
Living Ink:
 Implementation of a Prototype Sketching Language
for Real Time Authoring of Animated Line Drawings

Bill Rogers

The University of Waikato, Hamilton, New Zealand

 Abstract

Sketching with pen on paper is often used as a way of augmenting spoken descriptions: to help explain how
some mechanical device works; to show the flow of information in an organisation, to show the action in a
story, and so on. Sketches serve as a focus for the attention of viewers and help make abstract concepts more
concrete. But images on paper don’t move. Where the time and resources are available, as in preparing a
lecture in advance, or producing a television program, authors recognize that moving images are often
superior at conveying concepts and holding people’s attention. An electronic display is capable of
generating moving images in real time. We argue that such a display need not be used just to mimic pen and
paper. After all paper is cheap, plentiful, has a wide viewing angle, and doesn’t have batteries to run flat.
Our ‘Living Ink’ system is a prototype implementation of a user interface for generating animated line
drawings (animated sketches). Our goal was to provide a user interface which can be used in real-time,
making interesting animations while an audience watches. This paper describes progress to date towards
that objective and discusses proposals for further development.

I.3.4. [Computer Graphics: Graphics Utilities]: Graphics Editors; Picture Description Languages

1. Introduction

There are many circumstances in which people use
informal sketches. When explaining how a mechanical
gadget works, how we would like a user interface to
function, or when telling stories, we often quickly draw
pictures, to support our descriptions. This might happen in
a teaching situation, where a teacher draws on a overhead
projector screen or board. It might happen in a formal
meeting or brainstorming session where participants draw
on boards or pieces of paper. It might happen in a
restaurant where ideas are jotted onto table napkins. The
quality of the pictures does not have to be high, because the
accompanying explanation compensates for their
limitations. Indeed, in many situations the audience can
ask for further clarification, and the sketch author can
immediately make extensions to a picture, or invite their
questioner to indicate or even draw themselves on the
image to explain what aspects they do and do not
understand. The crucial aspect is the immediacy. In a very
short space of time it is possible to get onto paper some
information that will significantly improve the level of
communication being achieved between participants. Of
course, given more time, sketches can be improved, and
there is a continuum of circumstances between those in
which a quick sketch is the most useful, and those in which
a well planned and carefully constructed diagram is the
most useful. In this paper we are interested in the use of
rapid sketching for communicating ideas, or telling stories.

Sketch interfaces of one kind or another are available in
many kinds of computer technology. PDA’s and Smart
Phones support pen input, and we can write sketch
applications for them. Notebooks and desktop computers
can have graphics tablets or ‘write-on’ screens for pencil
and paper like sketching. It is also possible, albeit
awkward, to draw with a mouse. The current technology
most like the pen and paper though is the tablet computer,
where software not only supports drawing strokes ‘directly’
on to a surface, but also simulates other aspects of real
pens, like smooth anti-aliased lines, line weight that
depends on pen pressure and the pen top eraser. This kind
of technology is clearly well designed for use in the
informal sketching domain. Our approach to animation
sketching is designed for technology like a tablet computer,
although our prototype implementation functions perfectly
well with a mouse and a desktop PC.

Computer based sketching is significantly different to

using pencil or pen and paper. The disadvantages of
computer systems lie in limited resolution, imperfect pen
devices, restricted drawing space, and in many cases
restricted viewing angles. The advantages usually offered
by the computer are the ability to store sketches, restore
previous work, transmit information to other locations, and
the capability of erasing, editing and transforming sketch
data. In either case some kind of projection equipment can
be used to make sketches visible to a large audience.
Overall it is not clear that the advantages of computer

c© The Eurographics Association 2006.

