
4th Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2007)
J. Dingliana, F. Ganovelli (Editors)

Hardware Accelerated Broad Phase

Collision Detection for Realtime Simulations

Muiris Woulfe, John Dingliana and Michael Manzke

Graphics, Vision and Visualisation Group (GV2), Department of Computer Science, Trinity College Dublin, Ireland

Abstract

Broad phase collision detection is a vital task in most interactive simulations, but it remains computationally

expensive and is frequently an impediment to efficient implementation of realtime graphics applications. To over-

come this hurdle, we propose a novel microarchitecture for performing broad phase collision detection using

Axis-Aligned Bounding Boxes (AABBs), which exploits the parallelism available in the algorithms. We have im-

plemented our microarchitecture on a Field-Programmable Gate Array (FPGA) and our results show that this im-

plementation is capable of achieving an acceleration of up to 1.5× over the broad phase component of the SOLID

collision detection library, when considering the communication overhead between the CPU and the FPGA. Our

results further indicate that significantly higher accelerations are achievable using a more sophisticated FPGA or

by implementing our microarchitecture on an Application-Specific Integrated Circuit (ASIC).

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture
I.3.5 [Computer Graphics]: Physically based modeling I.3.6 [Computer Graphics]: Graphics data structures and
data types

Keywords: [Broad phase collision detection] [Axis-Aligned Bounding Box (AABB)] [Field-Programmable Gate
Array (FPGA)]

1. Introduction

Collision detection is a fundamental component of interac-
tive graphics applications as it determines whether simulated
objects are in contact. Despite its fundamentality, collision
detection remains a challenge and although numerous al-
gorithms and bounding volumes have been proposed, it re-
mains computationally expensive.

Many algorithms have been successfully accelerated by
implementing them on a hardware coprocessor, as it is of-
ten possible to create hardware adapted to the needs of a
particular algorithm. Coprocessors also provide additional
CPU time for the execution of the algorithms remaining on
the CPU. Two Integrated Circuits (ICs) potentially suitable
for use as hardware coprocessors are Field-Programmable
Gate Arrays (FPGAs) and Application-Specific Integrated
Circuits (ASICs).

FPGAs can be dynamically reprogrammed to perform
whatever functionality is currently desired, thereby imple-

menting a wide variety of microarchitectures over time. FP-
GAs consequently eliminate the need for multiple expen-
sive ICs. In contrast, ASICs are hardware coprocessors cus-
tomised for a particular use rather than general-purpose use.
They permit more complex designs than FPGAs and can typ-
ically execute the same microarchitecture at a higher clock
speed. On the downside, their functionality is fixed and can-
not be adapted to the requirements of a particular applica-
tion.

In this paper, we present a novel microarchitecture for per-
forming broad phase collision detection in hardware. Our
initial implementation was prototyped on an FPGA but the
proposed microarchitecture is equally amenable to efficient
ASIC implementation.

The remainder of this paper is organised as follows:
Section 2 describes how we determined that it was feasible
to accelerate broad phase collision detection by means of
a microarchitecture; Section 3 highlights research related to

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

the contribution presented in this paper; Section 4 outlines
our microarchitecture for performing broad phase collision
detection; Section 5 describes a test scenario we constructed;
Section 6 highlights the performance differential between
our implementation and the broad phase component of the
SOLID collision detection library, along with some addi-
tional results; Section 7 concludes this paper and suggests
some future work.

2. Motivation

Broad phase collision detection often forms a significant
load in physics simulations. Accordingly, we ascertained
that it would be desirable to accelerate these computations.
After analysing the available broad phase algorithms, we dis-
covered that some offered significant scope for parallelism,
making them amenable to hardware coprocessor implemen-
tation.

We determined that broad phase collision detection is
compute bound, making it possible to perform significant
computations on large quantities of data simultaneously. For
every n objects communicated, up to 3n(n−1) floating-point
operations can be performed. This serves to lessen the im-
pact of the communication overhead, as we would not need
to communicate small quantities of data between the CPU
and the coprocessor on a regular basis.

We further established that broad phase collision detection
could benefit from access to substantial low latency, high
bandwidth memory resources. A microarchitecture can have
extensive quantities of internal dual port RAMs that can be
accessed in a single clock cycle, which is of benefit to our
broad phase computations.

Based on these analyses, we concluded that it would be
desirable to create broad phase collision detection hardware
coprocessors. Such coprocessors would offer acceleration
and leave the CPU free to perform other computations.

