angle lies at 0°. Lastly, the points are scaled to a fixed-size
square and the points are translated so that their centroid is at
the origin. These transformations effectively normalize the
pen stroke so that comparisons are scale and position invari-
ant. In the second step, the templatized candidate stroke is
compared to a number of training templates in order to find
its best match. In order to be rotation invariant, $1 employs
golden section search during this step to determine the best
angular alignment of the candidate with each template.

Rubine [Rub91] developed one of the earliest handwrit-
ten gesture recognizers in his seminal paper. This technique
begins by representing a pen stroke using 13 geometric fea-
tures, such as the sum of the curvature values at each point
of the stroke, the angle at the first point of the gesture, and
the size of the stroke’s bounding box. Gestures are recog-
nized using a simple linear classifier, which is trained on
these features. While this approach achieved good accuracy,
it was not rotation invariant.

The Image-Based Recognizer [Kar04] applies popular
image recognition techniques. The Image-Based Recog-
nizer converts each candidate stroke into a fixed-size binary
bitmap. The distance between two bitmaps is computed us-
ing four traditional bitmap distances, e.g., the Hausdorff dis-
tance. Similar to $1, when a candidate template is compared
to a training template, a search is employed to find the an-
gular orientation that minimizes the distance to that train-
ing template. While this technique is typically more accu-
rate than $1, it is much more complex in its implementation
and is far less efficient; operations on bitmaps are typically
O(N?).

These techniques have several features in common. Most
importantly, they are all template-based. The unknown can-
didate must be compared to each of the templates in the
training corpus to determine the best match. Also, $1 and
Rubine’s method can recognize only single-stroke gestures.
For example, they cannot recognize the letter “t” if it is
drawn with two strokes.

While the Image-Based recognizer can recognize multi-
stroke symbols, the set of strokes comprising the symbol
must be distinguished from the other strokes in the sketch
by some other process. Sezgin and Davis [SD05] developed
a technique which uses Hidden Markov Models (HMMs) to
identify all of the symbols in a sketch without preprocess-
ing. By considering sequences of pen strokes, the HMMs

naturally identify multi-stroke symbols. This approach be-
gins by processing strokes using the Toolkit from [SSDO06].
This toolkit segments pen strokes into their constituent ge-
ometric primitives, such as lines and arcs. The segmented
output is then converted into a sequence of discrete obser-
vations. A separate HMM is trained for each symbol class.
Candidate sequences are classified according to the HMM
that best recognizes the candidate sequence, i.e., returns the
highest probability using the Forward-Backward algorithm.

While machine learning approaches such as linear clas-
sifiers and HMMs, are frequently used for sketch under-
standing techniques, time series classification techniques
[CKO05, HMSO05, CKO05] have not been widely used. This is
surprising as pen strokes are a time series of (x,y) values.
Xi et al. [XKS*06] have shown that simple first-nearest-
neighbor (INN) Euclidean distance and Dynamic Time
Warping (DTW) approaches are often more accurate than
more complex time series classification techniques, with
DTW being the more accurate of the two. Tappert [Tap82]
used DTW to implement a handwriting recognition tech-
nique which was used as a benchmark for $1. It was found
that $1 typically performed as well as DTW and was much
more efficient and easier to implement. However, DTW is
much more expensive than Euclidean 1NN approaches. Our
goal is develop an efficient gesture recognizer using a sim-
ple, Euclidean 1NN approach.

The key to using a Euclidean 1NN approach is develop-
ing a one-dimensional time series that allows for accurate
recognition. The representation used in this paper is based
on that found in [XKWMNO7] which was used to recog-
nize digitized hieroglyphs. We have significantly modified
this representation to handle handwritten gestures. The hi-
eroglyphs always formed a closed contour, which is rarely
the case for handwritten gestures. Additionally, while the hi-
eroglyph bitmaps contain no timing information, handwrit-
ten gestures do, and this may be leveraged to achieve greater
accuracy. Furthermore, the one-dimensional hieroglyph rep-
resentation is intrinsically sensitive to angular orientation,
and thus, just as with $1, search is required to determine the
best angular orientation. As we show in Section 4, our repre-
sentation is rotation invariant, eliminating the need for such
a search.

3. Data Set

We used the pen stroke data from the study described in
[HS11] to evaluate the performance of 1¢ and benchmark
it against $1. In that study, an HP TC4400 Tablet PC with
a digitizer resolution of 1024x768 pixels was used for data
collection. The participants were asked to draw each of the
ten symbols in Figure 1 18 times. Thus, there were 180
strokes drawn by each participant, yielding 2,520 strokes in
total.

