
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2007)
M. van de Panne, E. Saund (Editors)

Free-form Sketch

Haixiong Wang and Lee Markosian

University of Michigan

Abstract

We describe a sketch-based system for modeling 3D shapes based on a new multiresolution shape representation
we call a layered mesh. Like subdivision surfaces, layered meshes provide a multiresolution hierarchy of meshes. A
key difference is that a layered mesh lets you edit the shape and structure of the mesh at any level of the hierarchy,
through the notion of shape primitives organized in a dependency network. The simplest primitives are points and
curves, which can be used to define several kinds of parameteric surface. Surfaces can be inflated or smoothly
joined to produce a broad range of shapes. An important feature of the system is the ability to refine shapes and
add detail by oversketching primitives, either directly or via the curves that define them. While our user interface
is still in development, our initial results show the potential for this approach.

1. Introduction

The problem of how to model 3D shapes has remained one
of the more interesting and challenging in computer graph-
ics. Although existing methods are extremely powerful –
nearly anything can be modeled quite convincingly – most
applications are geared toward expert users; the tools tend
to be hard to learn and slow and painstaking to use. One
reason is that these methods were originally developed for
computer-aided design, where precise mathematical control
is an important requirement. Many other applications, like
stylized animation, 3D games, and interactive 3D illustra-
tions have different requirements. For them, it is more im-
portant that the user can quickly and intuitively specify ap-
proximate shapes.

Existing commercial and research systems have addressed
this need using various strategies, but all impose significant
limitations on the types of shapes that can be modeled
(e.g., SKETCH [ZHH96], Teddy [IMT99] and Smoothteddy
[IH03], SMARTPAPER [SC04], FiberMesh [NISA07]), and
SketchUp [Ske07].

We describe a new prototype system, Free-Form Sketch,
that lets the user create organic, free-form shapes through a
sketching interface. The system is based on an incremental
approach: simpler shapes help define more complex ones.
The simplest shapes are points and curves – both are easy
to specify (even in 3D) with a sketching interface. Points
and curves in turn help define several kinds of surfaces,

including those that interpolate a set of boundary curves,
generalized cylinders, and surfaces of revolution. Surfaces
can be “inflated” and smoothed to yield a rich set of shapes,
which can be smoothly joined with other shapes at arbitrary
scales to produce more complex surfaces still.

Underlying the system is a new shape representation that
we call a layered mesh. Like subdivision surfaces [Zor06],
layered meshes define a multi-resolution mesh hierarchy.
That is, each mesh generates a “child” mesh, which by
default is the result of applying one round of approximating
subdivision to the mesh. We use Loop subdivision in areas
of triangles, Catmull-Clark in regions of quads, and a hybrid
method in mixed regions, similar to Stam and Loop [SL03].
Like Hybrid Meshes [GKSS02], layered meshes support
topological changes between levels of the hierarchy through
the addition of new structures.

Layered meshes are distinguished by two key features:
(1) regions within the mesh (at any level of the hierarchy)
may be procedurally controlled, e.g. to fit a shape such
as a parameterized or implicit surface; and (2) each mesh
in the hierarchy may have non-manifold surface topology
(specifically, some edges may have more than two adjacent
faces), but the mesh can always be decomposed into 2-
manifold surface regions (where every edge has one or two
adjacent faces) that are smoothly joined through an extra
layer of surface called “skin.” (See Figure 1.)

Each separate procedurally controlled mesh region is
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Sketch-Based Interfaces and Modeling 2007, Riverside, CA, August 02-03, 2007.

© 2007 ACM 978-1-59593-913-5/07/0008 $5.00

http://www.eg.org
http://diglib.eg.org

H. Wang and L. Markosian / Free-form Sketch

Figure 1: Left: two surfaces blended together (normal view).
Right: interior view showing original surfaces, plus the layer
of “skin” that joins them.

called a “primitive.” The simplest primitives are points and
curves (corresponding to individual mesh vertices and chains
of mesh edges, respectively). Various types of surface prim-
itives are described in Section 3.3. Primitives form a depen-
dency network, where a newly added primitive can depend
on (and derive its shape from) existing ones.

