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___________________________________________________________________________ 
Abstract 
 
The ability to automatically recognize a sketch accurately is important to computer-based diagramming. Many recognition 
techniques have been proposed but few researchers have reported the use of formal methods to select the most appropriate 
ink features for recognition algorithms. We have used a statistical approach to identify the most important distinguishing 
features of ink for dividing text and shapes. We implemented these into an existing recognition engine and conducted a 
comparative evaluation. Our feature set more successfully classified a range of common diagram elements than two existing 
dividers. 
 
Categories and subject descriptors: I.4.7 [Image Processing and Computer Vision]: Feature Measurement - feature 
representation 
 ____________________________________________________________________________________________________ 
 
1. Introduction 
  
Computer-based sketch tools, particularly diagramming 
tools, show promise as an alternative to paper for capturing 
early-phase designs. They retain the advantages of paper - 
such as an unconstrained drawing space that allows 
ambiguity and quick construction. They also have the key 
advantages of computer tools - such as digital storage, 
transmission and archiving. However, despite suitable 
hardware being available for some time, diagramming 
sketch tools are yet to achieve general acceptance. One of 
the outstanding challenges is the need for far more accurate 
recognition. 

Recognition of sketches is an important aspect of 
computer-based diagramming: it allows the software to 
support tasks such as intelligent editing, execution, 
conversion and animation of the sketches. The syntactic 
and semantic elements of a diagram are both important. 
Only with accurate recognition will the full potential of 
computerization of sketches be realized. 

There are three main approaches to the recognition: 
bottom-up, top-down or a combination of both. Bottom-up 
attempts to recognize individual ink segments and then 
progressively join these into larger and more complex 
groups thus developing an overall semantic understanding 
of the diagram. Top-down starts with a high-level analysis 
of the structure and uses this information to aid recognition 
of the composite parts. Combinations work both the 
primitives and layout to try to resolve ambiguities. 

Regardless of the approach, sketch recognition is 
comprised of capturing ink features and algorithms to 
combine these features. The features measure aspects of an 
ink stroke’s curvature, size, time, intersections and use  

similar aspects to detect relationships between strokes. To 
date, a wide range of algorithms have been used to 
recognise hand drawn shapes and text. However, little 
research has so far been done into the relative effectiveness 
of different approaches and use of different ink features in 
recognition. Furthermore, considering that stroke features 
are such an important part of recognition, there is little 
evidence of the use of formal methods to identify the most 
significant ink features to use. Most reports suggest a 
reliance on ad-hoc heuristics and empirical trial and error. 

Most previous work in sketched diagram recognition 
concentrates on basic shape and gesture recognition. There 
are few diagramming tools that allow for both shape and 
text recognition together. Many of the tools that do support 
both are either modal interfaces or limited in functionality. 
However, the flexibility of sketch tools must be increased if 
they are to equal the performance of designing with pen 
and paper [Bla90; Goe95; BK03; PA03]. Regardless of 
whether a top-down or bottom-up approach is taken, text 
and shapes are semantically different and need to be treated 
separately during the recognition process. Handwritten 
characters need to be clustered into words and phrases in 
preparation for character recognition while shape 
combinations need to be identified as components and the 
relationships between the components explored.  

In the following section we review sketch recognition 
techniques currently being used. Following this we describe 
an experiment that we conducted to find distinguishing ink 
features of text and shape strokes for a text/shape divider. 
We discuss the use of these features to implement an 
improved divider algorithm and compare its performance to 
two existing algorithms. We then discuss the findings of 
our experiment in the wider context of diagram recognition 
and conclude with areas for further research. 

http://www.eg.org
http://diglib.eg.org


2. Background 
 
Most sketch diagramming tools include some recognition 
[Lan95; GD96; DHT00; HL00; BKC01; FPJ02; CGH03; 
LL03; PA03; PA03a; PA03b; CFK*04; PA04]. Most 
diagram recognition engines have adopted a bottom-up 
approach. Bottom-up attempts to recognize individual ink 
segments or strokes and then progressively join these into 
larger and more complex groups thus developing an overall 
understanding of the diagram. Top-down starts with a high-
level analysis of the structure and uses this information to 
aid recognition of the composite parts. Only a few current 
diagramming tools provide integrated writing and drawing 
recognition [HD02; CGH03; Lan03; LVZ04; Pli04; 
CMP05; You05; PTY06; FP07]. 