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006)
Thomas Stahovich and Mario Costa Sousa (Editors)

http://www.eg.org
http://diglib.eg.org

sketching outweigh the disadvantages in most
circumstances. Paper is cheap, plentiful and doesn’t have
batteries that run flat. In order to make computer
equipment more attractive in this role we need to offer
compelling capabilities that paper cannot. The most
obvious capability of the electronic display is that of rapid
update. Sketching software already makes use of this by
allowing lines to be erased or changed, which is a largely
unsatisfactory process on paper. However we still have
software that is oriented mostly to generating static finished
sketches. In the kinds of scenario in which we see informal
sketching being used, we argue that animated sketches
would be of value, especially when telling stories or
explaining how gadgets work.

Imagine telling a story to a child about the sea. On paper

you might show a wavy line to represent the water surface,
and draw a boat above it and a fish below. On a computer
display such a line could really move. Figure 1 is a screen
shot from our system of such a ‘water surface’ line. (For
the purposes of presentation in print, the software has been
modified to fade the lines from previous frames rather than
erase them – giving an onion skin (ghost) effect. The real
system just shows one moving line. In Figure 1, because of
the small movement, the onion skin lines show as shaded
grey patterns.)

Figure 1: Animated wave in Living Ink

Of course this only works if it is possible to generate

animations quickly – in real time – while observers are
watching. If this could be achieved then electronic
sketches would offer capabilities that really were not
possible with paper, and we really might expect to see
tablet computers replacing table napkins as the information
exchange medium of choice in restaurants.

We take as inspiration for our work the sketch style

animations produced by Big Time Pictures [BTP05],
included in the British Television Channel 4 series
‘Scrapheap Challenge’. In that series, contestants build
mechanical devices. A programme host explains, with the
aid of the animations, just how planned devices are
expected to work or might fail. The animations are in a
sketch style (see Figure 2) with enough detail to support the
explanations. Some of the content shows devices
operating. In Figure 2, the truck moves and the axe rotates.
Some is background only – the clouds drift across the sky,
and the truck driver has a worried expression. The
animations provide a beautifully appropriate basis for
explanation, showing moving parts, but including
humorous elements that support a commentary that is
entertaining as well as informative. Of course, these
animations were not produced as the commentator spoke.
They were probably the result of hours or days of effort.
However, even if we cannot match them fully, we are

interested in seeing how close we can get with real time
authoring.

Figure 2: ‘Scrapheap Challenge’ animation still

The remainder of this paper is organized as follows.

Section two reviews related work. Section three outlines
our interface design, and shows examples of the interface in
action. Section four gives some extended examples,
showing how our primitive commands combine to produce
complex effects. Section five reports some qualitative
results from a limited informal user evaluation, and section
six presents our conclusions and plans for further work.

2. Related Work

There is a compelling body of literature, eg: [LM01,
PA03] that emphasizes the importance of using and
retaining the imprecise sketch style in design documents.
Any attempt to tidy documents can lead to authors being
sidetracked into spending time on perfecting position and
appearance at the expense of content. In the design context
this spending of time can lead to premature commitment to
early design ideas. In our authoring context sketching must
be done quickly. We interpret the evidence in favour of
design sketching as implying that adding precision controls
to our interface would pressure authors towards time
wasting adjustments of their work. Largely then, we need
an interface that is as completely sketch based as possible.

The term ‘sketch animation’ is used in a number of ways

in the literature. First there is the kind of animation shown
in Figure 2. The overall appearance of the animation is of a
sketched line drawing. The animation process itself seems
to vary in these animations. Sometimes objects move with
no internal change, suggesting that a single sketch is being
moved and imaged in different positions. At other times it
looks as though frames have been sketched independently,
and irregularities between frames in the drawn strokes give
the animation a slight ‘squirminess’. So, even within this
one set of examples we can distinguish sketch as a source
of objects that are smoothly animated, and actual sketching
constituting the animation itself.

Bill Rogers / Living Ink

c© The Eurographics Association 2006.

116

The term ‘sketch animation’ has also been used to
describe line animation in which the lines are found by
searching for edges in the output of 3D scene rendering
software. The goal there being to generate a sketch style of
animation from scenes modeled fully in 3D. Examples are
“Loose and Sketchy Animation” [CUR98] and the sketch
animation feature of Lightwave 3D [NT05]. Although the
result is sketch like, these systems are not built by sketch
input.

