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Abstract

This paper describes a sketch-based method for augmenting geometric meshes with variable-scale sharp features.
Such mesh editing operations provide a powerful way to exploit an artist’s natural sketching abilities for content
creation using existing mesh libraries. We use adaptive subdivision to refine the mesh only in the region of the
features and embed the augmentations into the input mesh, maintaining a unified representation. Moreover, we
present new templates for adaptive subdivision that minimize the high-valence vertex count while maximizing the
number of quadrilaterals in the new mesh, thereby improving its quality.

Categories and Subject Descriptors (according to ACM CCS): Geometric modeling, sketching, mesh editing, adap-
tive subdivision.

1. Introduction

The creation of large, complicated meshes is a task for
which there are many tools available, primarily based on B-
spline or NURBS patches. The ubiquitousness of these tools
in modern modeling environments overshadows their steep
learning curve. Indeed, the interfaces in such systems are
far removed from drawing-based metaphors and are based
on constructive geometry, menus and selection, which are
more natural to computer scientists and engineers than to
artists. This technical barrier to entry creates a high demand
for experienced software modelers and excludes many tal-
ented artists from contributing to content creation.

Sketch-based modeling systems present an interesting al-
ternative to traditional (parametric- or implicit-based) mod-
elers. Ideally, sketch-based systems provide a more natural
interface and enable the less technically-inclined artists to
leverage their learned sketching and drawing skills for con-
tent creation. However, systems that create a mesh based
purely on a user’s two-dimensional strokes (lines input to
a sketching system) must enforce constraints and make as-
sumptions in order to create a 3D shape from the strokes. For
instance, the SKETCH system of Zeleznik et al. [ZHH96]
has predefined rules for creating geometric objects, such
as interpreting three lines that meet at a point as a par-
allelepiped. The more recent Teddy system of Igarashi et

al. [IMT99] assumes a spherical topology and “inflates” the
user’s strokes into bulbous shapes.

In this paper, we present a sketch-based system for creat-
ing variable-scale features on an existing mesh. By having
an initial 3D shape to work from, our system does not have
to place any constraints on the strokes or their interpretation.
The user’s strokes are no longer stuck in two dimensions, but
can instead be projected into 3D using the mesh geometry.

When dealing with mesh augmentation instead of mesh
creation, the interpretation and emphasis of user strokes
changes. If user strokes are the only information available to
the system, the noisiness of the strokes is a primary concern
and dictates the quality of the output. For the purposes of
augmenting a mesh, however, preserving the original quality
of the mesh is as important as using the strokes to create fea-
tures. To reduce distortion of the input mesh, we use adaptive
subdivision only in the region of the user strokes and relax
the position of vertices around augmentations.

The main contribution of this work is the combination
of sketch-based methods and adaptive subdivision to create
a robust mesh augmentation system. By refining the mesh
only in the region of the user’s sketches, we can localize
the effects of the feature creation process; this allows the
creation of small- to large-scale features while elsewhere
preserving the quality of the input mesh. We also improve
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adaptive Catmull-Clark subdivision by using an incremen-
tal approach and introducing new patching templates that
produce more quadrilateral faces and low valence vertices.
These techniques combine to produce an augmented mesh
with more regular connectivity and stable lighting calcula-
tions.

In the next two subsections, we review previous work in
two categories related to our work: mesh augmentation and
sketch-based modeling.

1.1. Mesh Augmentation

Our work is most closely related to the work of Biermann et
al. [BMZB01]. In their paper, they present a method for cre-
ating sharp features on subdivision surfaces, using a set of
strokes or feature curves as input. Their approach involves
projecting the feature curves not onto the mesh per se, but
into the mesh’s parameter space. The process of aligning
edges in the mesh with the curve (“snapping”) is then per-
formed in parameter space, and the modifications to the pa-
rameter space are finally reflected in the actual mesh by a re-
sampling phase. The entire mesh is subdivided one or more
times after the creation of the features to produce a high-
quality mesh with sharp features.