Bottom-up approaches start with stroke or sub-stroke 
recognition. Rubine’s work [Rub91] in the area of gesture 
recognition has been used by numerous sketch recognition 
systems. He proposed the use of Hidden Markov Models 
(HMM) for single stroke ink recognition. He reported a set 
of 13 stroke features selected by empirical analysis and 
heuristics. While Rubine reported a 96.8% success rate, our 
experiments that re-implement Rubine’s features have been 
lower 86% [Pli04] and 84% [You05]. However his 
algorithm has been widely adopted [LM95; LM96; DHT00; 
LNH*00; CGH03; PA03b; Pli04; CMP05; You05; PTY06; 
FP07] with various alterations to the feature set reported. 
The HMMs work best on a single stroke, techniques have 
been developed to join strokes [You05] and to split strokes 
[HSN04]. Nakai & Sudo et al [NSS*02] also use HMM and 
include pressure information as features to assist in 
recognition of Japanese characters.  

Template matching is an alternative approach [Gro94; 
SDS95; Sta97; CSK*02; AD04; KS04]. A first 
approximation phase uses various stroke features to fit lines 
and curves to the sketch. These features are typically 
determined by empirical observation. These primitives are 
matched to shape templates. Often with this approach the 
sketch is transformed (beautified) into a formal 
representation as a part of the recognition process. 

Once the primitives are identified, a range of different 
algorithms are used to combine these primitives into basic 
components (a node containing text for example). These 
algorithms including: Semantic networks [CSK*02], 
Bayesian networks [AD04], fuzzy logic [FPJ02; Qin05], 
and rules based on spatial and temporal relationships 
[HD03; You05]. Fonseca et al [JF99; FJ00; FJ01; FPJ02] 
report using percentile graphics for each possible feature 
which show the statistical distribution of feature values for 
different shape classes. This is one of the few ink feature 
sets that is scientifically-based.   

The top-down approach first identifies high-level 
document structure. Kara and Stahovich [KS04] examine 
network diagrams consisting of connectors and nodes first 
identifying the connectors and then remaining ink is 
clustered into nodes for recognition and matched using 
templates. In a related field of hand-written notes including 
diagrams [SWR03] the recognizer starts with the 
assumption that all strokes are text and joins strokes into 
words, lines etc and then classifies groups as either drawing  

or writing assuming that the groups will not overlap.  

Many of the more sophisticated recognizers combine 
bottom-up and top-down. Parsing in one direction and then 
the other to reduce ambiguity.  

A range of approaches are used during the recognition 
process employing numerous combinations of algorithms. 
Surprisingly, given that stroke features are so fundamental 
to recognition, there is little evidence of the use of formal 
methods to identify significant features. We have identified 
46 different features that could be used to support basic ink 
segment recognition. Most of these have been selected for 
use in previous sketching tools heuristically [Rub91; 
SSD01; YC03].  

Our approach is to use formal statistical analysis 
methods to identify key ink features to improve 
recognition. As a first step we have applied a classification 
of ink features to the problem of dividing writing and 
drawing as this is fundamental to non-modal, mixed 
text/shape diagram recognition. The following section 
outlines the methodology used to identify these features. 

3. Ink Feature Analysis 

We provide an overview of our approach beginning with 
our investigation of the range of possible ink features, how 
feature data is collected and analysed, our identified set of 
key ink features, and the initial results of an evaluation of a 
text/shape divider based on this key ink feature set. 