[HS11] reports that the participants were informed that

© The Eurographics Association 2012.

J. Herold & T. Stahovich /1¢ 41

the purpose of the study was to collect data to evaluate the
performance of an algorithm. Participants were instructed to
“draw naturally with ordinary accuracy,” and to not attempt
to “trick or break the system.” Before beginning the exercise,
each participant was given a few minutes to practice drawing
on the Tablet PC.

ANl Ne)

Figure 1: The ten shapes used to evaluate 1°: triangle, rect-
angle, omega, sigma, square root, resistor, star, inductor,
stoop, not.

Each point from the data set is a triple containing an x-
coordinate, y-coordinate, and time stamp. To facilitate train-
ing and testing of algorithms, each gesture was manually la-
beled according to its shape.

4. Approach

1¢ comprises two major steps. In the first step, the raw
pen stroke data is transformed into a fixed-length, one-
dimensional vector which we call a template. In the sec-
ond step, distances are computed between the candidate and

training templates to find the closest match.

4.1. Step 1: Templatizing Pen Stroke Data
4.1.1. Resample

A simple Euclidean distance comparison of two time series
requires that both series be the same length. Thus, the first
step in templatizing a pen stroke is to resample it to a fixed
number of points, N, such that the distance between all pairs
of successive points is equal. We accomplish this using the
same approach used in [WWLO07]. To be consistent with the
implementation of $1 we use N = 64 in this paper, although

© The Eurographics Association 2012.

as we show in the results section, any value of N between 16
and 128 is acceptable.

4.1.2. One Dimensional Representation

Next, we transform the three dimensional (x,y,t) data of each
stroke into a one-dimensional vector, d. We begin by com-
puting the centroid, ¢, of the points comprising the stroke,
i.e., (ux, uy). We then compute the Euclidean distance from
¢ to each resampled point in the stroke. The resulting series
of distances, d, ordered by time, characterizes the stroke:

d={dy,...dy} st.di=||pi—c|| 6))

Because this representation is based on the centroid of the
gesture, it is intrinsically rotation invariant. Consider the ex-
ample in Figure 2: a rotation transformation does not change
a point’s distance to the centroid. This allows our technique
to avoid expensive search that other methods require to find
the optimal angular alignment. Additionally, this transfor-
mation is intrinsically position invariant, allowing for strokes
drawn anywhere on a page to be compared to each other.

<

Figure 2: Rotation invariance of our one-dimensional pen
stroke representation. Rotating the star gesture does not
change the distance from the centroid (point “C”) to points
on the stroke such as points DI and D2.

Next, we z-normalize d to ensure scale invariance:

d: —
z={z1,...,an} s.t.zi = i Hd 2)
Ga

where 1 is the average of the stroke’s d; values, and G, is
the standard deviation.

This z-normalized distance vector, z, is the template used
to represent the candidate pen stroke. Figure 3 illustrates
each of the major steps of this templatizing process.

42 J. Herold & T. Stahovich /1¢

(A) (B)

(®) (D)

Figure 3: The templatizing process. The raw candidate pen
stroke (A) is first resampled into N points (B). Next the cen-
troid (red point) of the resampled points is computed (C) and
the distance from it to every resampled point on the stroke
is computed (blue lines). This sequence of distances is z-
normalized and the resulting vector is the template for the
candidate stroke.

4.2. Step 2: Comparing Templates

Because all distance vectors are the same length and z-
normalized, they may be directly compared. We use the L?
distance to compare vectors. More formally, the distance be-
tween two vectors, vy and v; is defined as:

L*(vi,v2) = [[vi —va|]? 3)

Using this distance, we apply a simple 1NN approach
to recognize gestures. A templatized candidate (unknown)
stroke, U, is compared to each training template, 7', in the
training set. The matching training template, 7™, is the one
which minimizes the L? distance:

T* = argrnTian(U, T))

5. Results

We present here an analysis of the efficiency and accuracy
of both $1 and 1¢. Two separate validation schemes were
used, a user-independent scheme and a user-dependent one.
In each fold of the user-independent scheme, n examples of
each gesture from one participant were used for training, and
all gestures from the other participants were used for test-
ing. As there were 14 participants, we performed 14-folds of
cross-validation for varying values of n. In each case, 2,340