There are a few shortcomings to their method however.
Their snapping stage may introduce some distortion in the
mesh. When a vertex is too far from the curve to be snapped,
then the whole mesh must be subdivided; this creates a strug-
gle between minimizing distortion and minimizing the num-
ber of faces in the mesh. Also, their method requires new
subdivision rules to allow features to cross the diagonals of
faces, which seems at odds with their goal of creating a uni-
fied representation for the mesh and the features.Finally, the
feature creation requires an global increase in mesh com-
plexity to achieve an accurate representation of the features.
Ideally we could increase the complexity only in a local
vicinity of the features.

Earlier methods for creating sharp features on existing
meshes often resulted in features that were extensions of
the original mesh representation. This means that the out-
put of such a system is represented differently than the in-
put. For instance, Khodakovsky and Schröder [KS99] keep
the feature curves distinct from the mesh representation, re-
applying the features at every level of subdivision.

Mesh augmentation can be thought of as the melding of
two surfaces: the original mesh, and the sketched features.
The concept of “pasting” surfaces together was first explored
by Mann et al. [CMB97, MM01]. In that work, they con-
sider only the pasting of parametric surfaces – which is by
no means trivial – but parametric surfaces are generally eas-
ier to work with than arbitrary meshes.

Mann et al.’s work was extended by Biermann et
al. [BMBZ02] to allow the pasting of polygonal meshes.

This work also draws on their earlier work [BMZB01], in
that the bulk of processing is done in parametric space. They
present a very robust system that separates the source and
destination meshes into a base mesh plus details, allowing
for the two surfaces to be pasted together quite seamlessly.
The main drawback is that both a source and destination
mesh are required, so the creation of features that are not
in an existing mesh is precluded.

The pasting idea was further extended by Yu et
al. [YZX∗04] to allow not only pasting, but also deformation
of the source and destination meshes. Their work is based on
Poisson gradient manipulation, though thankfully this fact is
hidden from the user. Their system is capable of producing
appealing meshes with clean deformations and blends, but
there is still the problem of content creation: all elements in
the final mesh are cobbled together from existing meshes.

In work that is loosely related to ours by its goal of pro-
ducing small features on a base mesh, Peng et al. [PKZ04]
forego actual mesh-level feature creation and instead use
volumetric textures to add features at render-time. Their re-
sults are impressive, but the features are not embedded in the
mesh representation. This eliminates the reusability of their
detailed meshes in other applications.

1.2. Sketch-based modeling

In sketch-based modeling, there are other works that be-
gin with an existing mesh to eliminate some of the typical
sketching constraints. Lawrence and Funkhouser [LF03] al-
low the user to sketch a “velocity” on the surface of a mesh,
with a subsequent physical simulation growing the mesh ac-
cording to the sketched velocity. After several simulation it-
erations, they are able to make quite complex meshes that
would be very difficult with other modeling approaches.

Funkhouser et al. [FKS∗04] later presented a modeling-
by-example system. Beginning from a base mesh, an assisted
sketching system is used to select portions of the mesh for
editing, as well as to cut out parts from other meshes to im-
port into the base mesh. Because the user sketches on top of
a mesh, they are able to provide “intelligent scissors” that
follow the natural lines of the mesh. Like Yu et al., their sys-
tem is designed to work with existing meshes, not to create
arbitrary mesh details.

Zelinka and Garland [ZG04] also present a modeling-
by-example system, except their “examples” are not other
meshes but user-drawn curves that guide deformation along
slices through the mesh. The deformations are created using
the vertices in the input mesh, with no refinement through
subdivision, which produces some artifacts in the deformed
mesh.

1.3. Approach

Our approach is guided by the goal of producing a sketch-
based system for creating features that are smoothly inte-
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Figure 1: Flow of data through our system: A base mesh is loaded; The sketching component allows the user to place feature
curves on the surface of the mesh (red); The adaptive subdivision component increases the mesh resolution around the features;
Finally, the feature creation displaces vertices along the features to create a sharp feature.

grated with an input mesh. To reduce the amount of geomet-
ric distortion introduced into the mesh (any augmentation is
essentially a distortion), we provide two different snapping
strategies: snap-to-mesh, and snap-to-curve. To fully embed
the features into the original mesh representation, it is im-
portant to avoid non-standard subdivision rules; to that end,
when a feature curve crosses a face we split the face into two
halves about the crossed diagonal. Finally, we would like to
preserve the tessellation of the input mesh as much as pos-
sible; instead of refining the entire mesh to attain enough
resolution to create features, we adaptively subdivide in the
region of the features while leaving the rest of the mesh as it
was before augmentation.

