
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Sketch-Based Interfaces and Modeling 2007, Riverside, CA, August 02-03, 2007.

© 2007 ACM 978-1-59593-913-5/07/0008 $5.00

EUROGRAPHICS Workshop on Sketch-Based Interface and Modeling (2007)
M. van de Panne, E. Saund (Editors)

Implicit Geometric Constraint Detection in Freehand
Sketches Using Relative Shape Histogram

J. Pu and K. Ramani

Purdue Research and Education Center for Information Systems in Engineering (PRECISE), School of Mechanical
Engineering, School of Electrical Engineering, Purdue University, West Lafayette IN 47907-2024, USA

Abstract
In order to take advantage of the sketch-based interaction, many methods have been proposed to beautify freehand
sketches. Most of these efforts are dedicated to sketch segmentation and recognition, while some important
information implied in the sketches, such as geometric constraints, are largely ignored. Thus, the final beautified
results by these methods do not fully reflect the true intentions from users. In this paper, a statistical approach
called Relative Shape Histogram (RSH) is introduced to detect the implied geometric constraint in sketches. The
basic idea arises from such a discovery that the same geometric constraints between two geometric primitives have
similar relative shape histograms. By computing the similarity between RSHs, the implicit geometric constraints
between two segmented primitives are inferred. To evaluate the performance of the proposed algorithm, a user-
based experiment is conducted and the results are presented in this paper.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Interaction techniques

1. Introduction

Freehand sketches have been widely recognized as an
efficient and natural way to communicate ideas between
human being and computer. However, correct
interpretation of the intent of the users making freehand
sketches, i.e., sketch understanding, is still a challenge
because freehand sketches are informal, ambiguous, and
implicit in comparison to traditional WIMP (Window,
Icon, Menu, and Pointer) user interfaces in which each
interaction is predefined and there is unique
correspondence between an input and the internal
interpretation of a computer [Li03]. To address this issue
and enable a computer to interpret freehand sketches in a
unified and robust way, many sketch beautification
methods have been proposed to transform freehand
sketches from an informal representation to a formal
representation. Most of these efforts focused on two
important issues: sketch segmentation [FLK*04,
Stahovich04, LS05, NM04, GKS05] and primitive (or
composite) recognition [SD05, HN04, KS04, AD04],
which are regarded as the two main obstacles that have
hindered the development of a system with superior
sketch understanding [FLK*04]. Sketch segmentation is
the process by which a continuous stream of pen strokes

is parsed into a series of constituent geometric primitives
that are atomic geometric entities in sketches and can not
be further decomposed. Frequently, only lines, circles
and arcs are considered as the basic primitives that
constitute a user’s sketches [FLK*04, Stahovich04,
HN04] . Given a segmented portion of a pen stroke, the
aim of primitive or composite recognition is to determine
the type of geometric entity to which it belongs.

Often, once the primitives are recognized, the freehand
sketches can be beautified by assigning primitives with
proper parameters. However, such a direct beautification
often misses some important information implied in
sketches such as geometric constraints, which are widely
used in many design related applications, such as
drawing programs [KB90], computer aided design
[Aldefeld98, BFH*95, FH97] and graphical user
interfaces [BD86], to determine the relationship between
two objects. To illustrate the disadvantage of direct
beautification, two examples are shown in Figure 1,
where (b) is the beautified result of (a) and (d) is the
beautified result of (c).

It is intuitive for users to conclude from the sketches that
the two circles have the same center while the lines are

http://www.eg.org
http://diglib.eg.org

J.Pu & K. Ramani / Implicit Geometric Constraint Detection in Freehand Sketches Using Relative Shape Histogram

parallel. However, due to the fact that the parameters
(i.e., center and radius) of each circle are determined
separately, their relative relationship such as geometric
constraint might change after the beautification
operation, thus leading to the conclusion that there is no
relationship between the two circles and the lines. In a
geometric constraint system, this direct beautification
will lead to serious error propagation for which
additional efforts [WSH05] are needed. Therefore, a
more reliable method is to check their constraint type
directly on the basis of the original freehand sketches
instead of the final beautified results.

