
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Sketch-Based Interfaces and Modeling 2007, Riverside, CA, August 02-03, 2007.

© 2007 ACM 978-1-59593-913-5/07/0008 $5.00

Ink Features for Diagram Recognition

Rachel Patel
1
, Beryl Plimmer

1
, John Grundy

1, 2
, Ross Ihaka

3

1
Department of Computer Science

2
Department of Electrical and Computer Engineering

3
Department of Statistics
University of Auckland

Private Bag 92019, Auckland, New Zealand

Abstract

The ability to automatically recognize a sketch accurately is important to computer-based diagramming. Many recognition
techniques have been proposed but few researchers have reported the use of formal methods to select the most appropriate
ink features for recognition algorithms. We have used a statistical approach to identify the most important distinguishing
features of ink for dividing text and shapes. We implemented these into an existing recognition engine and conducted a
comparative evaluation. Our feature set more successfully classified a range of common diagram elements than two existing
dividers.

Categories and subject descriptors: I.4.7 [Image Processing and Computer Vision]: Feature Measurement - feature
representation
 __

1. Introduction

Computer-based sketch tools, particularly diagramming
tools, show promise as an alternative to paper for capturing
early-phase designs. They retain the advantages of paper -
such as an unconstrained drawing space that allows
ambiguity and quick construction. They also have the key
advantages of computer tools - such as digital storage,
transmission and archiving. However, despite suitable
hardware being available for some time, diagramming
sketch tools are yet to achieve general acceptance. One of
the outstanding challenges is the need for far more accurate
recognition.

Recognition of sketches is an important aspect of
computer-based diagramming: it allows the software to
support tasks such as intelligent editing, execution,
conversion and animation of the sketches. The syntactic
and semantic elements of a diagram are both important.
Only with accurate recognition will the full potential of
computerization of sketches be realized.

There are three main approaches to the recognition:
bottom-up, top-down or a combination of both. Bottom-up
attempts to recognize individual ink segments and then
progressively join these into larger and more complex
groups thus developing an overall semantic understanding
of the diagram. Top-down starts with a high-level analysis
of the structure and uses this information to aid recognition
of the composite parts. Combinations work both the
primitives and layout to try to resolve ambiguities.

Regardless of the approach, sketch recognition is
comprised of capturing ink features and algorithms to
combine these features. The features measure aspects of an
ink stroke’s curvature, size, time, intersections and use

similar aspects to detect relationships between strokes. To
date, a wide range of algorithms have been used to
recognise hand drawn shapes and text. However, little
research has so far been done into the relative effectiveness
of different approaches and use of different ink features in
recognition. Furthermore, considering that stroke features
are such an important part of recognition, there is little
evidence of the use of formal methods to identify the most
significant ink features to use. Most reports suggest a
reliance on ad-hoc heuristics and empirical trial and error.

Most previous work in sketched diagram recognition
concentrates on basic shape and gesture recognition. There
are few diagramming tools that allow for both shape and
text recognition together. Many of the tools that do support
both are either modal interfaces or limited in functionality.
However, the flexibility of sketch tools must be increased if
they are to equal the performance of designing with pen
and paper [Bla90; Goe95; BK03; PA03]. Regardless of
whether a top-down or bottom-up approach is taken, text
and shapes are semantically different and need to be treated
separately during the recognition process. Handwritten
characters need to be clustered into words and phrases in
preparation for character recognition while shape
combinations need to be identified as components and the
relationships between the components explored.

In the following section we review sketch recognition
techniques currently being used. Following this we describe
an experiment that we conducted to find distinguishing ink
features of text and shape strokes for a text/shape divider.
We discuss the use of these features to implement an
improved divider algorithm and compare its performance to
two existing algorithms. We then discuss the findings of
our experiment in the wider context of diagram recognition
and conclude with areas for further research.

http://www.eg.org
http://diglib.eg.org

2. Background

Most sketch diagramming tools include some recognition
[Lan95; GD96; DHT00; HL00; BKC01; FPJ02; CGH03;
LL03; PA03; PA03a; PA03b; CFK*04; PA04]. Most
diagram recognition engines have adopted a bottom-up
approach. Bottom-up attempts to recognize individual ink
segments or strokes and then progressively join these into
larger and more complex groups thus developing an overall
understanding of the diagram. Top-down starts with a high-
level analysis of the structure and uses this information to
aid recognition of the composite parts. Only a few current
diagramming tools provide integrated writing and drawing
recognition [HD02; CGH03; Lan03; LVZ04; Pli04;
CMP05; You05; PTY06; FP07].