Layered meshes thus let the user smoothly attach finer
structures to existing coarse mesh structures. The finer struc-
tures are “carried along” when the coarser shape is changed
by the user. We describe a prototype system based on this
shape representation that supports sketch-based modeling of
a range of free-form shapes. Some aspects of the system are
still in development (e.g., the user interface, and the set of
available operations), but even our preliminary results show
the potential for layered meshes to model a rich set of or-
ganic, free-form shapes that would be difficult to create with
previous methods.

2. Related Work

Free-Form Sketch is largely inspired by SKETCH [ZHH96]
and Teddy [IMT99], which also pair a gestural user interface
with a set of basic primitive shapes that can be combined to
yield more complex shapes. Both systems impose significant
restrictions on the kinds of shapes that can be created –
mainly boxy shapes in SKETCH and simple rounded shapes
with little geometric detail in Teddy – and both support only
limited ability to oversketch and refine the shape once it has
been created.

Like Teddy and earlier work by van Overveld [vW96],
Free-Form Sketch uses inflation to build smooth shapes from
curves or simpler surfaces (“polygons” in van Overveld’s ap-
proach). Bloomenthal and Wyvill [BW90] take a similar ap-
proach, defining implicit surfaces from skeletal components
and offset distances. In our system, the user can directly
oversketch the shape (via silhouettes and feature curves) or
the skeleton points, curves, or surfaces that define it.

A new modeling system, FiberMesh [NISA07], extends
Teddy to let the user oversketch feature curves that define
the shape. The system can handle both sharp and smooth
shape features, and provides better control over the final
shape. The approach is based on functional optimization and
is essentially different from ours, which uses a multi-scale
and hierarchical shape representation.

ShapeShop [SWSJ05] is a sketch-based modeling system
based on BlobTrees (implicit surfaces combined via CSG
operators) as the underlying surface representation. Due to
the representation, arbitrary topology models can be robustly
created and edited. Topology edits are harder to make in
Free-Form Sketch, as the user edits the mesh structure
explicitly. In return, the resulting meshes are highly regular
and have useful parameterizations.

Another approach to sketch-based modeling is to interpret
finished sketches all at once, rather than incrementally, as
they are drawn. Shesh and Chen’s SMARTPAPER [SC04]
is one example of such a system. This approach generally
places greater restrictions on the kinds of shapes that can
be sketched, in part because of the inherent ambiguity of
sketches, especially when it comes to free-form shapes.

Subdivision surfaces [Zor06] can compactly represent
piecewise smooth shapes of arbitrary topology. While a great
deal has been written about them, most research has inves-
tigated subdivision rules and properties of the the resulting
limit surface, assuming the control mesh is given. Our sys-
tem lets the user interactively build control meshes with reg-
ular connectivity and good triangle or quad aspect ratios –
both of which help improve the quality of the resulting sub-
division surfaces.

3. System Description

Free-Form Sketch is still under development, particularly the
user interface. Our goal is to implement a pen-based UI that
is self-disclosing and easy to learn, but also fast and effective
for practiced users. Our basic approach is to classify the
user’s input strokes as ordinary strokes or special commands,
e.g. to select an object or activate a “widget.” We use basic
gesture interpretation algorithms similar to those used in
many gesture-based systems (e.g., MathPad2 [LZ04]).

Widgets are 2D or 3D user-interface elements that help
mediate various editing operations. A widget represents a
temporary editing mode in which the user sees an on-
screen representation of the points, curves, or surface regions
that can be edited. (See for example the red and blue
curves defining the cross-section and profile of a surface of
revolution in Figure 4.)

As explained in Section 1, shapes in Free-Form Sketch
can be decomposed into primitives. Each primitive repre-
sents a basic part of the shape that can typically be edited
in some way. Widgets are thus provided for each type of

54

© Association for Computing Machinery, Inc., 2007.