2. Methodology

Our system consists of three components (Figure 1). The
sketching component, described in Section 2.1, handles the
input and interpretation of the user’s sketch input to cre-
ate feature curves. The adaptive subdivision component, de-
tailed in Section 2.2, uses the sketch input to increase the
mesh resolution in the vicinity of the features. Finally, the
feature creation component of Section 2.3 uses vertices in
the high-resolution area of the mesh to approximate each
features, and then displaces these vertices in the normal di-
rection to create sharp features on the mesh in a unified rep-
resentation.

The input to our system is assumed to be a quadrilat-
eral (henceforth quad) mesh, M0 (if the mesh contains non-
quad faces, one application of Catmull-Clark subdivision
will create a quad mesh). We can represent such a mesh with
two lists: a list of vertices, V , and a list of faces, F . Con-
sider a mesh with v vertices and f faces, and denote three-
dimensional points as p and indices into V as w. Then:

M0 = {V,F} ,

where

V = {p0, p1, . . . , pv−1} ,

F =
{〈

w0
0, . . . ,w

0
4

〉
, . . . ,

〈
w f−1

0 , . . . ,w f−1
4

〉}
.

We use Catmull-Clark subdivision, which is especially
suited to quad meshes, for the adaptive subdivision com-
ponent. This allows us to increase the resolution and the
smoothness of the mesh in the vicinity of the features. Note
that we could increase mesh resolution by simply splitting
faces, but having both smoothness – the effect of the subdivi-
sion – and sharpness – the effect of displacement – allows us
to model a variety of features and have them blend smoothly
with the original mesh (see Figure 8, for instance).

2.1. Sketching

Our sketching interface employs a traditional mouse or tablet
device for input. Strokes are converted from window coordi-
nates to mesh/world coordinates by unprojecting each stroke
sample into 3D. This reverse projection can be done with
the viewing transformation matrix and the depth buffer of
the rendering API (we use OpenGL). Each mouse or tablet
event is unprojected onto the mesh, and linked together to
form a feature curve. One drawback is that a feature curve
could jump over a local minimum in the mesh if the sketch-
ing viewpoint is not chosen well; however, this behaviour
fits with our sketching metaphor, so the user will intuitively
choose a suitable viewpoint to sketch from.

For our adaptive subdivision component, it is important
to note that the sketching component must determine which
face f ∈ F the feature falls on. This can determined via
OpenGL’s selection buffer interface [Bly99], whereby each
face is rendered to a small viewport around the mouse
pointer (this requires an additional rendering pass).

In order to enable a wide range of expressiveness, it is im-
portant to allow strokes to be linked together; otherwise, the
user could not draw something as simple as a bracelet be-
cause the whole stroke cannot be made from a single view-
point. We use a user-adjustable measure to decide whether
we should connect a stroke point to an existing stroke or cre-
ate a new stroke.

To formalize our feature curve representation, let p denote
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a three-dimensional point, g denote face indices, and n j de-
note the number of samples in feature curve c j. Then, the
sketching component outputs a set C of feature curves

C = {c0,c1, . . . ,cn} , (1)

where

c j =
[〈

p j
0,g

j
0

〉
, . . . ,

〈
p j

n j ,g
j
n j

〉]
. (2)

2.2. Adaptive Subdivision

Adaptive subdivision is a technique for increasing the reso-
lution and smoothness of a mesh only in areas that satisfy
some criteria, leaving other areas at their original resolution.
Different applications and tasks require different criteria; for
instance, an early use of adaptive subdivision was to increase
mesh resolution only in high-curvature areas, because flat ar-
eas do not benefit from subdivision.

The first step of adaptive subdivision is to decide where
to increase the mesh resolution; call this step face tagging.
After the mesh resolution has been selectively increased, the
next step is to blend the high-resolution and low-resolution
regions of the mesh, which we refer to as face patching. We
discuss each of these steps in detail below.