Bottom-up approaches start with stroke or sub-stroke
recognition. Rubine’s work [Rub91] in the area of gesture
recognition has been used by numerous sketch recognition
systems. He proposed the use of Hidden Markov Models
(HMM) for single stroke ink recognition. He reported a set
of 13 stroke features selected by empirical analysis and
heuristics. While Rubine reported a 96.8% success rate, our
experiments that re-implement Rubine’s features have been
lower 86% [Pli04] and 84% [You05]. However his
algorithm has been widely adopted [LM95; LM96; DHT00;
LNH*00; CGH03; PA03b; Pli04; CMP05; You05; PTY06;
FP07] with various alterations to the feature set reported.
The HMMs work best on a single stroke, techniques have
been developed to join strokes [You05] and to split strokes
[HSN04]. Nakai & Sudo et al [NSS*02] also use HMM and
include pressure information as features to assist in
recognition of Japanese characters.

Template matching is an alternative approach [Gro94;
SDS95; Sta97; CSK*02; AD04; KS04]. A first
approximation phase uses various stroke features to fit lines
and curves to the sketch. These features are typically
determined by empirical observation. These primitives are
matched to shape templates. Often with this approach the
sketch is transformed (beautified) into a formal
representation as a part of the recognition process.

Once the primitives are identified, a range of different
algorithms are used to combine these primitives into basic
components (a node containing text for example). These
algorithms including: Semantic networks [CSK*02],
Bayesian networks [AD04], fuzzy logic [FPJ02; Qin05],
and rules based on spatial and temporal relationships
[HD03; You05]. Fonseca et al [JF99; FJ00; FJ01; FPJ02]
report using percentile graphics for each possible feature
which show the statistical distribution of feature values for
different shape classes. This is one of the few ink feature
sets that is scientifically-based.

The top-down approach first identifies high-level
document structure. Kara and Stahovich [KS04] examine
network diagrams consisting of connectors and nodes first
identifying the connectors and then remaining ink is
clustered into nodes for recognition and matched using
templates. In a related field of hand-written notes including
diagrams [SWR03] the recognizer starts with the
assumption that all strokes are text and joins strokes into
words, lines etc and then classifies groups as either drawing

or writing assuming that the groups will not overlap.

Many of the more sophisticated recognizers combine
bottom-up and top-down. Parsing in one direction and then
the other to reduce ambiguity.

A range of approaches are used during the recognition
process employing numerous combinations of algorithms.
Surprisingly, given that stroke features are so fundamental
to recognition, there is little evidence of the use of formal
methods to identify significant features. We have identified
46 different features that could be used to support basic ink
segment recognition. Most of these have been selected for
use in previous sketching tools heuristically [Rub91;
SSD01; YC03].

Our approach is to use formal statistical analysis
methods to identify key ink features to improve
recognition. As a first step we have applied a classification
of ink features to the problem of dividing writing and
drawing as this is fundamental to non-modal, mixed
text/shape diagram recognition. The following section
outlines the methodology used to identify these features.

3. Ink Feature Analysis

We provide an overview of our approach beginning with
our investigation of the range of possible ink features, how
feature data is collected and analysed, our identified set of
key ink features, and the initial results of an evaluation of a
text/shape divider based on this key ink feature set.

3.1 Candidate Feature Set Formation

Our first step was to identify possible ink features that
could be useful in distinguishing between text and shape
strokes in a sketched diagram. The origin of these features
were from (1) related work in sketch recognition; (2) stroke
features we felt may be useful in classifying strokes; (3)
and stroke features from newly available hardware (e.g.,
pressure sensitive Tablet PC screens).

Forty-six features were selected in total, grouped into
seven categories: size, time, intersections, curvature,
pressure, operating system [MC05] recognition values, and
inter-stroke gaps. (See the Appendix for a full listing of the
candidate feature set).

3.2 Data Collection

To test which are important features, we collected sample
sketches and calculated measurements of each feature from
these sketches. The measurements formed the dataset used
for analysis.

We identified a set of nine diagram types and their
graphical/textual notations (Figure 1) to be used for our
experiment. In compiling this set we looked for examples
of shapes and text that would represent those typical of a
wide range of diagram types and therefore would allow us
to identify the most significant ink features of strokes for
division in a general-purpose, reusable text/shape divider.
Our diagram set includes basic shapes and text, complex
shapes, composite shapes and various combinations and
ordering of shapes and text. Sketches were gathered from
26 people using InkKit [CMP05; You05; PTY06; FP07] on
a Toshiba Portege M200 Tablet PC. Each person completed

132

© Association for Computing Machinery, Inc., 2007.

a set of 9 sketches. Each sketch was then processed to
measure the 46 features from our candidate feature set,
forming a final dataset with 1519 strokes for statistical
analysis. We manually categorized each stroke as shape or
text to form the base data for our statistical analysis.