H. Wang and L. Markosian / Free-form Sketch

primitive and associated editing operation. In the following
sections we describe the various types of primitives currently
supported in our system.

3.1. Points

A point is the simplest primitive. It can be a lone point in
3D, but more often it represents an endpoint of a curve. As
moving a point in screen space does not uniquely define a
movement in 3D, we set certain constraints on the points.
Every point is associated with an arbitrary plane that it
resides on. Its movement is constrained to be either parallel
to the plane or along the plane normal, depending on the
initial direction of the motion.

When a point is moved, all entities that depend on the
point are updated as necessary. For example, when the
endpoint of a curve is moved, the curve is scaled and rotated
accordingly.

A point can be embedded in a curve or a surface, which
means the movement of the point is constrained so it stays
on the curve or surface. Also, it is possible that a point is
the centroid of a triangular face, so it cannot be directly
manipulated by the user. However, if the face changes, the
position of the point will be updated.

3.2. Curves

Creating and editing curves in 3D is one of the most im-
portant tasks for a modeling system. In our system, a curve
is represented as a parameterized polyline that is approxi-
mated by a chain of mesh edges and vertices (down to a pre-
scribed level of subdivision). We support two ways to create
curves: drawing on a user-specified surface (usually a plane),
or creating a non-planar 3D curve that corresponds to a pre-
scribed (planar) shadow curve, using the method of Cohen
et al. [CMZ∗99].

In either case, once the 3D shape of the curve is given
as a polyline, mesh vertices are created to sample the curve
with a prescribed spacing, and mesh edges are generated to
connect vertices into a chain. Each curve may generate a
“child” curve in the subdivision hierarchy, up to a maximum
resolution, after which ordinary smooth subdivision rules
take over. (We use subdivision rules that reproduce uniform
cubic B-splines [HDD∗94]). Other primitives use a similar
policy. This way, we can fit a given reference shape (e.g.a
polyline drawn the user) without fitting the “noise.”

Control points of the curve except the two endpoints are
invisible from the user and thus cannot be manipulated di-
rectly. Instead we support curve editing by “oversketching.”
When a curve is selected and a stroke is drawn near the
curve, the system determines the region of the curve affected
by the stroke and rebuilds that region using the rules de-
scribed by Baudel [Bau94].

As with points, once a curve is oversketched, primitives

Figure 2: Tessellation of triangular, quadrilateral and pen-
tagonal panels by adding interior vertices.

that depend on it must be updated. For example, if the user
oversketches a boundary curve of a surface, vertex positions
within the surface may need to be recomputed. We discuss
different types of surfaces in the following sections; each has
its own way of computing vertex positions.

3.3. Surface Primitives

In Free-Form Sketch, a surface primitive controls some
region of the mesh (including both mesh connectivity
and vertex positions). There are various types of sur-
face primitives, with corresponding ways to edit them.
Nealen et al. [NSACO05] implement surface oversketching
by solving a linear system of equations to achieve coarse ed-
its while preserving fine geometric detail in meshes loaded
from file. In our system, we can use information collected
during construction of the control mesh to support overs-
ketching.

3.3.1. Panels

A panel is a surface defined by its boundary curves (see
Figure 2). A panel can be used to model a desired shape
directly, or it can serve as a skeleton to generate an inflated
shape (see Figure 8). When the user draws a closed sequence
of boundary curves, the system instantiates a panel to fill
the interior region. As a fall-back, we can triangulate the
surface using a Delaunay triangulation, using just the mesh
vertices around the boundary. However, such triangulations
typically have bad aspect ratios, and so perform poorly for
subdivision.

In practice, therefore, we check for several cases that have
a simple structure allowing us to do better. For example,
when there are 4 boundary curves, and every other one has
the same number of edges, we fill the interior with a grid
of quads. When the number of boundary curves is 3, and
they have the same number of edges, we can triangulate by
cutting the surface in 3 directions (see Figure 2). The system
handles several other cases like these. The system has some
limited support for changing the existing mesh connectivity.
E.g., a curve can be re-tessellated to contain more edges.
The goal of this and specialized panel tessellation rules is
to create triangles and quads with good aspect ratios, and
facilitate subdivision.

