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Abstract

This paper presents an intuitive sketching interface for interactive hairstyle design, made possible by an efficient

numerical updating scheme. The user portrays the global shape of a desired hairstyle through a few 3D style

curves which are manipulated by interactively sketching freeform strokes. Our approach is based on a vector

field representation which is obtained by solving a sparse linear system with the style curves acting as boundary

constraints. The key observation is that the specific sparseness pattern of the linear system enables an efficient

incremental numerical updating scheme. This gives rise to a sketching interface that provides interactive visual

feedback to the user. Interesting hairstyles can be easily created in minutes.

1. Introduction

Realistic looking hair is an important feature of vir-
tual characters which appear in many applications, such
as movies and games. While significant progress has
been made on hair simulation [BAC∗06] and rendering
(see [MM06] and references therein), hair modeling still re-
mains a difficult problem. This is due to the huge number of
individual hair curves on a human head (typically more than
100K) and the large variance of hairstyles.

The key contribution of this paper is a hairstyle design
system equipped with a sketching interface and a fast vector
field solver. The user draws freeform strokes to create and
edit a few style curves which depict the global shape of the
desired hairstyle. The hairstyle is then generated by growing
along the flow lines in a vector field, which is transparent to
the user. The vector field is formulated as the solution of a
sparse linear system Ax = b with the style curves acting as
boundary constraints. Despite the high sparsity of A, directly
solving the system is still too slow (more than twenty sec-
onds for 50K variables) for user interaction. Instead, we ob-
serve that modifying the style curves induces only changes
of b and the diagonal elements of A. Once initialized, the
linear system can be efficiently re-solved incrementally due
to the special pattern, usually taking only a few seconds.

The combination of the sketching interface and the effi-
cient vector field solver gives rise to a user-friendly system.
The user continuously draws strokes to modify the hairstyle,
responding to the interactive feedback, until satisfied. Inter-
esting hairstyles can be easily created (see Figure 1 for an
example).

2. Related Work

A variety of hair modeling techniques have been proposed
(see the latest survey in [WBK∗07]). We review only the
work most related to ours.

Direct Hair Modeling. Many previous interactive hair
modeling techniques directly manipulate the geometry of
hair curves, or a group of hair curves, called a hair clus-
ter [GW97, KN02, Mal05]. Modeling a complete hair model
with such techniques could be tedious and time-consuming
(usually several hours) since hundreds of hair clusters have
to be created manually.

Vector Field-based Hair Modeling. Vector field-based
techniques can effectively reduce manual work by auto-
matically tracking the hair curve flow in a vector field.
The idea was first explored by Hadap and Magnenat-
Thalmann [HMT00]. Yu [Yu01] extended the idea by intro-
ducing more vector field primitives to create more complex
hairstyles. A major limitation of these methods is that the
global vector field is continuously represented as the super-
imposition of many local vector fields generated by those
primitives. When the vector field is changed, several minutes
are needed to re-evaluate the vector field and re-generate a
hair model. The high computational cost makes user inter-
action inconvenient. Moreover, the vector field is modified
via positioning and rotating primitives in space, whose ef-
fect on the hairstyle is not always intuitive [Yu01]. Rather
than using a single vector field, Choe et al. [CK05] proposed
to apply individual vector fields each time to incrementally
generate more complex hairstyles, such as braid hair. How-
ever, their styling vector fields are produced using a proce-
dural approach, not allowing users to fully design hairstyles.

Sketching Interface for Hair Modeling. Sketching in-
terface for 3D design has been proved intuitive [ZHH96,
IMT99]. Mao et al. [MKIA04] were the first to apply
sketching to hair modeling, but their approach only as-
sumes symmetric smooth hairstyles. The recent approach
of Malik [Mal05] allows user to draw freeform strokes to
mimic various hairstyling operations on individual hair clus-
ters. Since the user directly manipulates the hair geome-
try and the influence of the editing operation is local, it is
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Figure 1: A realistic hairstyle created using our system in five minutes. The user is allowed to design interesting hairstyles by

intuitively sketching three types of style primitives: streaming curve, dividing curve and ponytail.

not easy to design a globally complex hairstyle. Wither et
al. [WBC07] proposed a sketch-based interface for control-
ling a physically-based hairstyle generator.