$1 Tot. | 1% Tot. | $1 Ave. | 1 Ave.
5.20 0.16 2.22 0.07
10.20 0.21 435 0.09
15.22 0.25 6.50 0.11
20.07 0.30 8.57 0.13
25.28 0.38 10.80 0.16
29.96 0.41 12.80 0.17
35.14 0.47 15.01 0.20
40.39 0.54 17.26 0.23
45.53 0.57 19.45 0.24

O| 0 I[N N[KW —| I

Table 1: Computation times for $1 and 1 as the number
of examples (n) of each gesture used for training is varied.
The second and third columns are the total time required by
$1 and 1° to recognize all 2340 test gestures (seconds). The
last two columns are the average times to recognize a single
gesture (milliseconds).

gestures (13 participants x 180 gestures) were used for test-
ing. The accuracy achieved by both recognizers for varying
values of n are shown in Figure 4. Recognition timing results
are shown in Table 1.

User-Independent Accuracy

Figure 4: Average accuracy as a function of the number of
training examples (n) for each gesture type for both $1 and
1¢. In each case the difference between the groups is signifi-
cant (p < 0.01)

In the user-dependent scheme, a separate cross-validation
is performed for each participant, with testing and training
data from only that participant. We performed 18-folds of
cross-validation for each participant. In each fold, one exam-
ple of each gesture type is used for training and the others are
used for testing (each gesture was used for training exactly
one time). Because each participant drew 180 strokes, there
were 170 strokes tested in each fold. Performing 18 folds re-
sulted in 3,060 test recognitions. We averaged the accuracy
for each participant across their 18-folds, producing the re-
sults in Figure 5.

Figure 6 presents the accuracy for both $1 and 1¢ for
each gesture type. Here accuracy is computed with the user-
independent scheme with nine training templates for each

© The Eurographics Association 2012.

J. Herold & T. Stahovich /1¢

Induc. | Not | Omega | Rect. | Resist. | Sigma | Sqrt Star | Stoop | Triang.
Induc. 3245 0 0 0 5 0 26 0 0 0
Not 0 2089 96 435 0 133 22 51 161 289
Omega 3 3 2791 0 238 0 37 0 73 131
Rect. 0 144 33 2822 0 0 5 149 84 39
Resist. 319 0 0 0 2952 0 5 0 0 0
Sigma 153 0 3 0 4 3073 41 0 0 2
Sqrt 533 0 2 0 27 2 2712 0 0 0
Star 0 59 15 325 34 5 0 2776 43 19
Stoop 0 111 1052 374 0 186 11 53 1192 297
Triang. 0 143 182 45 0 104 0 7 63 2732
Table 2: Per-shape confusion matrix of 1° on the user-independent scheme.
Induc. | Not | Omega | Rect. | Resist. | Sigma | Sqrt | Star | Stoop | Triang.
Induc. 3043 0 0 0 27 42 164 0 0 0
Not 33 1217 60 861 23 503 210 59 126 184
Omega 82 36 2755 305 13 53 18 1 13
Rect. 0 3 214 2185 333 38 0 253 250
Resist. 154 0 0 0 12 1 0 0 0
Sigma 5 1 0 0 3260 9 0 0 1
Sqrt 150 73 118 118 169 2635 0 0 13
Star 1 680 34 10 319 7 1997 25 12
Stoop 0 6 509 1144 213 13 6 798 587
Triang. 0 1 264 444 338 5 0 316 1908

Table 3: Per-shape confusion matrix of $1 on the user-independent scheme.

User-Dependent Accuracy

ms$1
mic

1* 2 3* 4 5 6 7 8 9 10 11* 12 13 14

Figure 5: Accuracy results for each participant under the
user-dependent scheme. Accuracy for a participant is aver-
aged across 18-folds of cross-validation. An asterisk indi-
cates that the difference in accuracies of the two methods for
a particular participant is statistically significant(p < 0.05).

gesture type (n = 9). The per-shape confusion matrix of the
user-independent evaluation for 1¢ and $1 are shown in Ta-
ble 2 and Table 3 respectively. These tables show how of-
ten each shape was recognized as each other shape, which
is useful in understanding cases where the two recognizers
perform poorly.

© The Eurographics Association 2012.

$1 1° D
N=16 | 948 | 942 | 0.68
N=32 | 948 | 93.8 | 0.55
N=64 | 947 | 934 | 043
N=128 | 94.7 | 93.2 | 0.38

Table 4: Average accuracy of each technique across varying
values of N, the resampling size, using the user-dependent
method. The p column represents the p-value of a student
t-test of the accuracies of the two techniques.