Figure 1: The diagram set.

3.3 Analysis

The dataset prepared above was analysed to determine the
ink features of strokes that are significant and thus should
be used to assist algorithms in a text/shape divider. We
used a formal statistical analysis technique to gain a clear,
accurate, and principled view of the degree of significance
of each ink feature in distinguishing between shapes and
text in a hand-drawn diagram.

One way of finding the significant features is to employ
a statistical partitioning technique [BFO*84; VR02]. This
involves taking a dataset and finding which features can be
used to split the data into the required groups most
accurately, i.e. into text or shape strokes, based on each
observation’s measurement of the features. These can then
be arranged into a decision tree with the most significant
features at the root.

The classification tree has decision variables at each
child node, which correspond to the other most significant
features found, and a classification label at each leaf. In our
case, as there are only two classes of interest, the leaf is
either text or shape (Figure 3). Employing this technique
allowed us to clearly identify significant features to help
division, and also provided us with the most optimal
combination of features for implementation.

The analysis of the dataset was performed using the R
statistical package, [RDC06]. The dataset was used as
training data for the rpart function [VR02]. The rpart
function applies tree-based partitioning to identify the
significant features. For each feature (e.g., length, average
speed, curvature, average pressure value, etc.) rpart is
provided with the value for each stroke in the dataset and
the known classification of the stroke, i.e., shape or text.

The aim is to find the most optimal position for a split to
be made so that there are a minimal amount of
misclassified strokes. If this is done for all features in the
feature set, using the observations in the dataset, then the
features that most accurately split the data into text and
shape stroke groups, with the least amount of misclassified
strokes, will be identified as the significant features for
division of text and shape strokes. Figure 2 shows a
partition of the dataset observations for the bounding box
width feature.

Using this partitioning technique, the rpart function
constructs a binary classification tree starting with the most
significant feature, then the next, then the next and so on.
The best partitioning feature is chosen by minimizing a
measure of purity using the Gini index which is a measure
of the misclassification rate for that partition [VR02]. The

partitioning process is continued until the number of
observations at each leaf is < 20 or they are all known to be
either shape or text strokes.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Bounding Box Width

St
ro

ke
 ID Text

Shape

Figure 2: Proposed partition for bounding box width.

Figure 3: Classification tree for text and shape divider.

The binary classification tree resulting from our rpart
analysis of our full training set is shown in Figure 3. Eight
different features of strokes, named in each node of the
classification tree, were identified from the feature set as
being significant for dividing shape from text strokes. They
measure the inter-stroke gaps, size and curvature of a stroke
(Table 1). Applying the resultant decision tree now
classifies strokes into shape or text using these significant
ink features.

For example, consider classifying a new stroke. First we
sample its bounding box width. If it’s bounding box width
is >= 1848 Himetric units (HU) we follow the left branch
of the tree. We then measure its total angle. If its total angle
is < 10.1 radians the left branch is taken once again and the
stroke is classified as a shape.

3.4 Initial Results

The new divider was implemented in the InkKit
[CMP05; You05; PTY06; FP07] generic sketching tool
alongside InkKit’s existing divider and the Ink SDK
Microsoft divider [MC05] to determine which is more
accurate at dividing strokes. This was assessed by
determining which has the lowest misclassification rate,
where the misclassification rate is a measure of the
proportion of strokes that are incorrectly classified.

Each of the dividers were used to divide the original
training set of diagrams, shown in Figure 1, into shape and
text segments. We also applied them to a new set of
diagram examples (Figure 6) that included more complex

133

© Association for Computing Machinery, Inc., 2007.

notations exhibiting characteristics not considered
previously. Musical notes were included because a student
had explored using InkKit for writing music; however they
are a specialized script, rather than a diagram.

Figure 6: The new diagram set.

The percentage of shape and text strokes that were
misclassified in the training set of diagrams for each
divider is shown in Figure 4. The Microsoft divider has the
highest percentage of misclassified shape strokes at 75.7%
and the lowest percentage of misclassified text strokes; note
that no text strokes were incorrectly classified. Our new
divider has the lowest proportion of misclassified shape
strokes when compared with the other dividers at 10.8%,
and the second lowest proportion of misclassified text
strokes at 8.8%. The InkKit divider has a higher
misclassification rate for shape strokes at 67.4%, coming in
as the second highest of all dividers, however in contrast it
has a low percentage of misclassified text strokes at 10.3%.
All dividers showed much greater accuracy in classifying
text strokes than shape strokes.