55

© Association for Computing Machinery, Inc., 2007.

H. Wang and L. Markosian / Free-form Sketch

Figure 3: Left: a paper-doll consisting of 10 panels; thick
blue lines/dots denote the spines of panels, and the yellow
lines connects them together; the user is oversketching a
spine. Right: the result of the oversketch.

The tessellation process provides us with useful informa-
tion. For a Delaunay triangulated panel, we can find its spine
by the “chordal axis” technique used in Teddy [IMT99]. For
a panel that is triangulated using a specific rule, the spine
is defined by connecting the center of “meaningful” cells
in the panel, which are sets of faces determined by the rule
used. (See Figure 3 for examples.) Note that panels can be
connected together. In our system, the spine is a curve that
the user can oversketch. Afterward, a simple recursive pro-
cedure ensures that all the neighboring panels are updated
accordingly.

Finally, since a panel is defined by its boundary, its shape
should change as the boundary curves are oversketched. To
compute new locations for interior vertices of the panel,
we perform an iterative relaxation process on each interior
vertex. At each iteration, each vertex is moved toward the
centroid of its one-ring neighbors. The resulting surfaces
act like “soap films,” approximating minimal surfaces that
interpolate the boundary curves.

3.3.2. Parameterized surfaces

Free-Form Sketch also supports parameterized surfaces,
which assign vertex positions based on a mapping from a 2D
domain to 3D space. One example is a surface of revolution
(see Figure 4). In this case, the profile curve and two cross-
section curves together determine the mapping. Since those
are the curves that define the surface, the user can oversketch
them to adjust the shape of the surface of revolution. When
that happens, vertex positions are recomputed based on their
assigned 2D coordinates.

3.3.3. Tubes

A generalized cylinder in our system is called a tube. It
consists of a roughly planar base shape extruded along a

Figure 4: Left: a subdivided surface of revolution. Thin
blue lines show the structure of the control mesh. Right: a
“widget” lets the user overksetch the thick blue cross-section
curves or the red profile curve to modify the shape.

Figure 5: The structure of a tube.

skeleton curve. For each edge in the skeleton curve, we
create a cross section similar to the base shape, centered at
the midpoint of the edge and perpendicular to it. Each vertex
on the cross section has a fixed local coordinate with respect
to the coordinate system determined by the edge (using the
edge midpoint as origin and edge direction as one axis).
Neighboring cross sections are then connected together. An
example of a tube is shown in Figure 5.

Tubes are similar to the extrusion primitive used in Teddy
[IMT99]. Because of the underlying dependency network,
our system offers more control over primitives than Teddy
does. The surface of the tube depends on its skeleton, so once
created, the tube can be further modified by oversketching
the skeleton curve. Since vertices on the tube are controlled
by local coordinates with respect to edges of the skeleton
curve, their locations are naturally updated after the shape of
the curve changes (see Figure 6).

Our system also supports sketch-based editing of the sil-
houette or cross section of a tube. Similar to the silhouette
oversketching method of Nealen et al. [NSACO05], we se-
lect a silhouette or cross section, and compute 3D offsets for
vertices within the area of influence based on the oversketch.
For a structure as simple as a tube, we do not need to solve
a linear system of equations for this computation. Instead,

56

© Association for Computing Machinery, Inc., 2007.

H. Wang and L. Markosian / Free-form Sketch

Figure 6: Left: a cup in a toon shading style; user is
oversketching the skeleton of the handle, which is a tube.
Right: the result of the oversketch.

Figure 7: An example of inflation with uniform offset.

we follow the simple rule that the further away that a vertex
is from the silhouette or cross section, the smaller offset it
receives. Figure 11 demonstrates this editing operation: we
transformed the rounded cap of a tube into a sharp end by
editing the cross section at one end of the tube.