To let the user more easily control the global shape of a
hairstyle, we constrain the hairstyle by a vector field which
can be designed by sketching a small set of style primitives.
Note that, parallel to our work, Takayama et al. [TIHN07]
and Fisher et al. [FSDH07] have also proposed sketch-based
interfaces for designing vector fields inside a volumetric 3D
heart model and over arbitrary triangular meshes, respec-
tively.

Figure 2: Left: bounding volume, vector field and style

curves. Right: hair curves generated from scalp.

3. System Overview

Our system consists of four components (see Figure 2): a
head mesh, a vector field defined in the bounding volume, a
set of style curves, and a resulting hairstyle consisting of tens
of thousands of hair curves. To design a specific hairstyle,
the user first sketches a few style curves depicting the global
hair shape. These style curves are created and modified via
drawing freeform strokes. A discrete vector field is defined
in a 3D uniform grid within the bounding volume of the
head. This vector field is formulated as the solution of a lin-
ear system. Different boundary constraints are derived from
the style curves to provide known directions for part of the
vector field. For example, a stream curve (cyan curves in
Figure 2) causes its neighboring grid points to have their di-
rectional vectors set along the curve’s tangent, and a divid-

ing curve (red curve in Figure 2) causes the neighboring grid
points on its two sides to assume roughly opposite directions
(indicated as short yellow lines).

Once solved, the vector field is used to automatically gen-
erate a hairstyle as follows. Each hair curve starts from a root
point on the scalp and grows along the flow directions in the
vector field. Equipped with an efficient incremental solver
for the linear system, our system allows the user to modify
the style curves, re-solve the linear system and generate the
new hairstyle in several seconds. The interactive visual feed-
back greatly facilitates the design process.

4. Fast Vector Field Computation

This section introduces the linear system which produces
a vector field for hair growth. We use a Laplacian system as
a field interpolator, given the boundary constraints derived
from the style curves. A fast solver based on incremental
Cholesky factorization is presented.

4.1. Laplacian System as Field Interpolator

In recent years, the Laplace operator has been exten-
sively adopted in mesh editing due to its ability to produce
smooth deformation (see [Sor06] and references therein).
We adopt a similar formulation. For each vertex vi of the
grid, the discrete Laplace operator is defined as ∆(ti) =

∑ j∈N(i)
1

N(i)(t j − ti), where ti is a directional vector defined

at vi and N(i) is the index set of the 1-ring neighboring ver-
tices of vi. In our hairstyling application, ti indicates the tan-
gent direction of a hair curve passing through vi.

We formulate the problem of field interpolation as a min-
imization problem with the cost function,

E(t1, . . . , tn) =
n

∑
i=1

||∆(ti)||
2 +ω2 ∑

i∈C

||ti − ci||
2
, (1)

where C = {k1, . . . ,km} is the index set of the boundary con-
straints which specify the known directions ci at certain ver-
tices marked by the style curves (see the detailed specifica-
tion in the next section), and ω is the weight of the soft con-
straints (ω = 100 in our implementation). It is well known
that the above minimization is equivalent to solving the fol-
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lowing linear system in a least-squares sense

At
(x) =

(
D

W

)
t
(x) =

(
0

ω c(x)

)
= b

(x)
, (2)

where matrix D is an n× n matrix with the entries obtained
from the discrete Laplacian, W = (wi j)m×n, and wi j is ω if

ki = j, and 0 otherwise. The column vectors t(x) and c(x) con-
tain the x-component of ti and ci, respectively. Similar sys-
tems are defined for the y and z components. Solving Equa-
tion (2) in the least-squares sense is equivalent to solving the
normal equation below:

A
T

At
(x) = (DT

D +W
T

W)t(x) = A
T

b
(x)

. (3)

Note that WTW is a diagonal matrix.

4.2. Incremental Cholesky Factorization

When the user changes the style curves, the set of bound-
ary constraints is updated (see details in Section 5). This re-
quires WTW to be updated, the right hand side of Equation 3
to be changed (DTD always remains unchanged), and the
system to be re-solved. Although the system matrix is very
sparse, solving this system with 50K unknowns still takes
more than twenty seconds.