Table 4 presents the accuracy of each method across vary-
ing values of N. The difference between the accuracy of 1
for N =16 and N = 128 is not significant (p = 0.61). Sim-
ilarly, the difference between the accuracy of $1 for N = 16
and N = 128 is not significant (p = 0.94). Additionally, the
difference in accuracies of the two methods for each value
of N is never significant (p > 0.38). These results demon-
strate that the accuracy of either method is insensitive to this
parameter and thus any value within this range is acceptable.

We repeated all of the above analyses, rotating the testing
templates before recognition for increasing angles of rota-
tion. We found in all such experiments that the rotation angle
never affected the accuracy of either $1 or 1¢, demonstrating

44 J. Herold & T. Stahovich /1¢

a theoretical rotation invariance. A user study in which par-
ticipants are asked to draw symbols at varying angles would
be required to determine if, in practice, these methods were
intolerant of additional transformations caused by drawing
gestures at an angle.

Per Shape Accuracy

ms1
mic

Figure 6: Average per shape accuracy results from the user-
independent scheme with n = 9 training templates per ges-
ture type. The difference in accuracy between the two meth-
ods is significant for each shape (p < 0.03).

6. Discussion

The user-independent scheme simulates off-the-shelf perfor-
mance of each recognizer. One might imagine supplying a
number of training examples with these recognizers so that
a user can deploy them without needing to supply her own
training examples. The user-independent evaluation consid-
ers the kind of performance that would be achieved in this
circumstance. As Figure 4 indicates, user-independent accu-
racy increases slightly with the number of training templates
used. Furthermore, 1¢ performs significantly better than $1
for this scheme.

Figure 6 provides additional insight into the difference
in accuracy of the two recognizers when using the user-
dependent scheme. For some gestures, the two recognizers
achieve similar accuracy. On others, such as the not and star
gestures, 1¢ performs much better than $1. Empirically, it
seems that $1 often misinterprets gestures that form closed
contours as other closed contour gestures, whereas 1¢ is in-
trinsically well suited for recognizing such shapes.

Table 1 shows the expected result that computation time
linearly increases with the number of training templates.
Most importantly though, the computation time of 1¢ is con-
sistently two orders of magnitude less than that of $1.

The user-dependent scheme simulates user-optimized per-
formance for both recognizers. Figure 5 suggests that the
two recognizers perform nearly equally well; in only four
cases is the accuracy between the two techniques significant,
and in three of those cases, $1 performs better than 1¢.

7. Conclusion

We have presented 1%, a fast, accurate, and easy-to-
implement handwritten gesture recognizer. Our technique
applies simple, yet effective techniques adapted from the
time series classification literature. The key enabling com-
ponent of our algorithm is our novel one-dimensional rep-
resentation of handwritten strokes. This representation is in-
trinsically rotation invariant, eliminating the need for the ex-
pensive search-based angular alignment computation previ-
ous template-based gesture recognition techniques have re-
quired.

We have evaluated 1¢ on a large database containing 2,520
strokes and compared its accuracy to that of $1. By applying
both user-dependent and user-independent cross-validation
schemes, we evaluated accuracy on 75,600 test cases. Our
results show that in the user-dependent scheme, both recog-
nizers performed nearly as well as each other. In the user-
independent scheme, 1% always performs significantly bet-
ter than $1. These results suggest that both recognizers are
able to take advantage of users’ individual drawing styles
but 1¢ is more tolerant of drawing styles not encountered in
the training corpus. Additionally, our results show that 1¢ is
consistently two orders of magnitude faster than $1. Just as
important for developers, 1¢ requires considerably less effort
to implement than $1; 1% comprises 37 lines of pseudocode
while $1 comprises 72.

8. Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 0935239.