3.1 Candidate Feature Set Formation 

Our first step was to identify possible ink features that 
could be useful in distinguishing between text and shape 
strokes in a sketched diagram. The origin of these features 
were from (1) related work in sketch recognition; (2) stroke 
features we felt may be useful in classifying strokes; (3) 
and stroke features from newly available hardware (e.g., 
pressure sensitive Tablet PC screens).  

Forty-six features were selected in total, grouped into 
seven categories: size, time, intersections, curvature, 
pressure, operating system [MC05] recognition values, and 
inter-stroke gaps. (See the Appendix for a full listing of the 
candidate feature set). 

3.2 Data Collection 

To test which are important features, we collected sample 
sketches and calculated measurements of each feature from 
these sketches. The measurements formed the dataset used 
for analysis. 

We identified a set of nine diagram types and their 
graphical/textual notations (Figure 1) to be used for our 
experiment. In compiling this set we looked for examples 
of shapes and text that would represent those typical of a 
wide range of diagram types and therefore would allow us 
to identify the most significant ink features of strokes for 
division in a general-purpose, reusable text/shape divider. 
Our diagram set includes basic shapes and text, complex 
shapes, composite shapes and various combinations and 
ordering of shapes and text. Sketches were gathered from 
26 people using InkKit [CMP05; You05; PTY06; FP07] on 
a Toshiba Portege M200 Tablet PC. Each person completed 
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a set of 9 sketches. Each sketch was then processed to 
measure the 46 features from our candidate feature set, 
forming a final dataset with 1519 strokes for statistical 
analysis. We manually categorized each stroke as shape or 
text to form the base data for our statistical analysis. 

Figure 1: The diagram set. 

3.3 Analysis 

The dataset prepared above was analysed to determine the 
ink features of strokes that are significant and thus should 
be used to assist algorithms in a text/shape divider. We 
used a formal statistical analysis technique to gain a clear, 
accurate, and principled view of the degree of significance 
of each ink feature in distinguishing between shapes and 
text in a hand-drawn diagram. 

One way of finding the significant features is to employ 
a statistical partitioning technique [BFO*84; VR02]. This 
involves taking a dataset and finding which features can be 
used to split the data into the required groups most 
accurately, i.e. into text or shape strokes, based on each 
observation’s measurement of the features. These can then 
be arranged into a decision tree with the most significant 
features at the root.  

The classification tree has decision variables at each 
child node, which correspond to the other most significant 
features found, and a classification label at each leaf. In our 
case, as there are only two classes of interest, the leaf is 
either text or shape (Figure 3). Employing this technique 
allowed us to clearly identify significant features to help 
division, and also provided us with the most optimal 
combination of features for implementation. 

The analysis of the dataset was performed using the R 
statistical package, [RDC06]. The dataset was used as 
training data for the rpart function [VR02]. The rpart 
function applies tree-based partitioning to identify the 
significant features. For each feature (e.g., length, average 
speed, curvature, average pressure value, etc.) rpart is 
provided with the value for each stroke in the dataset and 
the known classification of the stroke, i.e., shape or text.  

The aim is to find the most optimal position for a split to 
be made so that there are a minimal amount of 
misclassified strokes. If this is done for all features in the 
feature set, using the observations in the dataset, then the 
features that most accurately split the data into text and 
shape stroke groups, with the least amount of misclassified 
strokes, will be identified as the significant features for 
division of text and shape strokes. Figure 2 shows a 
partition of the dataset observations for the bounding box 
width feature. 

Using this partitioning technique, the rpart function 
constructs a binary classification tree starting with the most 
significant feature, then the next, then the next and so on. 
The best partitioning feature is chosen by minimizing a 
measure of purity using the Gini index which is a measure 
of the misclassification rate for that partition [VR02]. The 

partitioning process is continued until the number of 
observations at each leaf is < 20 or they are all known to be 
either shape or text strokes.  
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Figure 2: Proposed partition for bounding box width. 