2.2.1. Face Tagging

For mesh augmentation, we want to subdivide only those
faces that are visited by a feature curve. From the feature
curves C output by the sketching component, we can deter-
mine all faces Fsubdiv ⊆ F that we would like to subdivide
(each feature curve sample contains an index g indicating
which face the sample is associated with; see Equation (2)):

Fsubdiv =
{

f j | ∃k, p s.t. 〈p, j〉 ∈ ck, ck ∈C
}

.

When constructing Fsubdiv, we frequently encounter gaps
in the faces visited by a feature curve. These gaps are due
to the sampling rate of the curve and are virtually unavoid-
able, especially as we increase mesh resolution through sub-
division. Figure 2(a) illustrates this problem. From the curve
samples (blue dots), we can determine that the gray faces
belong in Fsubdiv, but we would like to include all faces that
fall under the curve.

To frame the problem in familiar terms, it is helpful to
consider a mesh as a graph in which the nodes are faces and
the edges are, well, edges. If we consider our definition of a
feature curve c j from Equation 2, then our goal is to find a
path between faces f j

m and f j
m+1 (for instance, the gray faces

of Figure 2(a)).

Our approach to this problem is, however, not inspired by
graph theory. We can instead exploit our geometric setting
to find a path between the known face samples by casting a
ray from sample m to sample m+1 and finding intersections
with edges in the mesh. From the intersected edges, we can

(a)

(b)

(c)

Figure 2: Finding a path between faces on a feature: (a) We
have intermittent face samples (gray faces) associated with
each feature curve point (blue circles). (b) A ray (red ar-
row) is cast from the first to the second sample. The ray is
then intersected with planes erected at each edge. Valid in-
tersections are shown in orange. (c) Based on the ray-plane
intersections, we can move from the first face to the second,
visiting the intervening faces in the order shown.

determine a sequence of faces that form a path between the
samples.

Figure 2 illustrates this approach. Though we consider a
2D example, one should note that in practice the computa-
tions are carried out fully in 3D; this is due to the fact that
both our mesh and stroke representations (vertices, stroke
samples) are in three dimensions. An equivalent 2D problem
could be created by projecting the vertices and strokes to a
plane, but the cost of this projection would not be recouped
in solving the slightly simpler problem.

Consider sample m and m+1 of feature c j, which are as-
sociated with faces f j

m and f j
m+1. In Figure 2(a), these curve

samples and their associated faces are shown as blue circles
and gray quads, respectively. To find a path between these
faces, we construct a plane at each edge of the starting face
such that the plane contains the edge and is perpendicular to
the face. We then cast a ray r from the first sample point p j

m

to the second p j
m+1:

r = p j
m+1− p j

m ,

and find the intersection of the ray with each edge plane.
The valid ray-edge plane intersections are shown in orange
in Figure 2(b).

To find a path, we use the valid intersections: from the left-
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Figure 3: Left: Cracks are created in the mesh when a sub-
divided face (red) and a non-subdivided face (blue) share an
edge. Right: To fix these cracks, we patch the non-subdivided
face.

most intersection in Figure 2(b), we can move from face f j
m

to the face marked with a 1; from 1, we can use the next in-
tersection to move to 2; and so on, until we reach face f j

m+1.
In cases where the ray is parallel to a plane being intersected,
the path could flip-flop between two faces. We handle this by
requiring that each face in the path is visited only once.

2.2.2. Face Patching

Regardless of our scheme for choosing which faces to subdi-
vide, we must patch faces adjacent to those that we do sub-
divide. Denote all such faces as Fpatch, where

Fpatch = { f | f adj to g ∈ Fsubdiv, f /∈ Fsubdiv} .

If no patching is done, cracks will appear in the mesh along
edges between subdivided and non-subdivided faces; see
Figure 3 for an illustration.

Because we assume our initial mesh M0 has only quad
faces, the faces fp ∈ Fpatch will always be quadrilaterals.
Thus fp will have four neighbors, each of which may or may
not be subdivided (but at least one must be); there are 15
permutations, but only 5 distinct cases to handle: one, two
adjacent, two opposite, three, or four subdivided neighbors.
(Note that to allow iterative augmentations, we must have a
patching strategy for introduced triangle faces; this issue is
addressed in [PS04].)