Using the new diagram set the percentage of
misclassified shape and text strokes for the three dividers
are shown in Figure 5. The Microsoft divider once again
has the worst rate of misclassification of shape strokes
where 93.1% were incorrectly classified and the best
percentage of misclassified text strokes at 1.4%. This
follows the pattern shown in the evaluation results for the
training diagram set shown in Figure 4. Also, following the
results of the first evaluation, our new divider has the
lowest misclassification rate for shape strokes at 42.1%,
although this is still very high. The new divider has the
highest percentage of misclassified text strokes at 21.4%
however this is only slightly above InkKit at 17.2% for text
strokes. InkKit’s rate of misclassification for shape strokes
comes in at 80.8%. The music notes were a confounding

factor, removing them from the set would have improved
the recognition rates for all dividers. Again, all dividers
show a greater degree of accuracy in classifying text
strokes than shape strokes.

4. Discussion

There have been many sketch recognition techniques
described in the literature. However, their accuracy rates
are still far less than optimum. A review of the literature
has shown that these techniques are comprised of two
elements: extraction of some ink features and various
algorithms that are applied successively to the diagram in
either a bottom-up, top-down or mixed approach. There has
been little evidence of formal methods used to select the
most significant ink features and recognition algorithms
suited to different sketch recognition problems and target
diagram notation domains.

The majority of diagramming sketch tools do not support
text recognition. This may be because separating shape and
text strokes so that they can subsequently be recognized by
more specific recognition algorithms is a very difficult
problem in general. As division is a logical first step for
bottom-up recognition we chose to concentrate on
identifying the distinguishing features of text versus shape
strokes using a formal method for optimal ink feature
selection.

The new divider showed promising results in terms of its
accuracy when compared with InkKit’s divider and the
Microsoft divider [MC05]. From this trial the ink features
that we found to be significant to the division problem were
features measuring elements of stroke size, inter-stroke
gaps, and stroke curvature as shown in Table 1.

Inter-stroke gaps have proved to be an important
distinguishing feature when dividing shape and text strokes
with half of the key feature set coming from this category.
The inclusion of features measuring the distance between
strokes indicates that the distance from shape-to-shape and
shape-to-text is larger than from text-to-text. The features
measuring inter-stroke timing may be underestimated as the
participants copied the diagrams. The data suggests a much
shorter gap between the letters of a word as opposed to

75.7

10.8

67.4

0.0

8.8 10.3

0

10

20

30

40

50

60

70

80

90

100

Microsoft New InkKit
Divider Type

%
 M

is
sc

la
ss

ifi
ed

 S
tr

ok
es

 .

% Misclassified Shapes
% Misclassified Text

93.1

42.1

80.8

1.4

21.4
17.2

0

10

20

30

40

50

60

70

80

90

100

Microsoft New InkKit
Divider Type

%
 M

is
cl

as
si

fie
d

St
ro

ke
s

 .

% Misclassified Shapes
% Misclassified Text

Figure 4: Percentage of misclassified shape and text strokes
for each divider using the training diagram set.

 Figure 5: Percentage of misclassified shape and text
strokes for each divider using the new diagram set.

134

© Association for Computing Machinery, Inc., 2007.

shape-to-shape and word-to-shape. If one was creating a
new diagram the cognitive switching gaps between diagram
elements may well be longer than in our dataset.

Category Origin Feature
Time till next stroke New
Speed till next stroke
Distance from last stroke

Inter-
stroke
gaps Adapted from

[You05] Distance to next stroke
Adapted from
[HD02;FPJ02]

Bounding box width

[FPJ02] Perimeter to area

Size

Adapted from
[You05]

Amount of ink inside

Curvature [Rub91] Total angle
Table 1: Significant feature categories and origin.

Three of the significant ink features identified are size
related. The data suggests that in general the size of shape
strokes is much larger than text strokes reflected by the use
of bounding box width, perimeter to area and amount of ink
inside features. One point to note is that these values are
specific to the tablet PC form factor. Size will have very
different parameters when using a PDA or electronic
whiteboard – however the ratio should remain similar.

The selection of the feature total angle is the only measure
of curvature included in the key feature set. Its position in
the tree is below the width decision, on the wider side,
suggesting that curvature is relevant for differentiating
joined up letters from shapes.

Figure 7 shows examples of strokes in a diagram that
might go down each branch. Stroke (1) is wide with a small
total angle and is classified as a shape stroke, whereas
stroke (2) is also wide but has a larger total angle and is
therefore classified as text.