A key observation is that changing the boundary con-
straints (via modifying the style curves) only affects the di-
agonal elements of WTW. Specifically, the number of af-
fected elements is |C̄−C|+ |C −C̄|, where C and C̄ are the
old and new sets of boundary constraints, respectively. Con-
sequently, for such special modifications to the system ma-
trix, solving the normal equation by modifying the existing
Cholesky factorization of ATA is much more efficient than
solving the system from scratch [DH99]. Efficient modifi-
cation of sparse Cholesky factorization is only possible for
some special cases. Specifically, given a sparse positive def-
inite matrix ATA and its associated Cholesky factorization,
its modification is efficient only when ATA changes in form
of ATA +RTR (called an update) or ATA−RTR (called a
downdate), where R is an arbitrary matrix [DH99].

We adopt the incremental Cholesky factorization to solve
the system in Equation 3. First, we perform a general sparse
Cholesky factorization LLT = ATA = DTD+WTW, which
is pre-computed only once. Given the new boundary con-
straints set C̄, similar to the definition of W, we let W+ and
W− denote the matrices corresponding to C̄−C and C−C̄,
respectively. The new system matrix is

Ā
T

Ā = D
T

D +W
T

W +W
T
+W+ −W

T
−W−.

The new Cholesky factor L̄ is computed by performing an
update to L: L̃L̃T = LLT + WT

+W+, followed by a down-
date to L̃: L̄L̄T = L̃L̃T −WT

−W−. Once the new Cholesky
factor is computed, back-substitution is simply used to com-
pute the vector field. We perform the incremental Cholesky
factorization using an efficient sparse Cholesky factoriza-
tion package [Dav07]. The parallel work of Takayama et

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3: Editing a stream curve (blue). (a) and (b): two

types of supporting surfaces (purple) and the viewpoint as-

sociated to a stream curve. (c) and (d): cut operation: the

hint stroke (green) is long and runs across the stream curve

on the supporting surface; (e) and (f): concatenation oper-

ation: the hint stroke starts near the stream curve and ends

far away from it, possibly out of the supporting surface (in

which case the depth is extrapolated from the last segment

on the supporting surface); (g) and (h): insertion operation:

the hint stroke starts and ends near the stream curve.

al. [TIHN07] and Fisher et al. [FSDH07] use numerical
schemes similar to ours to incrementally solve for the vector
fields.

5. Sketch-based Hairstyle Design System

Our current implementation supports three kinds of style
primitives: stream curve, dividing curve and ponytail. The
ponytail primitive is a composite style consisting of four
style curves. We represent a 3D style curve as a sequence
of connected line segments. Each segment is of the same
length, set as the discretization size of the vector field for
convenience. These style curves are created and modified by
sketching freeform strokes (Figure 3).

Depth determination is the main difficulty in 3D editing
using 2D input devices. Our system relies on the scalp sur-
face and the supporting surface of a style curve for depth
determination.

Stream Curve. This is the simplest style primitive. It
indicates the general flow direction of the hairstyle. Every
segment of a stream curve designates its neighboring grid
points as boundary constraints, each of which has its direc-
tional vector set as the direction of the segment’s tangent
(blue vectors in left of Figure 5). Optionally, to prevent hair
growth beyond the end of the stream curve, we extrapolate
and append a few extra segments. The magnitudes of the di-
rectional vectors associated to these extra segments vanish
gradually, from unit length to zero (red vectors in left of Fig-
ure 5).
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Figure 4: A dividing curve and its boundary constraints.

Left: a local coordinate frame defined on the curve. Bound-

ary constraints are defined in the local xy planes. The tilting

angle α of a local plane is interpolated from two parameters

α0 and α1. Right: boundary constraints on a local xy plane.

Blue vectors mimic the local shape of the parting hairstyle

and follow the tangents of a Gaussian function, which passes

through the origin p at its inflexion point and with its local

shape controlled by two parameters σ and h (set to 1 and

0.5 by default, with the unit as step size in the vector field).

Red vectors explicitly represent the discontinuities around

the parting line in the vector field and stop hair from grow-

ing across the parting line. Their magnitude is set smaller

than 1 (we use 0.3) to reduce their global effect.