A third use of the term is in progressive sketch animation

[DIC05]. In these systems the strokes drawn by an artist
are recorded and replayed. Usually the goal is a single,
often quite detailed, sketch; for example, a portrait. The
result is interesting to watch, and gives insight into the way
the artist develops their work. It is usual to play back the
drawing at a much higher rate than drawing speed.
However this kind of animation is quite similar to the form
we are trying to design. If the drawing is simple enough, it
can be played at drawing speed. For example in describing
a user interface it makes sense to describe each element as
it is sketched – the animated drawing focusing audience
attention on items, one at a time, as they are described.
This is a common style of sketching used by teachers at a
whiteboard.

Sketching has also been used in 3D animation systems,

to specify the animation. In ‘Motion Doodles’ [THO03]
sketch lines are used to quickly specify motion of
articulated characters. The characters and their basic
animations are modeled in a standard 3D graphics package
manner: characters with skeletons and 3D meshes; basic
animations elements, such as walk cycles, done using
skeleton poses in keyframe sequences. Sketching is then
used to define longer animation sequences. This is a
gesture recognition system in which gestures are translated
into motion sequences. A sketched loop, for example,
specifies that the character perform a summersault; a
sequence of arcs commands a sequence of steps. The
system is interesting from a sketch viewpoint because it
makes more use of the sketched information than just
extracting gestures as abstract symbols. The position of the
lines specifies location and direction of motion; the size of
gestures dictates the scale of movements (large steps), and
the timing of drawing controls the speed of motion. The
system thus leverages the richness of detail in a sketch line
to allow quick delivery of instructions that would otherwise
require extensive parameter setting.

The same idea is also developed in “Animation

Sketching”, Moskovich et al [MH04]. They address the
problem of animating 2D sketched shapes using “motion by
example”. In their system sketched items can be grabbed
and moved. The track and timing of that motion is
recorded. Elaborate motion, in which movements must be
coordinated is handled by layering motion tracks. For
example to have a bird’s two wings flap, the user first
moves one wing, then rewinds and records the movement
of the second wing. Where two objects must move in a
coordinated way Moskovich’s system supports time
warping. For example, to make a door open just before a

character passes through, the user records the movements
of door and character with approximate timing, then marks
a coordination point on the time line of each movement,
and lets the system warp the timing of each motion to make
coordination points occur simultaneously.

Poliakov’s MorphInk [POL01] uses automatic morphing

from shape to shape. In this system the primary motivation
is achieving good compression of animation information
for transmission over networks. However, its automatic
morphing is a valuable approach to specifying animation.
Computer animation easily provides tween frames for
animation actions that are simple transformations.
MorphInk extends the range of tweens that can be produced
automatically, reducing authoring effort (and data size).

In [KST04] Kato et al, describe a system using sketched

‘Effect Lines’. In their system, line gestures, styled to be
similar to the motion lines used in comic book cartoons, are
interpreted as motion commands (Figure 3). A variety of
gestures are used to specify rotation, translation and
oscillatory motions. A particular advantage of this system
in our context would be the appropriate and familiar style
of the lines. They are commands that would communicate
well to a real time observer, as well as to the animation
system. In contrast to our planned system however, Kato’s
system uses sketching only to specify animation. More
conventional modeling techniques are used to generate the
scenes being animated. This modal use of sketching avoids
any difficulty that might arise in distinguishing motion
commands from sketch content.