Strokes (3-9) are all smaller in width than strokes (1-2). For
strokes (3-4) their distance from the last stroke is large
which could be because they are the first stroke of a shape
or word. (3) is classified as a shape stroke as the time to the
next stroke is large, and (4) a text stroke as this inter-stroke
time is small which is highly likely if subsequent strokes
are the remainder of the word.

(9) is likely to be a letter that is in the middle of a word
as it has a small inter-stroke distance from the last and to
the next stroke. The path of stroke (8) shows that it has a
small distance from the last stroke as another letter
probably came before it, a larger distance to the next stroke
which could indicate that there is another word that follows
this stroke, and a faster speed to the next stroke which
further confirms that it is likely to be a letter in the middle
of a sentence.

Stroke (7) is similar to (8) except that it is more likely to
be the end of a word that is followed by a shape stroke as it
has a slower speed to the next stroke indicating the time
taken for cognitive shift, it also has a small amount of ink
inside its bounding box indicating that it is a small stroke
and has a large perimeter to area ratio.

In contrast, stroke (6), has a smaller perimeter to area
ratio indicating that it is a shape stroke. The fact that it has
a small distance from the last stroke and large distance to

the next stroke indicates that it may be the last stroke of a
shape component such as a check box. It also has a slow
speed to the next stroke indicating a delay in drawing
which could be caused by a large cognitive shift when
beginning another shape or word. Note that (6) is smaller in
width than stroke (1). Stroke (5) is similar to (6) except that
it has a greater amount of ink inside its bounding box.

Figure 7: Example stroke classifications.

Many of the features used in other recognition engines,
such as those that measure stroke pressure, intersections,
time, and the Tablet OS recognition values were not
considered important for a divider. These features may
however be used for other recognition problems and may
be appropriate in the area they are used.

The significant features identified have proved to be
successful for text/shape division. However, feature
selection for division is only one step of recognition. We
now need to identify the best algorithm to use to
meaningfully combine these features. The tree-based
partitioning technique used to analyse the dataset of sketch
features not only identifies feature sets for distinguishing
text from shape strokes but also provides a method of
utilising and combining those features in a practical way
using a binary tree approach to classification.

Rpart partitioning is a good way to separate data into a
small number of classes; therefore, it works well for the
division problem. However, it may not be a suitable
method of analysis when there are a lot of classes.

Although the classification tree works well at combining
the significant features together to divide shape and text
strokes, greater flexibility is needed in such an algorithm.
Sketching is imprecise in nature therefore recognition
algorithms need to be robust enough to accommodate
variability. The binary classification trees used hard rules to
classify observations which are based on a single dataset.
An algorithm, such as HMM, that can be trained using
these features would provide added flexibility.

Recognition engines use complex interrelationships of
features and algorithms. By isolating and optimizing each
part of the process future progress should be possible. This
project is a first step in this direction.

5. Conclusion

Features identified by the statistical partitioning technique
have improved division of text and shape strokes in our

135

© Association for Computing Machinery, Inc., 2007.

example data set. The combination of the new feature set
and optimised algorithms needs investigation to determine
the best technique for a more flexible divider. However, the
divider is only one part in the sketch recognition process.
Further improvement to sketch recognition should be
possible if a similar rigorous approach of feature analysis is
applied to the basic shape and component recognition
phases. The identification of significant feature sets for
each of these phases together with an evaluation of various
algorithmic approaches to combining these features should
produce more accurate recognition results as demonstrated
by this investigation and therefore, improve sketch
recognition as a whole.

References

[AD04] Alvarado, C. and Davis, R.: SketchREAD: a multi-

domain sketch recognition engine. Proceedings of the
17th annual ACM symposium on User interface software
and technology, ACM Press (2004),23-32.

[BK03] Bailey, B. P. and Konstan, J. A.: Are Informal
Tools Better? Comparing DEMAIS, Pencil and Paper,
and Authorware for Early Multimedia Design. CHI
2003, ACM (2003),313-320.

[BKC01] Bailey, B. P., Konstan, J. A. and Carlis, J. V.:
DEMAIS: Designing Multimedia Applications with
Interactive Storyboards. ACM Multimedia, (2001),pp.
241-250.

[Bla90] Black, A.: Visible planning on paper and on
screen: The impact of working medium on decision-
making by novice graphic designers. Behaviour and
information technology 9 (4)(1990), 283-296.

[BFO*84] Breiman, L., Friedman, J. H., Olshen, R. A. and
Stone, C. J.: Classification and Regression Trees.
Chapman & Hall / CRC Press, 1984.