Figure 1: Implied constraints might be different before
and after beautification: (b) is the beautified result of
freehand sketch (a) and (d) is the beautified result of
freehand sketch (c).

In contrast, an example is shown in Figure 2 to
demonstrate the potential advantages of sketch
beautification driven by implied constraints, where both
explicit and implicit constraints are considered.

Figure 2: A sketch parameterization example: (a) shows
a sketched drawing with geometric constraints; and (b)
is the parameterized result of (a) under the specified
constraints.

Explicit constraints refer to constraints that a user
specifies, such as dimension, while implicit constraints
are those that are implied in the sketches, such as
parallelism and perpendicularity. From the above two
examples, it is not difficult to infer that sketch
beautification driven by geometric constraints can not
only achieve designers’ ideas more accurately and
naturally than direct beautification but also be capable of
bridging the gap between the initial conceptual design
and the final detailed design. To implement such a sketch
beautification paradigm, a crucial step is to detect the
geometric constraints implied in freehand sketches. In
the past, the detection of implied constraints in freehand
sketches is largely ignored. Most of similar efforts

[BS86] are dedicated to the detection of implied
constraints in already beautified representations.
[KWL93] is a good source for the related work in detail.
Due to the informal representation of freehand sketches,
it is impossible to apply these methods to the detection of
implied constraints in freehand sketches.

In this paper, an algorithm is proposed to detect the
geometric constraints implied in sketches with a
statistical method called relative shape histogram (RSH).
The remainder of the content is organized as follows. In
Section 2~3, the concepts about implicit geometric
constraint and the way of freehand sketch representation
are explained respectively. In Section 4, the shape
histogram is introduced, on the basis of which RSH is
derived and the method to compute the similarity
between RSHs is presented in Section 5. To evaluate the
performance of these proposed algorithms, a preliminary
user study is conducted in Section 6. Additionally,
examples are given to demonstrate the validity of this
proposed algorithm when it is combined with a
geometric constraint solver to beautify freehand
sketches. The geometric constraint solving will be not
discussed due to the fact that it is beyond the scope of
this paper and has been studied extensively in the past
[Aldefeld98, BFH*95, FH97].

2. Implicit Geometric Constraint

Geometric constraints are widely used in a design
process and usually can be classified as one of two types:
either explicit constraints, which refer to constraints that
a user specifies explicitly, such as dimension, or implicit
constraints, which are those that are implied in the
sketches, such as parallelism and perpendicularity. It is
natural for users to express geometric constraints
implicitly when they are sketching their design idea on a
piece of paper. Although the implicit constraint can
provide flexibility for users, its informal representation
often leads to inconsistency because it is still difficult to
detect them in a robust way.

Table 1: Examples of geometric constraints between
primitives.

108

© Association for Computing Machinery, Inc., 2007.

J.Pu & K. Ramani / Implicit Geometric Constraint Detection in Freehand Sketches Using Relative Shape Histogram

In Table 1, some common constraints between primitives
are listed, in which (1)~(7) are examples with explicit
constraints and (8)~(18) are examples with implicit
constraint. In practice, users can extend this constraint
list according to their needs.

3. Sketch Representation

Freehand sketches are usually composed of a series of
basic geometric entities such as lines, circles, and arcs.
When a user transmits his or her ideas to a computer
using a pen, it is not practical to assume that each stroke
only represents a single geometric primitive. On the
contrary, a stroke may consist of multiple line segments
and arcs. To recognize the sketches, a segmentation
process is needed to parse and recognize individual
primitive shapes from a user’s stroke streams.

Generally, the sketches are drawn offline or online. In
the case of offline sketches, the sketches consist of
bitmap-like pixels. In contrast with the offline sketches,
during the online sketching process, the track of a stroke
such as S is usually composed of a sequence of small line
segments rather than image bitmaps:

}0|)),,(),,{((11 nityxyxS iiiii ≤≤= ++ (1)

where n is the total number of line segments included in
a single stroke S, (xi, yi) and (xi+1, yi+1) are the two
ending points of a small line segment at time ti.
Correspondingly, the sketches of an object A are usually
achieved by a sequence of strokes:

}0|{ miSA i <≤= (2)

where m is the number of the strokes. The goal of sketch
segmentation (ink parsing) is to define all of the segment
points that parse the stroke stream into a sequence of
geometric primitives, such as lines, circles, and arcs. It
has been reported that the time plays an important role in
this parsing process [Stahovich04]. In this paper, we
assume that the sketches have already been segmented
since sketch segmentation is a non-trivial problem and is
out of the scope of this paper.