In the literature on adaptive subdivision [ZS00], they
present templates for handling each of these cases; see the
middle column of Figure 4. These patching templates are
optimized for rendering, and therefore fp is patched with
triangles. While this approach is appropriate for many cases,
it inevitably produces high-valence vertices. For instance,
consider the top vertex of fp in Figure 4(d)(middle): the va-
lence of this vertex is n = 7, while the regular valance for
quad meshes is n = 4. During subsequent subdivisions of
the mesh, high valence vertices can result in visual artifacts.

In our system, we would like to maximize the number of
quads while minimizing the number of high-valence vertices
in our patched faces. To achieve these goals, we designed
new patching templates. Our templates are shown in the right
column of Figure 4. Note that we use the centroid of the face
as a vertex in most cases; this is consistent with Catmull-
Clark subdivision and in practice our patched faces produce
a smooth transition between high and low resolution.

Setting Template [ZS00] New Template

(a)

(b)

(c)

(d)

(e)

Figure 4: Our patching templates versus the traditional tem-
plates. Left column: A face fp ∈ Fpatch is shown in gray, with
its subdivided neighbors g ∈ Fsubdiv shown in white. Middle:
The traditional method for patching the face [ZS00]. Right:
Our new method for patching the face. (a) One subdivided
neighbor. (b) Two subdivided neighbors, on opposite sides.
(c) Two subdivided neighbors, adjacent to one another. (d)
Three subdivided neighbors. (e) Four subdivided neighbors
(note that our strategy in this case is to just subdivide rather
than patch).

We can see that, over all cases, the traditional templates
produce 0 quads and 22 triangles, while our templates pro-
duce 13 quads and only 4 triangles. Similarly, the traditional
approach produces vertices with valence as high as n = 7,
while our templates produces vertices of valence no more
than n = 5.

Though our templates produce valence-3 vertices, which
have only C1 continuity in the limit surface, our templates re-
duce the total number of extraordinary cases in the patched
faces. Further, this reduced limit continuity is preferable to
the ripple effect that results from very high-valence vertices.
There is no patching solution that eliminates extraordinary
cases, so our templates merely strive to create a smaller num-
ber of less noticeable cases.
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(a) (b) (c)

Figure 5: Vanilla adaptive subdivision versus Incremental adaptive subdivision: (a) Original mesh with feature curve sketched
on it. (b) Vanilla adaptive subdivision produces extremely high-valence vertices and thin triangles as faces are repeatedly
patched. (c) Incremental adaptive subdivision produces a gradual transition from low to high resolution.

2.2.3. Incremental Adaptive Subdivision

The traditional – or vanilla – adaptive subdivision process
is an iterative one in which we decide which faces Fsubdiv
to subdivide based on some criteria, subdivide them, and
then patch their neighbors Fpatch. For only a single itera-
tion, this approach works well. What happens, though, if we
adaptively subdivide again? In particular, what happens if
we again want to subdivide faces at the boundary between
the low-resolution and high-resolution areas?

In those instances, we will find ourselves repeatedly
patching descendants of our original patch faces. In general,
patched faces create vertices with high valence; if we repeat-
edly patch them, we are repeatedly increasing vertex valence
and creating long, thin faces. As an analogy, consider a pie
cut into n slices as having a vertex of valence n at the cen-
ter: as n increases, the slices (faces) connected to the vertex
become thinner.

Figure 5 illustrates this problem. Our original mesh in (a)
is to be subdivided based on faces falling under the green
curve. The result of applying vanilla adaptive subdivision
several times is shown in Figure 5(b); vertices at this level
have valence as high as n = 12.