[CSK*02] Calhoun, C., Stahovich, T. F., Kurtoglu, T. and
Kara, L. B.: Recognising Multi-Stroke Symbols. AAAI
Spring Symposium on Sketch Understanding, (2002),15-
23.

[CGH03] Chen, Q., Grundy, J. and Hosking, J.: An E-
whiteboard application to support early design-stage
sketching of UML diagrams. Human Centric Computer
Languages and Environments, IEEE (2003),219-226.

[CMP05] Chung, R., Mirica, P. and Plimmer, B.: InkKit: A
Generic Design Tool for the Tablet PC. CHINZ 05,
ACM (2005),29-30.

[CFK*04] Coyette, A., Faulkner, S., Kolp, M., Limbourg,
Q. and Vanderdonckt, J.: SketchiXML: towards a multi-
agent design tool for sketching user interfaces based on
USIXML. Proceedings of the 3rd annual conference on
Task models and diagrams, ACM Press (2004),75-82.

[DHT00] Damm, C. H., Hansen, K. M. and Thomsen, M.:
Tool support for cooperative object-oriented design:
Gesture based modelling on and electronic whiteboard.
Chi 2000, ACM (2000),518-525.

[FJ00] Fonseca, M. J. and Jorge, J. A.: Using Fuzzy Logic
to Recognize Geometric Shapes Interactively.
Proceedings of the 9th International Conference on
Fuzzy Systems (FUZZ-IEEE), (2000),

[FJ01] Fonseca, M. J. and Jorge, J. A.: Experimental
Evaluation of an on-line Scribble Recognizer. Pattern
Recognition Letters, (2001),1311–1319.

[FPJ02] Fonseca, M. J., Pimentel, C. e. and Jorge, J. A.:
CALI: An Online Scribble Recogniser for Calligraphic
Interfaces. AAAI Spring Symposium on Sketch
Understanding, IEEE (2002),

[FPJ02] Fonseca, M. J., Pimentel, C. e. and Jorge, J. A.:
CALI: An Online Scribble Recognizer for Calligraphic
Interfaces. AAAI Spring symposium on Sketch
Understanding, IEEE (2002),51-58.

[FP07] Freeman, I. and Plimmer, B.: Connector Semantics
for Sketched Diagram Recognition. AUIC, ACM
(2007),71-78.

[Goe95] Goel, V.: Sketches of thought. The MIT Press,
1995.

[Gro94] Gross, M.: Recognizing and interpreting diagrams
in design. AVI 94, ACM (1994),88-94.

[GD96] Gross, M. and Do, E. Y. L.: Ambiguous intentions:
a paper-like interface for creative design. UIST '96,
ACM (1996),183-192.

[HD02] Hammond, T. and Davis, R.: Tahuti: A
Geometrical Sketch Recognition System for UML Class
Diagrams. 2002 AAAI Spring Symposium on Sketch
Understanding, (2002),

[HD03] Hammond, T. and Davis, R.: LADDER: A
Language to Describe Drawing, Display, and Editing in
Sketch Recognition. IJCAI, (2003),12-19.

[HL00] Hong, J. I. and Landay, J. A.: SATIN: a toolkit for
informal ink-based applications. Proceedings of the 13th
annual ACM symposium on User interface software and
technology, ACM Press (2000),

[HSN04] Hse, H., Shilman, M. and Newton, A. R.: Robust
Sketched Symbol Fragmentation using Templates.
International Conference on Intelligent User Interfaces,
(2004),pp. 156-160.

[JF99] Jorge, J. A. and Fonseca , M. J.: A Simple Approach
to Recognise Geometric Shapes Interactively. In
Proceedings of the Third Int. Workshop on Graphics
Recognition (GREC'99), (1999),

[KS04] Kara, L. B. and Stahovich, T. F.: Hierarchical
Parsing and Recognition of HandSketched Diagrams.
UIST '04, ACM Press (2004),13 - 22.

[Lan95] Landay, J.: Interactive sketching for user interface
design. Chi '95 Mosaic of Creativity, Doctoral
Consortium, (1995),63-64.

[LM95] Landay, J. and Myers, B.: Interactive sketching for
the early stages of user interface design. Chi '95 Mosaic
of Creativity, (1995),43-50.

[LM96] Landay, J. and Myers, B.: Sketching storyboards to
illustrate interface behaviors. CHI '96, ACM (1996),193-
194.

[Lan03] Lank, E. H.: A Retargetable Framework for
Interactive Diagram Recognition. Proceedings of the
Seventh International Conference on Document Analysis
and Recognition - Volume 1, IEEE Computer Society
(2003),185.