3. Related work

The literature discusses myriad broad phase collision de-
tection bounding volumes, which enclose complex shapes
within simpler geometry. One of the most straightforward is
the Axis-Aligned Bounding Box (AABB), a cuboid whose
lines are parallel to the coordinate axes. Oriented Bounding
Boxes (OBBs) are rotatable AABBs and they may offer bet-
ter performance for certain applications. These can be gen-
eralised to Discrete Oriented Polytopes (k-DOPs), which are
polyhedra of k sides.

The traditional method for comparing a list of objects
for collision is the O(n2) brute force method, which per-
forms n

2 (n − 1) pairwise collision detection comparisons.
Alternatively, Baraff’s “sweep and prune” (or “sort and
sweep”) [Bar92, CLMP95] algorithm improves the brute
force implementation by considering temporal coherence

between frames. In essence, the algorithm assumes that in-
sertion sort can be used to efficiently update the list of object
endpoints. The algorithm operates in expected O(n logn)
time, but it can require up to O(n2) time if the degree of co-
herence is low. Finally, spatial subdivision divides the sim-
ulated space into cells. Objects within a cell can only col-
lide with other objects in the same cell, reducing the num-
ber of intersection tests that need to be performed. Uni-
form grids, which split space into cells of equal size, are
the simplest spatial subdivision method. Hierarchical grids
improve this scheme for objects of varying size by adapting
the cells to the size of the objects they enclose. More sophis-
ticated schemes based around tree structures are also pos-
sible. Examples include octrees, which recursively partition
space into eight uniform cells, and k-d trees [Ben75,FBF77],
which recursively partition space into two uniform cells by
selecting the most appropriate partitioning axis at each cy-
cle. Binary Space Partitioning (BSP) trees [FKN80] gener-
alise k-d trees by allowing the partition to occur along any
arbitrary axis and to create cells of unequal size.

Currently, the bulk of research focusing on offloading
collision detection from the CPU utilises GPU shaders.
These implementations were traditionally based on image-
space techniques. The algorithm proposed by Myszkowski,
Okunev and Kunii [MOK95], along with most early algo-
rithms, is essentially limited to convex objects. Later algo-
rithms, such as RECODE [BWS98] and CInDeR [KP03],
process unions of convex objects. CULLIDE [GRLM03]
can use general polygon soups, but the implementation uses
a hybrid approach with certain computations remaining on
the CPU. RCULLIDE [GLM04] improves on CULLIDE,
overcoming limited viewport resolutions by computing the
Minkowski sum of each primitive with a sphere, to per-
form reliable 2.5D overlap tests. Despite the performance
advantages achieved, imagespace approaches work with re-
duced precision [RLMK05] and more recently, research has
focused on using GPUs to directly implement the mathe-
matical equations comprising collision detection algorithms.
Carr, Hall and Hart [CHH02] and Purcell et al. [PBMH02]
discuss the implementation of ray-triangle intersection tests
using these techniques. Alternatively, Havok FX [Hav] is
a commercially available physics engine plug-in that sim-
ulates background effects physics. Despite the advantages
provided by developments in GPU collision detection, all of
these methods typically compete for GPU time with the ren-
dering instructions. To relieve the congestion, a second GPU
could be dedicated to collision detection computations, but
most of its resources would be unutilised.

In the field of FPGA collision detection, Raabe et
al. [RHAZ06] implemented a complete collision detection
microarchitecture. Their broad phase algorithm checks k-
DOPs for collision using a novel algorithm based on the
Separating Axis Theorem (SAT). Fixed-point arithmetic is
used to reduce the size of the microarchitecture, which is
designed to be space-efficient, so other algorithms can be

c© The Eurographics Association 2007.

Woulfe, Dingliana & Manzke / Hardware Accelerated Broad Phase Collision Detection for Realtime Simulations80

implemented on the same FPGA alongside the presented mi-
croarchitecture. The authors achieve an acceleration of a fac-
tor of four over an equivalent software implementation for
a static scene, but this figure excludes the communication
overhead required for any practical application. Since our
results indicate a significant communication overhead, it is
unlikely that this figure can be attained in practice. The mi-
croarchitecture can also simulate dynamic scenes although
this is unsupported by the current API, and results for dy-
namic scenes remain unavailable. Alternatively, Atay, Lock-
wood and Bayazit [ALB05] describe a microarchitecture
based on Möller’s triangle-triangle intersection test [Möl97],
which allows for exact collision detection in an environment
described entirely by triangles. However, their target appli-
cation is motion planning for robots [AB06] and this mi-
croarchitecture is unable to perform collision detection in
realtime for typical physics simulations.