Figure 3: Effect lines from [KST04]

The K-Sketch project [DAV05] has as its goal, drastic

reduction of the time taken to produce simple animations.
Their project report includes a useful survey of the effects
used in a collection of animations by a number of artists.
Their prototype system animates sketched (line drawn)
content. Animation is controlled partly by gesture and
partly by pen operated controls. Gestures are used for
selection and to specify motion tracks. Controls include a
time slider and a multi-transformation widget (Figure 4).
The transformation widget is popped up whenever content
is selected. The user places their pen in the appropriate part
of the widget for the kind of transformation they require
(translate, rotate, etc), and drags to initiate and specify
movement (Figure 4). The widget then disappears. The
user sees the content move and also a low intensity motion
line that grows with the motion and remains on screen to
allow edit access to the motion later (Figure 5). As in
Moskovich’s system, position and speed of motion are
recorded for exact reproduction in replay. The system also

Bill Rogers / Living Ink

c© The Eurographics Association 2006.

117

appears to run a clock continuously, so that successive
animation actions each occur at the time at which they were
entered (modulo explicit rewinding).

Figure 4: K-Sketch’s multi-transformation widget, over
sketch content (circled beta plus).

Figure 5: K-Sketch content moving with low intensity
motion line showing track.

Perlin, eloquently puts the case for “The Animated

Napkin Sketch” [PER02]. His goal is allowing people to
capture the immediacy and power of rapid creation of
"drawings over time". His prototype system is called
DrawPad. The concept is of a sequence of drawings or
‘shots’. The timing and sequence of stroke drawing is
retained so that a shot can be replayed as an animation. A
simple gesture allows linking of ‘sub-drawings’. The
program can ‘zoom’ in and out of sub-drawings, thus
providing a means of structuring the presentation/recording
of ideas. An application of zooming occurs, for example,
when the primary document is a mind map. Associated
with each concept can be a (hierarchy of) sub-documents.
The system is not really an animation system in the normal
sense. Rather it is a way of retaining and structuring a
sequence of sketch items, so that they can be presented or
explored later. Its strength is the simple user interface
which can be used to capture in real time a complex
presentation of ideas.

In summary, a great deal of work has been done on using

sketching interfaces to generate animations of different
kinds. Considerable success has been achieved in reducing
authoring time and ease of interaction, sometimes at the
expense of reduction in precision. From these successes,
we formed an optimistic view of the prospects for doing
real time animation. In the following section, as part of the
description of our prototype design, we comment on the
relationship to the systems surveyed.

3. Living Ink Interface Design

In most graphic design software there is a strong element of
selection and markup with tools. Usually there is a
currently selected shape, highlighted in some way and
decorated with tool handles: like corners to be used for
scaling, or handles for curve adjustment. The usage
process is to: add a primitive, complete with control
scaffolding; and adjust until it looks right. Sketch
interfaces can avoid much of this with stroke primitives.
The artist draws lines and it can be assumed that they are
correct immediately they are drawn, thus avoiding any
adjustment process (except sometimes removing a stroke
altogether and trying again). This allows us to avoid
scaffolding associated with item construction. The design
issues that remained are to do with specifying animation
actions.

Our goal was to produce an animation program which
could be used in front of an audience. This imposed strong
constrains on the nature of the interface. Initially we took
the view that we should avoid having any ‘construction
marks’ or ‘scaffolding’ on the display. Ideally all that
would ever appear would be the sketch, appropriately
animated. As design proceeded we relaxed that constraint
in favour of having the artist sketch ‘track’ lines for
animation actions.

It would have been possible to achieve a ‘no visible

scaffolding’ effect by using two displays – one of which
was visible to the artist and one to the viewer. This would
be viable in a teaching situation in which the artist could
use a computer with local display attached to a projector,
providing the viewer’s image. Then it would be possible to
decorate the artists view in any way desired. Of course, the
dual display solution is not viable for using a shared tablet
computer at a restaurant table, but more significantly, we
felt that having the artist work on invisible controls would
not support the ‘draw and explain’ task very well. It would
be very easy for there to be periods of time during which
the viewer would experience visual inactivity while the
artist was busy with invisible adjustments and therefore
probably not commenting either. For both reasons we
decided that a common view for artist and viewer was
necessary.

Specifying animation actions involves: selecting objects

to be transformed, choosing the transformation, and
specifying the track and timing that will be applied.