In most cases, we can treat a regular tube as the inflation
of its skeleton curve. It is also intuitive to think of a sphere as
the inflation of a point, which is trivial to implement. Next,
we describe the inflation of a surface.

3.3.4. Inflated surfaces

Free-Form Sketch supports two kinds of inflation for sur-
faces. The first uses a uniform offset distance. It takes an
already existing surface (or subset of the surface), creates a
copy of the surface with vertices offset along their normal
direction, and stitches the two surfaces together by creating
quads that connect corresponding boundary edges. Figure 7
shows an example of such extruded surfaces. The offset dis-
tance can be adjusted by the user.

The second kind of inflation is non-uniform two-sided
extrusion. It takes an existing “skeleton” surface composed
only of panels, from which the system computes correspond-
ing skeleton curves (see Figure 3). The inflation process is
similar to uniform inflation, except that the offset distance
depends on the distance to the nearest skeleton curve (simi-
lar to the inflation policy used in Teddy [IMT99]). Figure 8
shows an example of such inflation. After the inflated surface
is created, the original skeleton surface disappears, but can
be re-displayed to be oversketched. Any edits to its shape are
propagated to the inflated shape.

The user can switch between viewing the inflated sur-

Figure 8: Inflation of a paper doll.

Figure 9: Left: thick blue curve is the selected cross section;
normals of vertices are shown to guide the oversketch;
orange denotes the area of influence. Right: result of the
oversketch.

face and the skeleton surface for editing purposes. Since
the skeleton surface is composed of panels, its spines and
boundary curves can be oversketched as described in Sec-
tion 3.3.1. As with the tube, vertices of the inflated surface
are controlled by local coordinates with respect to points on
the skeleton surface, so whenever the skeleton changes, its
inflated surface is updated accordingly. A surface that is in-
flated from a quad panel can be treated as a tube (e.g., the
torso, legs and arms in Figure 8), thus the user can also ap-
ply sketch-based editing to its silhouettes or cross sections
(Figure 9).

3.4. Combined Shapes

An important feature of our layered mesh representation is
that it lets the user smoothly combine primitives to create
more complex composite shapes. As an example, Figure 10
shows a cup model, constructed according to the following
steps. First, the user creates a surface of revolution, then
“knocks out” the top panel. Next, the user inflates the
resulting surface to give the cup thickness. Finally, a handle
(represented by a tube) is attached to the side of the cup. As
shown in the figure, instead of staying put, the handle adjusts
appropriately when the body of the cup changes shape.

In the final step mentioned above, our current implemen-
tation requires that the two areas to be joined have the same
mesh structure. For example, both are quad faces in Figure 5.
The smooth join is accomplished using an additional “skin”
surface that covers the 1-ring neighborhood of the joined ar-
eas (Figure 1). While our skin primitive is based on the al-
gorithm of Markosian et al. [MCCH99], our implementation
uses a static triangulation. A more dynamic approach would

57

© Association for Computing Machinery, Inc., 2007.

H. Wang and L. Markosian / Free-form Sketch

Figure 10: The handle of the cup changes along after
the profile curve of the body (surface of revolution) is
oversketched.

Figure 11: Transforming the round tentacles of an octopus
to have sharp ends; this octopus model is composed of a
sphere and 8 tubes.

be needed to handle the case that the two areas to be joined
do not have the same mesh structure.

Figure 11 shows another example of combined shapes.
The octopus consists of a sphere inflated from a point, and 8
tubes attached to the sphere.

4. Discussion and future work

We have described a system for sketching free-form shapes
based on two key strategies: (1) we define complex shapes
via inflation from simpler (lower-dimensional) shapes that
are easy to sketch; and (2) we use layered meshes to
smoothly join primitives together to create more complex
composite shapes. Both strategies require thinking through
the structure: the user must mentally decompose the in-
tended object into basic forms that can be modeled with
primitives provided in our system. While this may be dif-
ficult for novice users, it can also be a powerful and intuitive
approach to modeling (Figures 6 and 11).