References

[CKO5] CHEN L., KAMEL M. S.: Design of multiple classifier
systems for time series data. In Proceedings of the 6th interna-
tional conference on Multiple Classifier Systems (Berlin, Heidel-
berg, 2005), MCS’05, Springer-Verlag, pp. 216-225. 2

[HMSO05] HAYASHI A., MIZUHARA Y., SUEMATSU N.: Embed-
ding time series data for classification. In Proceedings of the 4th
international conference on Machine Learning and Data Mining
in Pattern Recognition (Berlin, Heidelberg, 2005), MLDM’05,
Springer-Verlag, pp. 356-365. 2

[HS11] HEROLD J., STAHOVICH T. F.: Speedseg: A technique
for segmenting pen strokes using pen speed. Computers &
Graphics 35,2 (2011), 250 — 264. 2

[Kar04] KARA L. B.: An image-based trainable symbol recog-
nizer for sketch-based interfaces. In in AAAI Fall Symposium Se-
ries 2004: Making Pen-Based Interaction Intelligent and Natural
(2004), AAAI Press, pp. 99-105. 2

[Rub91] RUBINE D.: Specifying gestures by example. SIG-
GRAPH Comput. Graph. 25, 4 (July 1991), 329-337. 2

[SDO5] SEzGIN T. M., Davis R.: Hmm-based efficient sketch
recognition. In Proceedings of the 10th international conference
on Intelligent user interfaces (New York, NY, USA, 2005), IUI
’05, ACM, pp. 281-283. 2

© The Eurographics Association 2012.

J. Herold & T. Stahovich /1¢ 45

[SSD06] SEzZGIN T. M., STAHOVICH T., DAVIS R.: Sketch
based interfaces: early processing for sketch understanding. In
ACM SIGGRAPH 2006 Courses (New York, NY, USA, 2006),
SIGGRAPH ’06, ACM. 2

[Tap82] TAPPERT C. C.: Cursive script recognition by elastic
matching. IBM J. Res. Dev. 26, 6 (Nov. 1982), 765-771. 2

[WWL07] WOBBROCK J. O., WILSON A. D., L1 Y.: Gestures
without libraries, toolkits or training: a $1 recognizer for user in-
terface prototypes. In Proceedings of the 20th annual ACM sym-
posium on User interface software and technology (New York,
NY, USA, 2007), UIST *07, ACM, pp. 159-168. 2, 3

[XKS*06] X1 X., KEoGH E., SHELTON C., WEI L.,
RATANAMAHATANA C. A.: Fast time series classification
using numerosity reduction. In Proceedings of the 23rd interna-
tional conference on Machine learning (New York, NY, USA,
2006), ICML *06, ACM, pp. 1033-1040. 2

[XKWMNO07] X1 X., KEOGH E., WEI L., MAFRA-NETO A.:
Finding motifs in database of shapes. In IN PROC. OF SIAM
INTERNATIONAL CONFERENCE ON DATA MINING (SD-
MaAZ07 (2007). 2

Appendix - Pseudocode

The following pseudocode has been im-
plemented in JAVA and is available at:
https://sourceforge.net/projects/onecentrec/

© The Eurographics Association 2012.

Step 1 Transforms a candidate stroke into a template. First
the stroke is resampled via RESAMPLE, it is then converted
to a one-dimensional vector via C-DISTANCE. Last the vec-
tor is normalized via Z-NORMALIZE.
function RESAMPLE((points, n)
I < PATH-LENGTH(points)/(n — 1)
D<+0
newPoints < pointsg
for all point p; for i > 1 in points do
if D+d > I then
qx 4= Pi—1+ (I =D)/d) X (piy — pi-1,)
qy < pi—1,+ (I =D)/d) x (piy — pi-1y)
APPEND(newPoints, q)
INSERT (points, i, q)
D+ 0
else
D+ D+d
end if
end for
return newPoints
end function
function PATH-LENGTH(A)
d<+0
for i from 1 to |A| step 1 do
d < d+ DISTANCE(A;_1,A;)
end for
return d
end function
function C-DISTANCE((points)
¢ +— CENTROID(points)
for all point p in points do
d < DISTANCE(c, p)
APPEND(distances,d)
end for
return distances
end function
function Z-NORMALIZE(S)
u = AVERAGE(S)
o = STANDARD-DEVIATION(S)
for all d in S do
2 (d—w)o
APPEND(z,d;)
end for
return d;
end function

> Equation 4.1.2
> Computes(iy, tty)

> Equation 4.1.2

46 J. Herold & T. Stahovich /1¢

Step 2 The following functions comprise all the steps needed
to recognize a candidate stroke that has been converted into
a template, given a set of training templates.
function RECOGNIZE(S, Templates) > Equation 4.2
for all template T in Templates do
b < 400
d <+~ L2, T)
if d < b then
b<+d
T« T
end if
end for
return T*
end function
function L2(S,T) > Equation 4.2
d<0
for all 5;,¢; fori > 1in S,T do
d<d+(si—1)*
end for
return d
end function

© The Eurographics Association 2012.