In K-Sketch, users select objects by drawing around

them. Other systems allow the user to click on an object to
select it, and then highlight the object to show that it has
been successfully selected. Highlighting seemed
undesirable, particularly if it persisted for an indefinite time
(as is usually the case). Drawing around an object was less
objectionable, as it would fit naturally with explanation –
“and the fish (draw around it) swam to the …” After some
initial experimentation we observed that objects were often
manipulated immediately after being drawn, and adopted
the idea of implicit selection. Actions apply to the last

Bill Rogers / Living Ink

c© The Eurographics Association 2006.

118

object(s) created. Our system does have a selection
operator (drag an outline with side button on pen held
down), but it is rarely used. Explicit selection is
acknowledged by briefly flashing the selected object red
(for approx 1/3rd of a second). If several objects are
selected in one operation, they are flashed in sequence.

Selecting a transformation, its track and timing were

addressed together. Of other systems we have considered,
the one that seems best suited to working in front of an
audience is Kato’s Effect Lines. At the time we were
designing our system we were unaware of that work. In
retrospect, though, using the idea would have been
problematic for us in two ways. Firstly it would have been
difficult to distinguish effect markup from object sketch
lines. Secondly, whilst the idea of setting an object (like
the car in Figure 3) moving by drawing effect lines is
appealing, it would have put our artists under pressure to
catch and stop the object in a timely manner. Instead we
opted for a more conservative solution. We decided that
movements could be specified with visible sketched
strokes, and that there would be a toolbar holding buttons
for each kind of animation action (operator buttons).

The basic interaction paradigm is stack based. The artist

draws lines (strokes) which are put into a first-in last-out
stack. Strokes can be either sketch data, or operator ‘track’
specifications. Each operator pops its operand(s) from the
top of the stroke stack, and pushes its result(s) back. Most
operators have two operands – data and track. For
example, to draw an object and specify that it move over
some track, the artist sketches the object, sketches the track
and then clicks the ‘path’ (translation) operator. This is
illustrated in Figure 6.

The stack principle allows operations to be combined in

a way that is not possible in a system in which tracks are
specified directly by dragging. Almost any object can be
used as a track. In particular it is possible to use an
animated line as a track.

In terms of our design goals we think that this works
reasonably well. The track lines have some contextual
meaning. It is acceptable for the artist to say “and now the
fish moves along this way (drawing the track)”, then click
the operator button and let it happen. In this way it is
acceptable that track lines are visible to the audience. In
fact, the system seems to result in more ‘positive’
animation. If the artist grabs and moves an object it tends
to look as though it is floating about purposelessly.
Showing where it is going and then letting it go there
quickly and smoothly looks better. The toolbar doesn’t
occupy very much screen space, and the artist doesn’t
spend much time working with it.

That just leaves the problem of specifying timing. We

were suspicious of the idea of recording detailed timing of
pen movement – of animation by example – even though it
was the main metaphor used in all the sketch controlled
systems reviewed, other than Kato’s Effect Lines. In our
early experiments we found that it was difficult to adjust
objects with any kind of timing accuracy. When people
draw lines they are thinking more about shape than time,
and speed of drawing tends to be dictated mostly by the
complexity of the shape. It therefore seemed unnatural to
reproduce drawing timing exactly. We also observed that
having a running clock determine the timing at which
actions began was ‘oppressive’ and that pauses which
seemed appropriate while creating the animation were often
annoying on playback.