 
Figure 3: Classification tree for text and shape divider. 

The binary classification tree resulting from our rpart 
analysis of our full training set is shown in Figure 3. Eight 
different features of strokes, named in each node of the 
classification tree, were identified from the feature set as 
being significant for dividing shape from text strokes. They 
measure the inter-stroke gaps, size and curvature of a stroke 
(Table 1). Applying the resultant decision tree now 
classifies strokes into shape or text using these significant 
ink features. 

For example, consider classifying a new stroke. First we 
sample its bounding box width. If it’s bounding box width 
is >= 1848 Himetric units (HU) we follow the left branch 
of the tree. We then measure its total angle. If its total angle 
is < 10.1 radians the left branch is taken once again and the 
stroke is classified as a shape. 

3.4 Initial Results 

The new divider was implemented in the InkKit 
[CMP05; You05; PTY06; FP07] generic sketching tool 
alongside InkKit’s existing divider and the Ink SDK 
Microsoft divider [MC05] to determine which is more 
accurate at dividing strokes. This was assessed by 
determining which has the lowest misclassification rate, 
where the misclassification rate is a measure of the 
proportion of strokes that are incorrectly classified.  

Each of the dividers were used to divide the original 
training set of diagrams, shown in Figure 1, into shape and 
text segments. We also applied them to a new set of 
diagram examples (Figure 6) that included more complex 
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notations exhibiting characteristics not considered 
previously. Musical notes were included because a student 
had explored using InkKit for writing music; however they 
are a specialized script, rather than a diagram. 

 
Figure 6: The new diagram set. 

The percentage of shape and text strokes that were 
misclassified in the training set of diagrams for each 
divider is shown in Figure 4. The Microsoft divider has the 
highest percentage of misclassified shape strokes at 75.7% 
and the lowest percentage of misclassified text strokes; note 
that no text strokes were incorrectly classified. Our new 
divider has the lowest proportion of misclassified shape 
strokes when compared with the other dividers at 10.8%, 
and the second lowest proportion of misclassified text 
strokes at 8.8%. The InkKit divider has a higher 
misclassification rate for shape strokes at 67.4%, coming in 
as the second highest of all dividers, however in contrast it 
has a low percentage of misclassified text strokes at 10.3%. 
All dividers showed much greater accuracy in classifying 
text strokes than shape strokes. 

Using the new diagram set the percentage of 
misclassified shape and text strokes for the three dividers 
are shown in Figure 5. The Microsoft divider once again 
has the worst rate of misclassification of shape strokes 
where 93.1% were incorrectly classified and the best 
percentage of misclassified text strokes at 1.4%. This 
follows the pattern shown in the evaluation results for the 
training diagram set shown in Figure 4.  Also, following the 
results of the first evaluation, our new divider has the 
lowest misclassification rate for shape strokes at 42.1%, 
although this is still very high. The new divider has the 
highest percentage of misclassified text strokes at 21.4% 
however this is only slightly above InkKit at 17.2% for text 
strokes. InkKit’s rate of misclassification for shape strokes 
comes in at 80.8%. The music notes were a confounding 

factor, removing them from the set would have improved 
the recognition rates for all dividers. Again, all dividers 
show a greater degree of accuracy in classifying text 
strokes than shape strokes.  

4. Discussion  

There have been many sketch recognition techniques 
described in the literature. However, their accuracy rates 
are still far less than optimum. A review of the literature 
has shown that these techniques are comprised of two 
elements: extraction of some ink features and various 
algorithms that are applied successively to the diagram in 
either a bottom-up, top-down or mixed approach. There has 
been little evidence of formal methods used to select the 
most significant ink features and recognition algorithms 
suited to different sketch recognition problems and target 
diagram notation domains. 