A stream curve is created by drawing a stroke starting
from the scalp. The depth of the starting point is the depth
of the intersecting point on the scalp (Figure 3(a)). For each
subsequent stroke point, if it is still on the scalp, it takes
the depth of the scalp point, otherwise its depth is set as
the depth of the last point on the scalp. A stream curve is
usually long and needs incremental refinement from differ-
ent viewpoints. To facilitate editing, its supporting surface is
defined via expanding the stream curve in its neighborhood,
and with respect to the viewpoint. We provide two ways of
building the supporting surface: the supporting surface is ei-
ther a degenerate rule surface (Figure 3(a)) interpolating the
stream curve and the associated viewpoint or a strip (Fig-
ure 3(b)) composed of lines locally orthogonal to each tri-
angle formed by a stream curve segment and the viewpoint.
The user can freely change the viewpoint of a stream curve
and/or switch between the two supporting surface modes to
rebuild the supporting surface that is convenient for editing.

Once created, the user may edit a stream curve by sketch-
ing a hint stroke starting on its supporting surface. Depend-
ing on the general direction, starting and ending points, a
hint stroke is interpreted as three different editing operations
(see Figure 3(c)-(h)).

Dividing Curve. Many hairstyles have a clear dividing
line on the head where hair strands part and flow in opposite
directions. A dividing curve is drawn on the scalp to repre-
sent such a line (see Figure 4). To model the discontinuities
in the vector field around the parting line, a local Cartesian
coordinate frame L = {x,y,z} is defined at every unit point
p on the dividing curve (Figure 4(a)), where y is the nor-
mal of the scalp at p, and z is the tangent of the dividing
curve at p rotated by a tilt angle α that can be easily adjusted

centripetence

spine

profile

cross section curve

C1

R1

R2

C2

Figure 5: Left: a stream curve and its boundary constraints.

Middle: a ponytail primitive and its boundary constraints.

Right: four style curves of a ponytail primitive.

by the user. Boundary constraints are defined in the local
xy planes, on two opposite sides of y axis. The local shape
of the boundary constraints can be easily adjusted via a few
controlling parameters. See Figure 4 for details.

A dividing curve must be on the scalp and is relatively
short, thus can usually be created by drawing one stroke on
the scalp (inappropriate ones can be easily discarded). The
user can then draw a hint stroke on each side of the dividing
curve (in the strip spanned by the yellow lines in Figure 2)
to adjust the tilting angle of each local plane (see Figure 4).

Ponytail. The ponytail primitive consists of four style
curves: a spine curve, a cross section curve, and two pro-
file curves (Figure 5). The creation and editing of the spine
curve is the same as that of a stream curve. The user then
changes the viewpoint, rebuilds the supporting surface, and
sketches the cross section curve and profile curves on it. A
set of cross sections (circles) is then generated along part of
the spine curve between the profile curves. Let C1 and C2
denote the first (near scalp) and the last cross sections re-
spectively.

Three types of boundary constraints are derived (Fig-
ure 5). The first type (purple) are defined at grid points near
to the cross sections, with their directions along the longitu-
dinal directions of the revolutional shape. The second type
(blue) are at grid points near the spine curve. Their direc-
tion assignment is the same as for stream curves except that
we start near the cross section C2 (since fewer changes of
boundary constraints means more efficient modification of
Cholesky factorization). The third type (green), called cen-

Figure 6: A smooth hairstyle created with ten stream curves.
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Figure 7: A hairstyle with a short parting line, created with seven stream curves and a dividing curve.

tripetal constraints, are introduced to make the vector field
flow into the first cross section C1. They point to the center
of C1 and are defined at the region between two concentric
circles R1 and R2 lying on the plane of C1. The radii of R1
and R2 are proportional to the radius of C1 (we use 1.3 and
1.9). The magnitude of the last set of constraints is a parame-
ter to control the tightness of the ponytail (we use the default
value of 0.6). Essentially, the introduction of the centripetal
constraints transfers the complexity of creating a ponytail
from the user to the design of the ponytail sketch tool. With-
out the centripetal constraints, the user would need to draw
many more stream curves to guide the hair curves to pass
through the cross sections.