Our timing is largely implicit. Initially, animation

actions all take one second to perform. There is a system
clock, but it doesn’t move except when an action is entered,
in which case it moves forward by one second. There are
two timing buttons: ‘Meanwhile’ and ‘Then’.
‘Meanwhile’ moves the system clock back in time to the
start of the last action. ‘Then’ takes it forward. There is
still, however, an element of timing retained from tracks.
Actions do not follow tracks at a fixed speed (in the pixels
per frame sense). When the pen is moved slowly, the
system samples its position more often than when it is
moving rapidly. Each animation action runs by using a
uniform number of samples per frame, chosen to finish the
given track in one second. This wasn’t really a design
decision. It was just what the first implementation was
coded to do. Because it retains some of the ‘sketchy’ feel
of imprecise pen movement we decided to leave it that
way. As explained later, it was also helpful in matching
strokes appropriately during morph operations. The one
second time for actions can be adjusted after the animation
is complete. Each action has start and end handles on a
timeline. These can be moved to speed or slow the
animation. A number of other controls are also provided in
the timeline area, to permit adjustment of other aspects of
actions.

The operators provided in the current version of the

program design are: hide, show, bits, delete, morph, path,
break, turn, size, group, one and split. They are invoked by
buttons down the right hand edge of the screen, as shown in
the full screen dump of Figure 14.

Figure 6: Using the path operator. (Part of a screen shot
positioned to make the relevant part of the toolbar visible.)

Bill Rogers / Living Ink

c© The Eurographics Association 2006.

119

‘Hide’ and ‘Show’ make objects invisible and invisible.
The transition occurs at the current time, but can be moved
on the timeline if needed. ‘Delete’ completely removes an
object from the system. ‘Path’ has been described already
and illustrated in Figure 6.

‘Turn’ and ‘Size’ provide rotation and scaling

respectively. Size is not implemented in the current
prototype. ‘Turn’ works in a similar manner to ‘Path’,
except that the track except that the track is used
differently. Its starting point is the centre of rotation, and
rotation ‘follows’ the tangent of the track (see Figure 7). A
spiral track allows rotations of more than 360°.

Figure 7: Rotation with the ‘Turn’ operator

‘Morph’ takes two operands. It animates the

transformation of one into the other. The normal mode of
operation for Morph is to ‘cycle’ – the object transforms
backward and forward. It can be set (radio buttons on the
timeline) to ‘one-shot’ or ‘repeat’. The ‘repeat’ option is
like ‘cycle’ except that the shape changes from first to
second form, then reverts instantly to first form and morphs
again. The ‘one-shot’, ‘cycle’, ‘repeat’ options are actually
available for other operators, but ‘one-shot’ is the default in
those cases. Morph is illustrated in Figure 8.

In contrast to the MorphInk system we have not

implemented any special algorithm for matching points in
morphing. Our system can morph between composite
(grouped) objects. In that case the component strokes of
each composite object are matched pair-wise in sequence
between the first and last morph positions, giving the artist
some control of the process. With single objects, the way
that pen motion happens usually leads to quite good morph
point matching. Because pen movement usually slows in
drawing cusps, there are many sample points on cusps and
few on long straight line segments. For this reason
morphing tends to map cusp to cusp in reasonably similar
shapes. This happens in Figure 8. In addition the system
forms a new cusp in the middle of the bottom line of the
triangle to complete the square.

Figure 8: Morph operation.

‘Group’ combines two items to form a composite item.

It can be applied repeatedly for form larger composites.

The grouped object is flashed briefly to confirm the
grouping. ‘Split’ separates a composite object into its
components, flashing them in sequence to confirm. ‘One’
is a variant of ‘Group’. It also makes two items into a
composite. However, only one of the pair is displayed – ie:
the composite is a set of items from which one is chosen for
display every time the ‘group’ is instantiated. This is of
value when the composite is used as a particle emitter.

The ‘Break’ operator allows an item to be cut in two.

The track is used as a ‘knife’. In Figure 9, an egg shape is
‘cut’ with a zig-zag line. In the third image of Figure 9 the
two halves have been move apart by a small distance to
better show the sections.

Figure 9: ‘Break’ cutting an egg

Finally the ‘Bits’ operator makes an item into a particle

emitter. Controls are provided to set the set of directions
and speeds, particle lifetime and emission frequency.
Figure 10 starts with a sketch of a ship. The second image
shows a single smoke puff above the funnel. The ‘Bits’
operator is applied to make it into a particle emitter, and in
the last image a line of smoke puffs can be seen rising from
the funnel.