4. Two-dimensional Shape Histogram

Osada et al. [OFC*02] represented a three dimensional
object as a shape distribution in order to measure the
similarity between three dimensional models. The shape
distribution is formed by random points sampled
uniformly from the shape surface. Based on the
principles of this method, we derived a two dimensional
analog called a shape histogram and used it to recognize
independent strokes representing geometric primitives.
Experiments show that this derivation is proficient in
recognizing geometric primitives and is independent of

stroke order, number, and direction, as well as invariant
to rotation, scaling, and translation of strokes. As
compared to a method based on shape contexts
[BMP02], this method does not need to find the
correspondence points between two shapes despite the
fact that both methods are based on point sampling and
histogram similarity computation. Below, the two-
dimensional shape histogram method is introduced.

4.1. Uniform sampling

This step uses a series of points to approximate a two
dimensional shape. To ensure that the sampling process
is conducted efficiently and uniformly, we design a look-
up table based approach:

• Step 1: Compute the summed length of all line
segments included in the freehand sketch. When each
line segment is added, the summed length is saved into
table T with size n, where n-1 is the total number of
the line segments. Table T can be represented by a
linear array as Equation (3) shows.

1 1
0

{ | ((,), (,)),0 1}
i

i i j j j j
j

t t L x y x y i n+ +
=

= = ≤ ≤ −∑T (3)

• Step 2: Generate a random real number r between 0
and the total length tn-1, and then use the binary search
algorithm to determine the position m where r is
located in the table. This position corresponds to the
line segment 1 1((,), (,))m m m mx y x y+ + .

• Step 3: Generate a random real number l between 0
and 1, which is the proportionality factor between the
distances from the sampling point to the two end
points of the line segmentation obtained in the
previous step. This process can be mathematically
represented as Equation (4) and the sampled point
(,)k kx y is saved into an array A.

⎩
⎨
⎧

−×+=
−×+=

+

+

)(
)(

1

1

mmmk

mmmk

yylyy
xxlxx (4)

• Step 4: Repeating Step 2~Step 3 for 2×n times, we can
get n point pairs that are sampled in an unbiased
manner.

In the sampling procedure, the sampling density must be
considered and it has a linear relationship to the
complexity of a shape. Statistically, more samples will
provide a more precise approximation of the original
shape.

4.2. Two-dimensional shape histogram generation

Once enough random point pairs are sampled, the next
step is to build the corresponding distance histogram that

109

© Association for Computing Machinery, Inc., 2007.

J.Pu & K. Ramani / Implicit Geometric Constraint Detection in Freehand Sketches Using Relative Shape Histogram

is described by a shape function. The Euclidean distance
between two points is used as the shape function. Given
n point pairs, their distances are calculated. Then by
traversing each point pair 1 1(,), (,)i i i ix y x y+ + in an array
A and counting the number of sample pairs that fall into
a certain distance range, a shape histogram H is built.

Since strokes drawn at different times usually have
different geometric sizes, a normalization process is
needed to account for this difference. We determined a
standard value L used for normalization. Generally, there
are two simple ways to achieve normalization. The first
one uses the maximum distance among all sampled point
pairs as the standard value. The second one uses the
average distance of all sample point pairs as the standard
value.

Figure 3 shows the shape histograms of some primitive
shapes. The shape histograms for each geometric
primitive such as lines, circles, or arcs are similar despite
their lengths, directions, or shapes. From these examples,
several conclusions can be reached: (1) Different
geometric primitives have different two dimensional
shape histograms; (2) The freehand strokes of the
geometric primitives have similar shape histogram; and
(3) The shape histogram is independent of stroke order
and direction, as well as invariant to rotation, scaling,
and translation of strokes. These conclusions form the
basis of geometric primitive recognition. Using the
representation scheme explained in this section,
recognizing a primitive shape becomes a matter of
computing the similarity between two histograms.