[LVZ04] LaViola, J. J. and Zeleznik, R. C.: MathPad2: a
system for the creation and exploration of mathematical
sketches. ACM Trans. Graph (2004),432-440.

[LL03] Lin, J. and Landay, J. A.: Damask: A Tool for
Early-Stage Design and Prototyping of Cross-Device
User Interfaces. CHI 2003 workshop on HCI Patterns:
Concepts and Tools, (2003),

[LNH*00] Lin, J., Newman, M. W., Hong, J. I. and
Landay, J. A.: Denim: Finding a tighter fit between tools

136

© Association for Computing Machinery, Inc., 2007.

and practice for web design. Chi 2000, ACM
(2000),510-517.

[MC05] Microsoft Corporation: Microsoft Windows XP
Tablet PC Edition Software Development Kit (2005)

[MC07] Microsoft Corporation:MSDN Stroke.BezierCusps
Property from http://msdn2.microsoft.com/en-
us/library/microsoft.ink.stroke.beziercusps.aspx. (2007).

[MC07a] Microsoft Corporation: MSDN
Stroke.PolylineCusps Property. from
http://msdn2.microsoft.com/en-
us/library/microsoft.ink.stroke.polylinecusps.aspx.
(2007).

[NSS02] Nakai, M., Sudo, T., Shimodaira, H. and
Sagayama, S.: Pen Pressure Features for Writer-
Independent On-Line Handwriting Recognition Based on
Substroke HMM. Proceedings of the 16th International
Conference on Pattern Recognition (ICPR'02) Volume 3
- Volume 3, IEEE Computer Society (2002),30220.

[Pli04] Plimmer, B.: Using Shared Displays to Support
Group Designs; A Study of the Use of Informal User
Interface Designs when Learning to Program. Computer
Science, University of Waikato. PhD.(2004)

[PTY06] Plimmer, B., Tang, G. and Young, M.: Sketch
Tool Usability: Allowing the user to disengage. HCI
ACM (2006),164-167.

[PA03] Plimmer, B. E. and Apperley, M.: Evaluating a
Sketch Environment for Novice Programmers. SIGCHI,
ACM (2003),1018-1019.

[PA03b] Plimmer, B. E. and Apperley, M.: Freeform: A
Tool for Sketching Form Designs. BHCI, (2003),2, 183-
186.

[PA03c] Plimmer, B. E. and Apperley, M.: Software for
Students to Sketch Interface Designs. Interact,
(2003),73-80.

[PA04] Plimmer, B. E. and Apperley, M.: INTERACTING
with sketched interface designs: an evaluation study.

SigChi 2004, ACM (2004),Extended Abstracts, 1337-
1340.

[Qin05] Qin, S.: Intelligent Classification of Sketch
Strokes. EUROCON, IEEE (2005),1374-1377.

[RDC06] R Development Core Team: R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing.(2006)

[Rub91] Rubine, D. H.: Specifying gestures by example.
Proceedings of Siggraph '91, ACM (1991),329-337.

[SSD01] Sezgin, T. M., Stahovich, T. and Davis, R.:
Sketch based interfaces: early processing for sketch
understanding. Proceedings of the 2001 workshop on
Perceptive user interfaces, ACM Press (2001),1-8.

[SWR*03] Shilman, M., Wei;, Z., Raghupathy;, S., Simard,
P. and Jones, D.: Discerning structure from freeform
handwritten notes. Document Analysis and Recognition,
(2003),60 - 65.

[Sta97] Stahovich, T. F.: Interpreting the engineer's sketch:
A picture is worth a thousand constraints. AAAI
Symposium on Reasoning with diagrammatic
Representations II, (1997),31-38.

[SDS95] Stahovich, T. F., Davis, R. and Shrobe, H.:
Turning sketches into working geometry. ASME Design
Theory and Methodology, (1995),603-611.

 [VR02] Venables, W. N. and Ripley, B. D.: Modern
Applied Statistics with S. Springer, 2002.

[You05] Young, M.: InkKit: The Back End of the Generic
Design Transformation Tool University of
Auckland.(2005)

[YC03] Yu, B. and Cai, S.: A domain-independent system
for sketch recognition. Proceedings of the 1st
international conference on Computer graphics and
interactive techniques in Australasia and South East
Asia, ACM Press (2003),141-14

Appendix: Feature Set

Feature Description Origin
Pressure Features
Max pressure Maximum pressure value for the stroke.
Min pressure Minimum pressure value for the stroke.
Average pressure Mean average pressure of the stroke.

Adapted
from
[NSS02]

Pressure minima Number of minima in the pressure values for the stroke, this excludes the
minima that occur at the beginning and end of the stroke for pen up/down events.