Figure 10: ‘Bits’ operator makes a particle emitter

4. Composite Operations

The stack style of command makes it possible to apply
almost any kind of object as a control track to any other
object (the main exception is that it is not possible to use a
particle emitter as a track). In this section we will give
three examples to provide an indication of the possibilities.

The first example is a small extension to Figure 10. The

smoke emitter is grouped to the ship (which is itself a
group of three lines), and a path is applied to move the ship
across the screen to the right. The result is in Figure 11.
The second example shows the ‘One’ operator in action.
The letters ‘a’ to ‘e’ were drawn and grouped together

Bill Rogers / Living Ink

c© The Eurographics Association 2006.

120

using the ‘One’ operator. The resulting group was made
into a particle emitter. The direction of emission was set to
all upward angles. The result is a screen full of letters,
some of which is shown in Figure 12.

The final example is a very crude bee fluttering from

flower to flower. The bee is just a circle with loops for
wings. The wings are drawn in the top position, grouped to
form a pair; then drawn again in the bottom position and
grouped again. Clicking the ‘morph’ button makes the
wings flap. An adjustment to the timeline speeds the
flapping. Once the wings are grouped to the body, the
whole bee can follow a ‘Path’ from flower to flower.

Figure 11. Ship moving with ‘smoke’ particle emitter

Figure 12. Particle emitter from ‘One’ grouped letters

Figure 13. Bee flying

Clicking ‘Bits’ converts the flying bee into a swarm, in
this case all following the same path (Figure 14.). If a
number of different paths were needed, then those paths
could be drawn, grouped with ‘One’ and applied with
‘Path’ to the bee. Each bee particle instantiated would
itself instantiate a randomly chosen path. Note also that
Figure 14 shows the whole application window with
operator toolbar at the right, and timeline at the bottom
including controls for adjusting particle emitter settings.

.
Figure 14: Line of bees following a path

5. Evaluation

We can report on the current state of the project in two
ways. Firstly, the goal of producing a reasonably powerful
animation system that can be used rapidly. Davis [DAV05]
undertook a survey of features used in a number of
animations. From their list of features Living Ink is
currently capable of generating animations including:
Translation, Appearing/Disappearing objects, Rotation,
Repeating Sequences, Translation combined with rotation,
Motion Hierarchies, and Morphing. It is not currently
capable of Sequence reuse, Animation cells, Keyframing,
Physical modeling or Sound. Scaling is included in the
program design, but not yet implemented. The number of
features included is the same as that included in K-Sketch,
but the features sets are different.

Secondly, we undertook a small informal user

evaluation. Five people took part: 3 children ranging in
age from 11 to 16, and 2 adults. All were able to operate
the program quite quickly. However, the kinds of results
achieved varied considerably. Each person was allowed to
experiment for as long as they wanted. All, especially the
children, found the program engaging and spent an hour or
more working with it. The bee visiting flowers was an
invention of the 16 year old. Her experience was typical.
She did not find the exact sequence of operations to make
the animation obvious. She devised the idea, and set about
experimenting to see how the effects could be achieved. It
took 10 attempts to get a result she was satisfied with.
Early attempts mostly failed because of operations applied
in the wrong order, for example applying a path to the bee
before grouping it to its wings (which led to the wings

Bill Rogers / Living Ink

c© The Eurographics Association 2006.

121

flying off without the body). This experience partly
indicates that the command set is complex, and that users
have to work quite hard to translate their objectives into the
command set provided. It can also be interpreted partly as
a limitation of the current implementation. At present there
is no ‘undo’ command, and once a control track has been
bound to an object, there is no way to reverse the operation
and change the track or the underlying object.