Figure 3: Shape histograms of geometric primitives such as line, circle and arc. The horizontal axis represents the
distance between two points and the vertical axis represents the number of the point pairs with the same distance.

5. Relative Shape Histogram (RSH)

In order to detect implicit constraints, we propose a
method called Relative Shape Histogram (RSH) to
determine the relationship between two geometric
primitives. RSH is similar to the shape histogram method
described in Section 4. RSH has the same sketch
representation, the same sampling strategy, and the same
shape function as the shape histogram method. The key
difference is that RSH only considers the Euclidean
distances between point pairs that are sampled from
different primitives. For example,),(ii yx and

),(11 ++ ii yx in Section 4.2 are located on different
primitives. By following the same steps of the shape
histogram method, RSHs between geometric primitives
can be computed in a similar way. In Figure 4, some
RSHs between sketched primitives with certain
constraints are shown, in which each row represents the
same constraints but different sketched shapes such as

size and rotation. Based on the examples in Figure 4,
several conclusions can be reached: (1) sketches
representing the same kind of constraint have similar
RSHs; (2) sketches representing different constraints
have different RSHs; and (3) the RSH of a constraint is
independent of stroke-order and -direction, as well as
invariant to rotation, scaling, and translation of strokes.

In implementing this technique, two interesting
phenomena are observed. The first is that certain
parameters can be estimated from the RSH, as in the first
row of Figure 4, where some examples of parallel
constraint are shown. Along the horizontal axis, there is a
certain distance between the origin and the RSH curve,
which corresponds to the distance between the two lines.
The same conclusion also holds for the constraints
shown in the third and fourth rows.

The second phenomenon is that the RSHs for the same
constraints have similar distributions of peaks and
troughs. Thus, the histograms of the same constraints

110

© Association for Computing Machinery, Inc., 2007.

J.Pu & K. Ramani / Implicit Geometric Constraint Detection in Freehand Sketches Using Relative Shape Histogram

have approximately the same overall component shapes.
However, these shape components do not line up along
the horizontal axis. As Figure 5(a) shows, the Minkowski
distance is not good at computing the similarity between
two RSHs because it does not build an intuitive

alignment between RSHs. In order to find the similarity
between such sequences, a “warp” operation is needed to
achieve an intuitive alignment. Below, an approach
based on dynamic time warping (DTW) [SK83] is
introduced to compute the similarity between RSHs.

Figure 4: Examples of relative shape histograms (RSH). The horizontal axis represents the distance between two points

from two different strokes and the vertical axis represents the number of the point pairs with the same distance.

We use DTW to determine the constraint type of the
RSH. DTW was originally developed to align two
spectral sequences of speech and is now being widely
used in speech processing, bio-informatics, and
handwriting recognition. Figure 5(b) shows such an
alignment by DTW.

Figure 5: Two different alignment methods for similar
shape histograms A and B: (a) Minkowski distance, and
(b)DTW.

Suppose there are two time series S and T with length m
and n respectively:

1 1 1 1{ , , , }, { , , , }m nS s s s T t t t= =L L (5)

To align S and T, we need to construct an m×n matrix M
whose element at position (i, j) is the distance D between
the two points si and tj. Each matrix element (i, j)

corresponds to the alignment between the points si and tj.
Next, a warping path is found that represents the
correspondence between the two sequences S and T. In
particular, the DTW is defined as the warping path that
minimizes the warping cost, which can be calculated by
a dynamic programming approach as:

(, 1)
(,) min (1,) (,)

(1, 1)
i j

D i j
D i j D i j d s t

D i j

−⎧ ⎫
⎪ ⎪= − +⎨ ⎬
⎪ ⎪− −⎩ ⎭

 (6)

According to the DTW theory, the following steps are
utilized in order to determine the constraint type of an
RSH:

• Step 1: Determine a set of templates as standard
sequences for each constraint type. The aim is to
ensure that the constraints that designers use are not
omitted, so that a high level of accuracy can be
achieved.