Looking ahead, we are interested in streamlining the
user interface, supporting additional operations (e.g., better
controls for editing mesh connectivity), and providing more
support for procedural modeling. For example, after the first
octopus tentacle is created, it may be preferable to add the
remaining tentacles via “copy and paste,” instead of creating
each manually.

References

[Bau94] BAUDEL T.: A mark-based interaction paradigm for free-
hand drawing. In Proc. SIGGRAPH 94 (1994), pp. 109–116.

[BW90] BLOOMENTHAL J., WYVILL B.: Interactive techniques
for implicit modeling. 1990 Symposium on Interactive 3D
Graphics 24, 2 (1990), 109–116.

[CMZ∗99] COHEN J. M., MARKOSIAN L., ZELEZNIK R. C.,
HUGHES J. F., BARZEL R.: An interface for sketching 3D
curves. 1999 Symp. on Interactive 3D Graphics (1999), 17–22.

[GKSS02] GUSKOV I., KHODAKOVSKY A., SCHRÖDER P.,
SWELDENS W.: Hybrid meshes: multiresolution using regular
and irregular refinement. In SCG ’02: Proc. of the 18th Annual
Symposium on Computational Geometry (2002), pp. 264–272.

[HDD∗94] HOPPE H., DEROSE T., DUCHAMP T., HALSTEAD
M., JIN H., MCDONALD J., SCHWEITZER J., STUETZLE W.:
Piecewise smooth surface reconstruction. In Proceedings of
SIGGRAPH 94 (1994), pp. 295–302.

[IH03] IGARASHI T., HUGHES J. F.: Smooth meshes for sketch-
based freeform modeling. In 2003 ACM Symposium on Interac-
tive 3D Graphics (2003), pp. 139–142.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: A
sketching interface for 3D freeform design. In Proceedings of
SIGGRAPH 99 (1999), pp. 409–416.

[LZ04] LAVIOLA J. J., ZELEZNIK R. C.: Mathpad2: a system
for the creation and exploration of mathematical sketches. ACM
Transactions on Graphics 23, 3 (2004), 432–440.

[MCCH99] MARKOSIAN L., COHEN J. M., CRULLI T.,
HUGHES J. F.: Skin: A constructive approach to modeling free-
form shapes. In Proc. SIGGRAPH 99 (1999), pp. 393–400.

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.:
Fibermesh: Designing freeform surfaces with 3D curves. ACM
Transactions on Graphics 26, 3 (2007).

[NSACO05] NEALEN A., SORKINE O., ALEXA M., COHEN-
OR D.: A sketch-based interface for detail-preserving mesh
editing. ACM Trans. on Graphics 24, 3 (2005), 1142–1147.

[SC04] SHESH A., CHEN B.: SMARTPAPER: An interactive and
user friendly sketching system. Comput. Graph. Forum 23, 3
(2004), 301–310.

[Ske07] SketchUp. http://sketchup.com/, 2007.

[SL03] STAM J., LOOP C.: Quad/triangle subdivision. Computer
Graphics Forum 22, 1 (2003), 79–85.

[SWSJ05] SCHMIDT R., WYVILL B., SOUSA M. C., JORGE
J. A.: Shapeshop: Sketch-based solid modeling with blobtrees.
In SBIM 2005 (2005).

[vW96] VAN OVERVELD C. W. A. M., WYVILL B.: Polygon
inflation for animated models: a method for the extrusion of
arbitrary polygon meshes. The Journal of Visualization and
Computer Animation 8, 1 (1996), 3–16.

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES J. F.:
SKETCH: An interface for sketching 3D scenes. In Proceedings
of SIGGRAPH 96 (1996), pp. 163–170.

[Zor06] ZORIN D.: Modeling with multiresolution subdivision
surfaces. SIGGRAPH 2006 Course Notes (2006).

58

© Association for Computing Machinery, Inc., 2007.