Finally, we were surprised by the number of lines that

the participants put into drawings. In our own testing we
had mostly used very simple drawings, usually no more
than 10 lines. Participants put more items into each picture,
and often used lines to shade areas. Because the rendering
of digital ink is not very fast, animations with a large
number (100’s) of lines slow down significantly.
Presumably this occurs because digital ink is rendered by
the CPU rather than the graphics card. On a 2.16GHz
Athlon processor with GEForce 2 graphics card, rendering
130 ink strokes (averaging approximately 100 pixels in
length) with the Tablet PC ink library, occupied 100% of
CPU time at 20 frames per second. In contrast, rendering
the same 130 strokes as sequences of straight line segments
ten times per frame at 30 frames per second involved only
50% of CPU time. We have done some preliminary
experiments with alternative rendering methods.

6. Conclusions and Continuing Work

We have designed a notation/command set that allows
production of a wide range of simple sketch animations.
Operations include standard geometric transformations as
well as breaking an object into pieces and using objects as
exemplars for particle generation. Our goal was to support
the production of animations in real time during teaching,
design and story-telling sessions. Early user testing
supports the assertion that our system allows very rapid
authoring; however the evidence suggests that it is
essentially an expert tool. It is simple enough for users to
discover ways of achieving effects by themselves. It is fast
enough for users to generate in real time effects that they
have previously practiced, but it seems unlikely that people
could create new effects in real time. This is not an
unsatisfactory result, and is perhaps as much as we should
have expected.

The current prototype has limitations that make it

difficult to modify an animation. When trying to work in
real time, this may not matter, because it would not be
appropriate to tinker with an incorrect animation in front of
an audience. However, it may be possible to improve the
ease with which people learn to achieve effects with the
system, by making it easier to correct faults. The next
prototyping iteration will therefore include an undo facility.
We are also working towards providing a way of ‘looking
inside’ groups and operator bindings to change strokes
without undoing the structures they belong to. The current
proposal is a ‘focus’ command which would focus the
editor on a single composite object, perhaps fading out
other parts of the animation. Applying ‘unfocus’ would
then return to the outside view.

References

[BTP05] BIG TIME PICTURES,
http://www.bigtimepicturescom/examples/
scrapheap.aspx

[CUR98] CURTIS, C.: Loose and Sketchy Animation
http://www.otherthings.com/uw/loose/
sketch.html

[DAV05] DAVIS, R: Informal Animation Sketching with
K-Sketch, Doctoral Consortium UIST 2005, Seattle,
WA, October, 2005

[DIC05] DECLERICO, D, Sketch Animation,
http://www.chrisdiclerico.com/2005/11/12/
sketch-animation

[KST04] KATO, Y., SHIBAVAMA, E., & TAKAHASHI, S.
Effect lines for specifying animation effects. In Proc
IEEE Symposium on Visual Languages and Human-
Centric Computing. Rome, Sept 2004, pp. 27-34.

[LM01] LANDAY, J. A. and MYERS, B. A.: Sketching
Interfaces: Toward More Human Interface Design.
IEEE Computer. 34, 3 (2001), pp. 56-64.

[MH04] MOSCOVICH, T. & HUGHES, J.F.: Animation
Sketching: An Approach to Accessible Animation.
Technical Report, CS-04-03, Computer Science
Department, Brown Univ. 2004

[NT05] VAUGHAN, W.: Sketch animation with Lightwave
3D, http://www.newtek.com/products/
lightwave/tutorials/rendering/sketch/
index.html

[PA03] PLIMMER, B.E., APPERLEY, M.: Software for
Students to Sketch Interface Designs, Interact, Zurich,
2003.

[PER02] PERLIN, K: The Animated Napkin Sketch,
http://www.mrl.nyu.edu/~perlin/draw/ (2002)

[POL01] POLIAKOV, V: MorphInk: Morphing Technology
for Web and Wireless Animation, http://www.
morphink.com/e/tools/WhitePaper1.pdf

 [THO03] THORNE, C.; Motion Doodles: A Sketch Based
Interface for Character Animation; Masters Thesis,
University of British Columbia, 2003.

Bill Rogers / Living Ink

c© The Eurographics Association 2006.

122

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ENZ ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