The majority of diagramming sketch tools do not support 
text recognition. This may be because separating shape and 
text strokes so that they can subsequently be recognized by 
more specific recognition algorithms is a very difficult 
problem in general. As division is a logical first step for 
bottom-up recognition we chose to concentrate on 
identifying the distinguishing features of text versus shape 
strokes using a formal method for optimal ink feature 
selection.  

The new divider showed promising results in terms of its 
accuracy when compared with InkKit’s divider and the 
Microsoft divider [MC05]. From this trial the ink features 
that we found to be significant to the division problem were 
features measuring elements of stroke size, inter-stroke 
gaps, and stroke curvature as shown in Table 1. 

Inter-stroke gaps have proved to be an important 
distinguishing feature when dividing shape and text strokes 
with half of the key feature set coming from this category. 
The inclusion of features measuring the distance between 
strokes indicates that the distance from shape-to-shape and 
shape-to-text is larger than from text-to-text. The features 
measuring inter-stroke timing may be underestimated as the 
participants copied the diagrams. The data suggests a much 
shorter gap between the letters of a word as opposed to 
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Figure 4: Percentage of misclassified shape and text strokes 
for each divider using the training diagram set. 

    Figure 5: Percentage of misclassified shape and text     
strokes for each divider using the new diagram set. 
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shape-to-shape and word-to-shape. If one was creating a 
new diagram the cognitive switching gaps between diagram 
elements may well be longer than in our dataset. 

Category Origin Feature 
Time till next stroke New 
Speed till next stroke 
Distance from last stroke 

Inter-
stroke 
gaps Adapted from 

[You05] Distance to next stroke 
Adapted from 
[HD02;FPJ02] 

Bounding box width 

[FPJ02] Perimeter to area 

Size 

Adapted from 
[You05] 

Amount of ink inside 

Curvature [Rub91] Total angle 
Table 1: Significant feature categories and origin. 

Three of the significant ink features identified are size 
related. The data suggests that in general the size of shape 
strokes is much larger than text strokes reflected by the use 
of bounding box width, perimeter to area and amount of ink 
inside features. One point to note is that these values are 
specific to the tablet PC form factor. Size will have very 
different parameters when using a PDA or electronic 
whiteboard – however the ratio should remain similar. 

The selection of the feature total angle is the only measure 
of curvature included in the key feature set. Its position in 
the tree is below the width decision, on the wider side, 
suggesting that curvature is relevant for differentiating 
joined up letters from shapes.  

Figure 7 shows examples of strokes in a diagram that 
might go down each branch. Stroke (1) is wide with a small 
total angle and is classified as a shape stroke, whereas 
stroke (2) is also wide but has a larger total angle and is 
therefore classified as text. 

Strokes (3-9) are all smaller in width than strokes (1-2). For 
strokes (3-4) their distance from the last stroke is large 
which could be because they are the first stroke of a shape 
or word. (3) is classified as a shape stroke as the time to the 
next stroke is large, and (4) a text stroke as this inter-stroke 
time is small which is highly likely if subsequent strokes 
are the remainder of the word. 

(9) is likely to be a letter that is in the middle of a word 
as it has a small inter-stroke distance from the last and to 
the next stroke. The path of stroke (8) shows that it has a 
small distance from the last stroke as another letter 
probably came before it, a larger distance to the next stroke 
which could indicate that there is another word that follows 
this stroke, and a faster speed to the next stroke which 
further confirms that it is likely to be a letter in the middle 
of a sentence. 

Stroke (7) is similar to (8) except that it is more likely to 
be the end of a word that is followed by a shape stroke as it 
has a slower speed to the next stroke indicating the time 
taken for cognitive shift, it also has a small amount of ink 
inside its bounding box indicating that it is a small stroke 
and has a large perimeter to area ratio. 