To address this problem, Pakdel and Samavati [PS04] de-
scribe an elegant solution called incremental adaptive subdi-
vision. The idea is very simple: rather than only subdividing
faces in Fsubdiv, they extend their region of interest (on each
iteration) by setting

F ′
subdiv = Fsubdiv ∪ N(Fsubdiv) ,

where N(Fsubdiv) denotes all faces adjacent to the faces in
Fsubdiv. This requires us to recompute Fpatch to reflect the
larger F ′

subdiv:

Fpatch =
{

f | f adj to g ∈ F ′
subdiv, f /∈ F ′

subdiv
}

.

The effect of widening our region of interest is that we
will never patch a face or its descendant more than once,
assuming that our selection criterion is stationary. This leads
to a smooth transition from high to low resolution, with the

only expense being a slightly higher face count than vanilla
adaptive subdivision.

Figure 5(c) shows the results of incremental adaptive sub-
division applied to Figure 5(a). It is clear that the incremen-
tal approach produces much nicer results than vanilla. Also,
the lack of thin triangles and high-valence vertices produces
more stable calculations for lighting normals, which results
in higher-quality renderings. The tradeoff is a higher number
of faces: for instance, in Figure 5 the vanilla mesh has 561
faces, compared to 755 faces in the incremental mesh.

2.3. Feature Creation

Feature creation is the most important component in our
mesh augmentation system. It is here that a visible feature
is actually created by displacing vertices in the mesh.

We can split feature creation into two stages. First, we
must select which vertices to displace and create an approx-
imation of the features from these vertices; call this stage
snapping, to be consistent with previous work. Second, we
must displace the selected vertices to create a visually per-
ceptible feature; call this stage displacement.

2.3.1. Snapping

The inputs to this component of our system are a refined
mesh from adaptive subdivision, and a set C′ of feature
curves (the original set C of features must be updated to C′,
to reflect the new face structure that results from adaptive
subdivision). The feature curves are a set of 〈point, f ace〉
samples. From these inputs, we want to determine a se-
quence of vertices ∆ j adjacent to one another that approx-
imate each feature c′j ∈C′, i.e. a mapping c′j 7→ ∆ j ⊆V .

One might wish to further constrain the problem by re-
quiring an edge to exist between adjacent vertices. We take
the more relaxed approach of allowing vertices in ∆ j to cross
the diagonal of a quad face. We differ from the approach of
Biermann et al. [BMZB01] slightly, because we split faces
that are crossed by an edge in ∆ j into two new faces. This
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(a) (b) (c) (d)

Figure 6: Comparison of snapping strategies: (a) Mesh and curve before snapping; (b) Snap-to-mesh approximates the curve
with a vertex path in the mesh; (c) Snap-to-curve uses the same vertex path, but vertices in the path are moved onto the curve;
(d) Mesh distortion in the snap-to-curve strategy is reduced by a vertex relaxation process.

allows us to use standard subdivision rules to refine the aug-
mented mesh later.

The vertices in ∆ j are determined by finding the closest
vertex to each feature curve sample. As in the face-tagging
stage, the sampling rate of the feature may cause gaps in the
vertex path; a gap is a sequence { f ,g} ⊆ ∆ j such that f and
g do not share any faces. To fill such a gap, we find the vertex
neighbor f ′ of f that is closest to the feature, then repeat the
process for f ′ and so on until g is reached.

There are two obvious snapping strategies. The first strat-
egy, snap-to-mesh, approximates feature c j by the vertices
in ∆ j. This will preserve the mesh geometry – because ver-
tices will not move at all – but cannot represent the feature
curve exactly. This snapping strategy is well-suited to fea-
tures that are composed of straight lines or that are meant to
be guidelines. Figure 10 demonstrates how a snap-to-mesh
strategy can create very clean features. For free-form curves,
however, this strategy can cause aliasing and jagged edges.
Figure 6(b) demonstrates the results of this snapping strategy
for a free-form feature.

The second strategy, snap-to-curve, moves the vertices of
∆ j onto feature c j. This strategy is used by Biermann et
al. [BMZB01]. In order to keep mesh complexity at a rea-
sonable level in their system it is necessary to displace the
vertices quite far, which introduces distortion in the geome-
try beyond the distortion necessary to create the sharp fea-
ture. Figure 6(c) shows a mesh that has been snapped to a
feature; the feature is represented exactly, but the faces sur-
rounding the feature are clearly distorted.