Few collision detection ASICs have been designed due
to the significant time and capital investments required.
The sole example is AGEIA PhysX [AGE], a commercially
available Physics Processing Unit (PPU), that reportedly ac-
celerates both physics and collision detection. Implementa-
tion details of the microarchitecture have not been published
in academic fora, although patents [DHS∗05a, DHS∗05b,
DHS∗05c, ZTSM05a, TZS05, ZTSM05b, MBST05, BS06,
BDH06, MFSD07, Bor07] reveal some details. It further re-
mains unclear how much of the collision detection is per-
formed on the ASIC and how much is performed on the
CPU.

FPGAs have also been used to successfully accelerate a
plurality of graphics algorithms. In particular, Schmittler et
al. [SWW∗04] present a novel design for performing real-
time raytracing on an FPGA. Wei et al. [WCF∗98] simulated
a distributed frame buffer using an FPGA while Wetekam et
al. [WSKW05] used FPGAs to perform multi-resolution vol-
ume rendering.

A substantial body of research indicates that floating-
point computations can be accelerated by FPGAs. In 2004,
Underwood [Und04] concluded that peak FPGA floating-
point performance is increasing at a rate of up to 5× every
two years, compared to 2× every eighteen months on CPUs.
Also in 2004, Govindu et al. [GZCP04] demonstrated an
FPGA-based matrix multiplication algorithm that was capa-
ble of achieving up to 15 GFLOPS, significantly faster than
the available CPU technology. This research clearly demon-
strates that although FPGAs were once deemed unsuitable
for floating-point operations, they have recently become a vi-
able platform for applications reliant on floating-point num-
bers.

We have previously presented a work in progress
poster of an initial implementation of our microarchitec-
ture [WDM07]. This poster focused on our comparator mod-
ule, which is described in Section 4.3, and provided some
preliminary performance data.

4. Microarchitecture

Our custom broad phase collision detection microarchitec-
ture consists of four modules, connected as illustrated in
Figure 1. The four modules are the updater, the comparator,
the collision emitter and the CPU–IC communication inter-
face. These modules will be described in the subsequent sec-
tions.

CPU–IC

Communication Interface

Collision

Emitter

Comparator

Updater

Figure 1: Interconnection of the modules in our microarchi-
tecture.

Our microarchitecture accommodates scalability, in order
to adapt to differing IC sizes. Therefore, for small ICs a
small number of collision detection tests can be performed
in parallel while on a larger IC a large number of tests can
be performed in parallel. The diagrams in the following sec-
tions illustrate this scalability.

Our microarchitecture uses single precision floating-point
arithmetic [IEE85], as our empirical observations suggested
that this offered sufficient precision. The use of a standard
floating-point precision also simplifies communication with
the CPU, as no conversion hardware or routines are required.

The microarchitecture operates in two general phases: the
initialisation phase is the first phase and loads the initial data
into the microarchitecture; the subsequent updating phases
update the stored data and perform broad phase collision de-
tection.

4.1. Bounding volume and algorithm

We decided to use AABBs as bounding volumes. The sim-
plicity of AABBs means fewer large floating-point cores
are required, which enables more collisions to be detected
in parallel. Moreover, AABBs have been successfully used
by the I-COLLIDE [CLMP95] and SOLID [van01] collision
detection libraries.

We further decided to use the brute force algorithm to
check the AABBs for collision. Although the brute force al-
gorithm may initially appear disadvantageous, we selected
it because it offers significant scope for parallelism, making
it amenable to efficient hardware implementation. Addition-
ally, it allowed us to quickly and effectively test the appro-
priateness of offloading broad phase collision detection to a

c© The Eurographics Association 2007.

Woulfe, Dingliana & Manzke / Hardware Accelerated Broad Phase Collision Detection for Realtime Simulations 81

hardware coprocessor. In the future, we intend to look at pos-
sibilities for adapting our microarchitecture to execute more
sophisticated algorithms such as spatial subdivision.

4.2. Updater

The updater module, illustrated in Figure 2, manages the
data describing each AABB.

+

P
o

si
ti

o
n

RAM

M
in

im
u

m

Write Enable
Initialisation

+

Sign

Change

M
in

im
u

m

M
a

xi
m

u
m

Figure 2: The microarchitecture of the updater module.

During the initialisation phase, the software application
centres each simulated object at the origin of the three coor-
dinate axes and computes an AABB for each object. It pro-
vides the AABBs as three data (minimum x, minimum y,
minimum z), and the updater module stores these values in
on-chip RAM for subsequent use. Only the minimum values
are required since the AABBs are centred at the origin and
the maximum values can be calculated by switching the sign
of the corresponding minimum value.