• Step 2: Exclude certain constraint types by checking
the distance between the origin and an RSH. For
example, if the distance is larger than a predefined
tolerance ε, such as the first RSH in the third row of

111

© Association for Computing Machinery, Inc., 2007.

J.Pu & K. Ramani / Implicit Geometric Constraint Detection in Freehand Sketches Using Relative Shape Histogram

Figure 4, then we can conclude that the line and the
circle are not tangential to each other at all.

• Step 3: Move the histogram of an RSH along the
horizontal axes to ensure that the first point s1 or t1 is
located at the origin.

• Step 4: Compute the DTW warping path between an
RSH and a template, where the template with the
minimum warping cost represents the desired
constraint type. For simplicity, we use the Euclidean
distance to compute the distance between two points.

6. Experiments

To qualitatively demonstrate the validity of our proposed
method, a preliminary user study was conducted, in
which nine participants were asked to sketch two-
dimensional drawings freely. Totally, sixty three
sketched drawings were collected and used to evaluate
the performances of implicit constraint detection. In
Figure 6, some sketched samples are listed.

Figure 6: Sketched examples.

Given two segmented primitives, four kinds of
constraints are checked, including parallelism, con-
centric, perpendicularity and tangency. The results are
presented in Table 2. It can be seen that there are no false
negative results while there is a high rate of false positive
results. This is due to the fact that some constraints,
which are not intended by sketchers, are incorrectly
detected, since the detection process of implicit
constraint is purely based on the similarity computation
of RSHs and no qualitative factor such as the types of the
involved geometric entities.

Table 2: Implicit Constraint Detection.

Actually, when the types of the involved geometric
entities are considered, the false positive can be
decreased obviously because constraint types have a
direct relationship with the geometric entities. For
example, perpendicular constraint will never occur for a
line and a circle.

With the help of the method introduced in this paper,
together with a constraint solver, freehand sketches can
be beautified in a more accurate way. Two examples of
beautification driven by constraints are presented in
Figure 7, where the explicit geometric constraints such as
dimensions are specified by users interactively. For more
detailed information about constraint solvers, please refer
to [Aldefeld98, BFH*95, FH97]. In the example shown
in Figure 7(a), the implied tangent constraints are
detected automatically and users have no need to specify
them explicitly. It can be seen from the two examples
that the sketched design schemes can be transformed to
the final design efficiently with the help of the constraint
detection component and a constraint solver.

Figure 7: Examples of sketch beautification driven by
geometric constraints.

7. Conclusion

Freehand sketching is widely believed to be the most
natural human-computer interaction manner that has
potential applications in many fields, such as computer
aided design, geometric modeling, geometric theorem
proofs, tolerance analysis, and robotics. In this paper, an
algorithm is proposed to detect the implicit geometric
constraint in freehand sketches so that more intent from
users can be used in sketch beautification. The prior
condition is that the freehand sketches should be
segmented as the input of this algorithm, usually is used
together with sketch segmentation for beautification
purpose. As a statistical method, the basic idea of the
proposed method is to represent the relationship between
two segmented sketches in the form of histogram that has
some valuable advantages, such as transformation-
invariance, stroke-speed, and curvature independence.
We are currently trying to incorporate this beautification
into a new paradigm for computer-aided design, which is

112

© Association for Computing Machinery, Inc., 2007.

J.Pu & K. Ramani / Implicit Geometric Constraint Detection in Freehand Sketches Using Relative Shape Histogram

expected to provide users with great flexibility, high
efficiency, and naturalness in product design.

Acknowledgements

We acknowledge the early support of 21st Century
Research and Technology funds in Shape Search. This
research is partly supported by the National Science
Foundation under grant IIS No. 0535156. Any opinions,
findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

References

[Li03] LI Y.: Incremental sketch understanding for
intention extraction in sketch-based user interfaces. CS
Technical Report, University of California, Berkeley
(October 2003). UCB//CSD-03-1284.
[FLK*04] FORBUS K., LOCKWOOD K., KLENK M.,
TOMAI E., USHER J.: Open-domain sketch
understanding: the nuSketch approach. In Proc. AAAI
Fall Symposium on Making Pen-based Interaction
Intelligent and Natural (2004), pp.58-63.