New

Time Features
Total duration Total duration of the stroke from pen up to pen down. [Rub91]
Max speed Maximum speed when drawing the stroke.
Min speed Minimum speed when drawing the stroke.
Average Speed Mean average speed when drawing the stroke.

Adapted
from
[Rub91]

Intersection Features
Self intersections Number of points where the stroke intersects itself.
Endpoint self
intersections

Number of self intersections at the endpoints of the current stroke.

Other self
intersections

Number of self intersections that are not at the current stroke’s endpoint.

Adapted
from
[Qin05]

Other intersections Number of points of intersection of the current stroke with other strokes
(excluding self intersections).

Total # intersections Total number of intersections (includes self intersections).

Adapted
from
[CSK*02]

Other strokes
intersecting

Number of other strokes that intersect the current stroke (excluding itself).

Total # strokes Number of strokes that intersect the current stroke (including itself).

Adapted
 from
[HD02;

137

© Association for Computing Machinery, Inc., 2007.

intersecting FPJ02]
Size Features
Length Total length of the stroke. [Rub91]
Bounding box area Area of the bounding box of the stroke.
Bounding box height Height of the bounding box of the stroke.
Bounding box width Width of the bounding box of the stroke.

Adapted
 from [HD02;
FPJ02]

Amount of ink inside Amount of ink inside the strokes bounding box. This is calculated by counting
the number of points of the stroke that are inside the bounding box.

 [You05]

Bounding box
diagonal length

Length of the bounding box diagonal line.

Distance from first to
last point

Distance from the first point of the stroke to the last point of the stroke.

[Rub91]

Total length/bounding
box diagonal length

Length of the stroke divided by the length of the bounding box diagonal. Adapted from
[Rub91];

Perimeter to area Ratio of perimeter to area of the strokes convex hull.
Convex hull area ratio Ratio of the area of the convex hull to the area of the enclosing rectangle of the

stroke.
Rectangle ratio Ratio of strokes enclosing rectangle width to height.

[FPJ02]

Width to height Ratio of the strokes bounding box width to height. Adapted from
[FPJ02]

Curvature Features
Cos of initial angle Cosine of the initial angle of the stroke.
Sin of initial angle Sine of the initial angle of the stroke.
Angle of bounding box
diagonal

Angle of the bounding box diagonal.

Cos from 1st to last
point

Cosine of the angle between the first and last point of the stroke.

Sin from 1st to last
point

Sine of the angle between the first and last point of the stroke.

Total angle Total angle traversed by the stroke.
∑ |angle at each point| Sum of the absolute value of the angle at each point of the stroke.
∑(angle at each point)2 Sum of the squared value of the angle at each point of the stroke.

[Rub91]

Bezier cusps

Number of bezier cusps. Cusps indicate points where the direction of the stroke
has changed; therefore Bezier cusps are the cusps for a Bezier curves control
points for the stroke [MC07]. *

Polyline cusps Number of polyline cusps. Cusps indicate points where the direction of the
stroke has changed; therefore polyline cusps are the cusps of the points of a
stroke [MC07a]. *

New

Speed minima The number of extreme minima in the speed values for the stroke, this excludes
the minima that occur at the beginning and end of the stroke for pen up/down
events.

Adapted
from
[SSD01]

Tablet OS Recognition Features
Tablet OS text
probability

Tablet OS text recogniser probability of the stroke being text, levels of
probability are strong, intermediate or poor.

Tablet OS prediction Tablet OS text recogniser best prediction of the text symbol that the stroke
represents.

[MC05]

Inter-Stroke Gaps
Distance from last
stroke

Distance the pen travels between the current stroke and the previous stroke. Not
applicable to the first stroke in the sketch.

Distance to next stroke Distance the pen travels between the current stroke and the next stroke. Not
applicable to the last stroke in the sketch.

Adapted
from
[You05]

Time from last stroke The time between the current stroke and the previous stroke in the sketch. Not
applicable to the first stroke of a diagram.

Time till next stroke The time between the current stroke and the next stroke in the sketch. Not
applicable to the last stroke of a diagram.

Speed from last stroke Speed (distance/time) between the current stroke and the previous stroke in the
sketch. Not applicable to the first stroke of a diagram.

Speed to next stroke Speed (distance/time) between the current stroke and the next stroke in the
sketch. Not applicable to the last stroke of a diagram.

New

*For example take the letter “L”. This letter has three cusps (Bezier and polyline) one at the start and end of the letter and one
at the corner [MC07, MC07a]

138

© Association for Computing Machinery, Inc., 2007.