To alleviate this distortion, we follow the snapping
process with a simple vertex-relaxation stage. First, we com-
pute the average edge length along each feature, d. This aver-
age is used to compute a desired position of vertices neigh-
boring the feature: first-level neighbors should be approx-
imately d units from the features, second-level neighbors
should be 2d, and so on. The final position of each neighbor-
ing vertex is a weighted average of its original and desired
position. Figure 6(d) shows the relaxation of the mesh in (c).
Note that the selection process for vertices in ∆ j guarantees
that the relaxation process will not create concave faces.

(a) (b) (c)

Figure 7: The effect of the sharpness parameter, s: (a) s =
10; (b) s = 1; (c) s = 0.1.

2.3.2. Displacement

After the snapping stage, we have a sequence of adjacent
vertices ∆ j that approximate each feature c j. To create a vi-
sually perceptible feature, we must displace these vertices
somehow. We choose to displace the vertices in the direction
of the surface normal.

The user can control the profile of each curve via sev-
eral parameters, including width, height, and sharpness: the
width of the feature is an integer value specifying the number
of neighboring vertices vn /∈ ∆ j to displace; the height of the
feature is a scalar that is applied to the vertex normals along
the feature; and the sharpness is some value s ∈ [0,∞).

The shape of a feature profile is determined by the sharp-
ness parameter, according to an exponential function:

h(x) = (1−|x|)s ,

where h(x) is the height of a feature-neighboring vertex at
a distance x from the feature, and x is normalized to [0,1].
Figures 7 and 11 show the effect of sharpness on the feature
profile.

3. Results

In our system, the features are applied to or “embedded” in
the mesh only at the behest of the user, not while the user is
sketching the features. This is more of a usability decision
than a technical one. Timing results show that our system
is usable at interactive rates for augmenting typical meshes,
because adaptive subdivision – the most computationally ex-
pensive component – depends not on the complexity of the
mesh, but on the complexity of the features.

While feature embedding requires some computational
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Model fin fout tsketch taug

Dinosaur 11328 12600 50s 0.66s
Hand 1464 3133 23s 0.09s
Etch sphere 384 1575 85s 0.22s
Wavy sphere 384 836 14s 0.05s
Fish 20466 38583 452s 42.13s
Dragon 21910 24183 247s 6.11s

Table 1: Usage statistics for Figures 8-13, where fin = in-
put faces, fout = output faces, tsketch = sketching time, and
taug = augmentation time.

time, the actual interaction with the system provides real-
time feedback because very little processing must be done
while the user is sketching their feature curves. The sampling
rate of the sketch is kept high by caching the mouse/tablet
events as the user is sketching. Providing immediate feed-
back during the sketching phase is important for the user
to be able to evaluate and make small adjustments while
sketching.

Table 1 presents some usage statistics recorded while pro-
ducing the results of Figures 8-13. The test machine con-
tained a 2.0GHz Pentium M processor with 1GB of RAM.
The reported timings include both the time spent sketching
by the user, as well as the time spent applying the features by
the system. The time required to augment a mesh depends on
both the number and complexity of features, as well as the
number of adaptive subdivision iterations. Note that the user,
while trained to use the system, was not a trained artist.

Figure 8 demonstrates the ability of our system to cre-
ate large-scale features that integrate naturally with the input
mesh. The triceratops mesh in (a) has a few short features
along the spine. After applying these features in (b), we have
created a stegosaurus-like mesh with plates along the spine,
and the augmentations blend with the original mesh seam-
lessly.

Figure 9 shows the creation of medium-scale freeform
features on a hand model. The original model of (a) is aug-
mented with some bulging veins in (b), by using features
with small height and sharpness values. The vein features
are smoothly recreated by snapping to the curve and then
relaxing the surrounding vertices.

Figures 10 and 11 demonstrate the wide range of mesh
augmentations achievable with our system. In Figure 10(a)
we see a simple spherical base mesh. Using a negative height
for the features produces an “etching” effect, as shown in
(b); the clean lines result from the snap-to-mesh strategy.
In (c), we can clearly see that adaptive subdivision impacts
the mesh only around the features. Figure 11 shows both the
ability of our system to cope with freeform features and the
effect of varying the sharpness parameter. By varying s, we
can create sharp features as in (a), gradual bumps as in (b),
or smooth bulges as in (c) and (d).