[Stahovich04] STAHOVICH T. F.: Segmentation of pen
strokes using pen speed. In Proc. 2004 AAAI Fall
Symposium on Making Pen-based Interaction Intelligent
and Natural (2004), pp.152-158.

[LS05] LANK E., SAUND E.: Sloppy selection:
providing an accurate interpretation of imprecise
selection gestures. Computers and Graphics 29, 4 (2005)
(Special Issue on Pen Computing), pp.183-192.
[NM04] NOTOWIDIGDO M., MILLER R. C.: Off-line
sketch interpretation. In Proc. AAAI Fall Symposium
Series 2004: Making Pen-Based Interaction Intelligent
and Natural (2004), pp.120-126.

[GKS05] GENNARI L., KARA L. B., STAHOVICH T.
F.: Combining geometry and domain knowledge to
interpret hand-drawn diagrams. Computers & Graphics
29, 4 (2005), pp. 547-562.

[SD05] SEZGIN T. M., DAVIS R.: HMM-based
efficient sketch recognition. In Proc. 10th International
Conference on Intelligent User Interfaces (2005),
pp.281-283.
[HN04] HSE H., NEWTON A. R.: Sketched symbol
recognition using Zernike moments. In Proc. 17th
International Conference on Pattern Recognition (2004),
pp.367-370.
[KS04] KARA L. B., STAHOVICH T. F.: An image-
based trainable symbol recognizer for sketch-based
interfaces. In Proc. AAAI Fall Symposium Series 2004:
Making Pen-Based Interaction Intelligent and Natural
(2004), pp.99-105.

[AD04] ALVARADO C., DAVIS R.: SketchREAD: a
multi-domain sketch recognition engine. In Proc. 17th
Annual ACM Symposium on User Interface Software and
Technology (2004), pp.23-32.

[KB90] KALRA D., BARR A. H.: A constraint-based
figure-maker. In Proc. European Computer Graphics
Conference and Exhibition (1990), pp. 413-424.
[Aldefeld98] ALDEFELD B.: Variation of geometries
based on a geometric reasoning method. Computer Aided
Design 20, 3 (1998), pp. 117-126.
[BFH*95] BOUMA W., FUDOS I., HOFFMANN C.
M., CAI J., PAIGE R.: A geometric constraint solver.
Computer Aided Design 27, 6 (1995), pp. 487-501.
[FH97] FUDOS I., HOFFMANN C. M.: A graph-
constructive approach to solving systems of geometric
constraints. ACM Trans. on Graphics 16 (1997), pp. 179-
216.
[BD86] BORNING A., DUISBERG R.: Constraint-
based tools for building user interfaces. ACM
Transactions on Graphics 5, 4 (1986), pp. 345-374.
[WSH05] WALLNER J., SCHROCKER H. P., HU S.
M.: Tolerances in geometric constraint problems.
Reliable Computing 11, 3 (2005), pp. 235-251.
[BS86] BIER E. A., STONE M. C.: Snap-Dragging. In
Proc. ACM SIGGRAPH Computer Graphics 20, 4
(1986), pp. 233-240.
[KWL93] KARSENTY S., WEIKART C., LANDAY J.
A.: Inferring graphical constraint with Rockit. In Proc.
Conference on People and Computer VII (1993), pp.
137-153.
[OFC*02] OSADA R., FUNKHOUSER T., CHAZELLE
B., DOBKIN D.: Shape distribution. ACM Trans. on
Graphics 21, 4(2002), pp. 807-832.
[BMP02] BELONGIES S., MALIK J., PUZICHA J.:
Shape matching and object recognition using shape
context. IEEE Transactions on Pattern Analysis and
Machine Intelligence 24, 24 (2002), pp. 509-522.
[SK83] SANKOFF D., KRUSKAL J. B.: Time warps,
string edits, and macromolecules. The Theory and
Practice of Sequence Comparison (1983), Addison-
Wesley, Reading, MA.

113

© Association for Computing Machinery, Inc., 2007.

114

© Association for Computing Machinery, Inc., 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