6. Implementation and Results

System Initialization The bounding volume and resolu-
tion of the discrete vector field is fixed during the whole
design process. The vector field resolution depends on the
desired hairstyle. A low resolution (about 25K variables) is
used for smooth hairstyles, and high resolution (about 50K
variables) for complex hairstyles such as a ponytail. The ini-
tialization of the linear system takes tens of seconds.

Hair Growth. To generate hair curves from the vector
field, root points are first uniformly sampled on the scalp,
with a small amount of randomness added. Two spherical
coordinates θ ∈ [0,180) and φ ∈ [0,360) are used for scalp
surface parameterization, and the hair density is controlled
via the sampling steps of these two angles. Each hair curve
is a sequence of connected line segments. In hair growth, let
p denote the current end point of a hair curve, a new seg-
ment l ·v(p) is appended, where v(p) is the directional vec-
tor linearly interpolated from the vector field, and the scalar
l takes a smaller value than the step size d in the vector field
to make the growth smooth (l = 0.5d in our implementa-
tion). Hair growth is terminated when |v(p)| is too small
(< 0.05 in our implementation) or p is out of the bound-
ing volume. The whole process of growing thousands of hair
curves is extremely fast (e.g., less than 0.5 seconds for 100K
hair curves).

Scalp Penetration Detection and Avoidance. It is not
guaranteed that the flow lines in the vector field will not pen-
etrate the scalp, which is undesirable and should be avoided.

If necessary, the user can draw enough stream curves (usu-
ally about ten) around the scalp so that the flow lines in
the vector field will not penetrate the scalp. We use a sim-
ple strategy to alleviate such non-essential user interaction.
User first designs a hairstyle by drawing style curves with-
out considering the scalp penetration problem. When a sat-
isfactory hair shape is obtained, for each grid point near the
scalp with direction pointing inwards†, its direction is first
replaced with its projection on the tangent plane of the near-
est scalp point. All the grid points near the scalp are then
added as boundary constraints. The magnitude of these di-
rections are set small (we use 0.3) to reduce global influ-
ence. This step is done only once in the design process. This
strategy is useful for saving user interactions when designing
complex hairstyles such as ponytails.

Rendering. We use a free Renderman compliant software
Aqsis [Aqs07] and the hair rendering algorithm proposed by
Kajiya and Kay [KK89] to render all the results.

Results. Figure 6 shows a result created only using stream
curves. Figure 7 demonstrates a typical hairstyle with a part-
ing line. Figure 8 demonstrates a hairstyle with two pony-
tails. The hairstyle in Figure 1 uses eleven stream curves,
four dividing curves and one ponytail primitive. All exam-
ples are created in a short time. The most complex hairstyle
in Figure 1 takes five minutes.

7. Discussion and Future Work

Since we only use one vector field to depict a hairstyle
and each vertex has only one direction, our current method
cannot handle hairstyles which require multiple tangent di-
rections at a vertex, e.g., braids. Multiple vector fields cou-
pled with physically guided tool proposed by Choe and
Ko [CK05] may address this limitation.

Due to the smooth interpolation in the vector field, the out-
put hairstyles of our system may lack local variations (e.g.,
curls) that are present in real human hair. One straightfor-
ward solution is to integrate previous hair modeling tech-
niques as a post-processing step to add local details directly

† This can be easily detected by computing the angle between the
direction and its nearest scalp normal.
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Figure 8: A hairstyle with two ponytails, created with four stream curves and two ponytail primitives. This is created in three

minutes. See accompanying video for a demo.

on the already-grown hair curves. Since the global shape and
the positions of the hair curves are already satisfactory, post
processing on such output is easier than designing hairstyles
from scratch. Therefore, our system could be used as an in-
dependent design tool or a complementary pre-processor for
other hair modeling techniques. Another possible solution
is to introduce local details by differential coordinates as
employed in differential mesh editing [Sor06] by rewriting
Equation 1 as

E(t1, . . . , tn) =
n

∑
i=1

||∆(ti)− δi||
2 +ω2 ∑

i∈C

||ti − ci||
2
,

where δi are the differential coordinates which encode the
local details built over the existing example hairstyles.
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