In contrast, stroke (6), has a smaller perimeter to area 
ratio indicating that it is a shape stroke. The fact that it has 
a small distance from the last stroke and large distance to 

the next stroke indicates that it may be the last stroke of a 
shape component such as a check box. It also has a slow 
speed to the next stroke indicating a delay in drawing 
which could be caused by a large cognitive shift when 
beginning another shape or word. Note that (6) is smaller in 
width than stroke (1). Stroke (5) is similar to (6) except that 
it has a greater amount of ink inside its bounding box. 

  
Figure 7: Example stroke classifications. 

Many of the features used in other recognition engines, 
such as those that measure stroke pressure, intersections, 
time, and the Tablet OS recognition values were not 
considered important for a divider. These features may 
however be used for other recognition problems and may 
be appropriate in the area they are used.  

The significant features identified have proved to be 
successful for text/shape division. However, feature 
selection for division is only one step of recognition. We 
now need to identify the best algorithm to use to 
meaningfully combine these features. The tree-based 
partitioning technique used to analyse the dataset of sketch 
features not only identifies feature sets for distinguishing 
text from shape strokes but also provides a method of 
utilising and combining those features in a practical way 
using a binary tree approach to classification.  

Rpart partitioning is a good way to separate data into a 
small number of classes; therefore, it works well for the 
division problem. However, it may not be a suitable 
method of analysis when there are a lot of classes. 

Although the classification tree works well at combining 
the significant features together to divide shape and text 
strokes, greater flexibility is needed in such an algorithm. 
Sketching is imprecise in nature therefore recognition 
algorithms need to be robust enough to accommodate 
variability. The binary classification trees used hard rules to 
classify observations which are based on a single dataset. 
An algorithm, such as HMM, that can be trained using 
these features would provide added flexibility.  

Recognition engines use complex interrelationships of 
features and algorithms. By isolating and optimizing each 
part of the process future progress should be possible. This 
project is a first step in this direction. 

5. Conclusion 

Features identified by the statistical partitioning technique 
have improved division of text and shape strokes in our 
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example data set. The combination of the new feature set 
and optimised algorithms needs investigation to determine 
the best technique for a more flexible divider. However, the 
divider is only one part in the sketch recognition process. 
Further improvement to sketch recognition should be 
possible if a similar rigorous approach of feature analysis is 
applied to the basic shape and component recognition 
phases. The identification of significant feature sets for 
each of these phases together with an evaluation of various 
algorithmic approaches to combining these features should 
produce more accurate recognition results as demonstrated 
by this investigation and therefore, improve sketch 
recognition as a whole.  
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Appendix: Feature Set 

Feature Description Origin 
Pressure Features 
Max pressure Maximum pressure value for the stroke. 
Min pressure Minimum pressure value for the stroke. 
Average pressure Mean average pressure of the stroke. 

Adapted  
from 
[NSS02] 

# Pressure minima Number of minima in the pressure values for the stroke, this excludes the 
minima that occur at the beginning and end of the stroke for pen up/down events. 

New 

Time Features 
Total duration Total duration of the stroke from pen up to pen down. [Rub91] 
Max speed Maximum speed when drawing the stroke.  
Min speed Minimum speed when drawing the stroke. 
Average Speed Mean average speed when drawing the stroke. 

Adapted  
from 
[Rub91] 

Intersection Features 
# Self intersections  Number of points where the stroke intersects itself.  
# Endpoint self 
intersections  

Number of self intersections at the endpoints of the current stroke.  

# Other self 
intersections  

Number of self intersections that are not at the current stroke’s endpoint.  

Adapted  
from 
[Qin05] 

# Other intersections  Number of points of intersection of the current stroke with other strokes 
(excluding self intersections).  

Total # intersections  Total number of intersections (includes self intersections).  

Adapted  
from 
[CSK*02] 

# Other strokes 
intersecting  

Number of other strokes that intersect the current stroke (excluding itself).  

Total # strokes Number of strokes that intersect the current stroke (including itself).  