Figure 8: A dinosaur mesh: (left) original smooth-shaded
mesh, with sketched features along the spine; (right) the fea-
tures blend nicely with the original mesh.

Figure 9: A hand mesh augmented with medium-scale fea-
tures: the original mesh (left) is augmented with veiny struc-
tures (right).

Figure 12 shows how our system can be used to create
small-scale features on a fish mesh. The input mesh is shown
in (a). By using small displacements, long strokes, and more
levels of subdivision, we can create subtle surface details
such as scales; see Figure 12(b).

Figure 13 uses a more detailed base mesh than the other
figures. In (a), the base dragon mesh is shown; in (b), the
dragon is shown along with the sketched features. The long
strokes create nostrils, while the short strokes add teeth to
the mesh; the result of applying these features is given in (c).
The addition of these features turns a rather generic-looking
dragon into a more detailed and menacing version.

4. Conclusion & Future Work

In this paper we have presented a robust method for aug-
menting an existing mesh with variable-scale sharp features.
Our system presents several advantages over other similar
systems: the augmented mesh retains the representation of
the original mesh, allowing it to be seamlessly used in any
other application; we do not require special subdivision rules
to further enhance the augmented mesh; and finally, adaptive
subdivision allows the mesh complexity to increase only in
the vicinity of the features, meaning that global subdivision
is not required to create high-quality features.

In the future, there are some improvements we would like
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(a) (b) (c)

Figure 10: A spherical base mesh is augmented with snap-to-mesh features: (a) Original mesh; (b) Using a negative displace-
ment creates an “etched” effect; (c) A wire-frame rendering shows the localization of subdivision.

(a) (b) (c) (d)

Figure 11: The effect of varying the feature sharpness: (a) s = 100; (b) s = 1; (c) and (d) s = 0.1. The base mesh is the same
as in Figure 10(a).

(a) (b) (c)

Figure 12: A fish mesh augmented with small-scale features: (a) Original mesh; (b) Subtle surface details, such as scales, can
be created with our system; (c) Magnified view of the selected area from (b).

(a) (b) (c) (d)

Figure 13: A simple dragon mesh is enriched with some features: (a) Original mesh; (b) A combination of stroke styles are
used to create different effects; (c) The addition of nostrils and teeth make for a much more convincing and menacing dragon;
(d) Wireframe rendering of the augmented mesh.
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to make to our system. We plan to extend our approach to
handle triangular meshes, which are popular in modeling and
are often easier to process than quadrilateral meshes. While
the particular implementation presented here is most suit-
able to quadrilateral meshes due to our use of Catmull-Clark
subdivision, the general method is applicable to any mesh
structure or subdivision scheme. In particular, adaptive Loop
subdivision could be used to produce great results for trian-
gle meshes.

As Biermann et al. [BMZB01] recognized, a sketching in-
terface provides a convenient way to allow mesh trimming
operations. At the moment, we don’t differentiate between
open and closed feature curves, but a closed curve splits the
mesh into two regions: inside and outside the curve. The
mesh can be trimmed by discarding one of these regions.

Even with open curves, we may be able to partition the
mesh into distinct halves on either side of the curve; think
of drawing a line from one edge of a sheet of paper to the
other. An exciting possibility is to interpret open curves as
defining crease lines on the surface, and then allow the sur-
face to be bent about that crease. This functionality would
be extremely useful in CAD/CAM tasks such as automobile
design.

Feature displacement in our system is always in the nor-
mal direction, which limits the expressiveness of the system.
Rather than having parameterized profiles, we could extend
the sketching metaphor to the feature profiles as well. Fea-
tures could then have arbitrary profiles and be able to ex-
press complex details such as branching or asymmetric fold-
ing structures.

Finally, our sketching interface could be improved. Rather
than having user-adjustable feature parameters such as
height and sharpness, we could transition to a brush- or tool-
based sketching metaphor, where each tool would represent
some preset combination of feature parameters.
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