Adapted 
 from 
[HD02; 
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intersecting  FPJ02] 
Size Features 
Length  Total length of the stroke. [Rub91] 
Bounding box area  Area of the bounding box of the stroke. 
Bounding box height Height of the bounding box of the stroke. 
Bounding box width  Width of the bounding box of the stroke. 

Adapted 
 from [HD02; 
FPJ02] 

Amount of ink inside  Amount of ink inside the strokes bounding box. This is calculated by counting 
the number of points of the stroke that are inside the bounding box. 

 [You05] 

Bounding box 
diagonal length  

Length of the bounding box diagonal line. 

Distance from first to 
last point 

Distance from the first point of the stroke to the last point of the stroke. 

[Rub91] 
 

Total length/bounding 
box diagonal length  

Length of the stroke divided by the length of the bounding box diagonal. Adapted from 
[Rub91]; 

Perimeter to area Ratio of perimeter to area of the strokes convex hull. 
Convex hull area ratio  Ratio of the area of the convex hull to the area of the enclosing rectangle of the 

stroke. 
Rectangle ratio Ratio of strokes enclosing rectangle width to height. 

[FPJ02] 
 
 

Width to height Ratio of the strokes bounding box width to height. Adapted from 
[FPJ02] 

Curvature Features 
Cos of initial angle  Cosine of the initial angle of the stroke. 
Sin of initial angle  Sine of the initial angle of the stroke. 
Angle of bounding box 
diagonal 

Angle of the bounding box diagonal. 

Cos from 1st to last 
point 

Cosine of the angle between the first and last point of the stroke. 

Sin from 1st to last 
point  

Sine of the angle between the first and last point of the stroke. 

Total angle  Total angle traversed by the stroke. 
∑ |angle at each point| Sum of the absolute value of the angle at each point of the stroke. 
∑(angle at each point)2 Sum of the squared value of the angle at each point of the stroke. 

[Rub91] 

# Bezier cusps  
 

Number of bezier cusps. Cusps indicate points where the direction of the stroke 
has changed; therefore Bezier cusps are the cusps for a Bezier curves control 
points for the stroke [MC07]. * 

# Polyline cusps Number of polyline cusps. Cusps indicate points where the direction of the 
stroke has changed; therefore polyline cusps are the cusps of the points of a 
stroke [MC07a]. * 

New 

# Speed minima The number of extreme minima in the speed values for the stroke, this excludes 
the minima that occur at the beginning and end of the stroke for pen up/down 
events.  

Adapted  
from  
[SSD01] 

Tablet OS Recognition Features 
Tablet OS text 
probability  

Tablet OS text recogniser probability of the stroke being text, levels of 
probability are strong, intermediate or poor. 

Tablet OS prediction  Tablet OS text recogniser best prediction of the text symbol that the stroke 
represents. 

[MC05] 
 

Inter-Stroke Gaps 
Distance from last 
stroke   

Distance the pen travels between the current stroke and the previous stroke. Not 
applicable to the first stroke in the sketch. 

Distance to next stroke Distance the pen travels between the current stroke and the next stroke. Not 
applicable to the last stroke in the sketch. 

Adapted  
from 
[You05] 

Time from last stroke  The time between the current stroke and the previous stroke in the sketch. Not 
applicable to the first stroke of a diagram. 

Time till next stroke  The time between the current stroke and the next stroke in the sketch. Not 
applicable to the last stroke of a diagram. 

Speed from last stroke  Speed (distance/time) between the current stroke and the previous stroke in the 
sketch. Not applicable to the first stroke of a diagram. 

Speed to next stroke  Speed (distance/time) between the current stroke and the next stroke in the 
sketch. Not applicable to the last stroke of a diagram.  

New 

*For example take the letter “L”. This letter has three cusps (Bezier and polyline) one at the start and end of the letter and one 
at the corner [MC07, MC07a] 
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