Subsequently, during the updating phase, the current cen-
tre of each simulated object is provided to the updater mod-
ule. These new centres are added to the stored minima and
computed maxima to calculate the current minima and max-
ima. This data is provided to the next module, the compara-
tor.

4.3. Comparator

The comparator module is the principal module in the mi-
croarchitecture. It is responsible for performing the appro-
priate collision detection tests between pairs of AABBs and
reporting their indices if they are colliding. The sequential
algorithm equivalent to our comparator module implemen-
tation is shown in Algorithm 1.

The microarchitecture is illustrated from two different
perspectives. Figure 3 shows how a single minimum and
maximum can be combined to form the entire module, while
Figure 4 shows how a number of AABBs are processed for
collision. Figure 3 demonstrates the repetitious nature of the
microarchitecture, while Figure 4 views the module from a
higher-level perspective, from the view of an AABB.

for i← 1 to n−1 do

for j← i + 1 to n do

collision← (xmax
i ≥ xmin

j) ∧ (xmin
i ≤ xmax

j)

∧ (ymax
i ≥ ymin

j) ∧ (ymin
i ≤ ymax

j)

∧ (zmax
i ≥ zmin

j) ∧ (zmin
i ≤ zmax

j)
if collision then

result← result ∪ 〈i, j〉
end if

end for

end for

Algorithm 1: The sequential brute force algorithm for de-
tecting AABB collisions.

≤ ≤ ≤ ≤ ≤

Dual Port

RAM

Dual Port

RAM

Dual Port

RAM
…

Minimum

≥ ≥ ≥
…

≥ ≥

Dual Port

RAM

Dual Port

RAM

Dual Port

RAM
…

Maximum

…

(a)

Minimum

Maximum

x

…

Minimum

Maximum

y

Minimum

Maximum

z

(b)

Figure 3: (a) The relevant components for processing a sin-
gle coordinate axis. (b) The interconnection of these compo-
nents to form the complete comparator module.

The comparator module begins with a 2m width memory.
This can be constructed using m dual port RAMs with the
same data replicated across each RAM, logically creating
a 2m port RAM. This 2m port RAM allows 2m data to be
outputted in a single clock cycle, instead of the typical two
data. 2m data facilitate a greater degree of parallelism in the
comparison logic, allowing for greater acceleration. In total,
six 2m width RAMs are required for storing the minimum
and maximum x, y and z data.

When writing to the RAMs, the same address is used
for each of the m RAMs so that a single datum is repli-
cated across each RAM. Subsequently, when reading from
the RAMs, a more complex scheme, exemplified in Table 1,
is used to ensure each of the necessary comparisons take
place. In this scheme, the first address input is set to the
initial address and the remaining 2m− 1 address inputs are
set to the 2m−1 successive addresses. In the subsequent cy-
cles, the first address input is kept constant while the remain-
ing 2m− 1 address inputs are each incremented by 2m− 1
until one of these address inputs reaches the maximum ad-
dress used in the system. When this occurs, the first address
is incremented by 1 and the remaining 2m− 1 address in-
puts are set to the 2m− 1 addresses subsequent to the new
first address. The process continues until the first address

c© The Eurographics Association 2007.

Woulfe, Dingliana & Manzke / Hardware Accelerated Broad Phase Collision Detection for Realtime Simulations82

Dual Port

RAM

Dual Port

RAM

Dual Port

RAM
…

Minimum x

Dual Port

RAM

Dual Port

RAM

Dual Port

RAM
…

Maximum x

Dual Port

RAM

Dual Port

RAM

Dual Port

RAM
…

Minimum y

Dual Port

RAM

Dual Port

RAM

Dual Port

RAM

…

Maximum y

Dual Port

RAM

Dual Port

RAM

Dual Port

RAM
…

Minimum z

Dual Port

RAM

Dual Port

RAM

Dual Port

RAM
…

Maximum z

Comparison

Unit

Comparison

Unit

Comparison

Unit

Comparison

Unit

Comparison

Unit

…

(a)

M
a

xim
u

m
 x

0 M
in

im
u

m
 x

1

≥ ≥ ≥≤ ≤ ≤

Collision

M
in

im
u

m
 x

0 M
a

xi
m

u
m

 x
1

M
a

xim
u

m
 y

0 M
in

im
u

m
 y

1 M
in

m
u

m
 y

0 M
a

xi
m

u
m

 y
1

M
a

xim
u

m
 z

0 M
in

im
u

m
 z

1

M
in

im
u

m
 z

0 M
a

xi
m

u
m

 z
1

(b)

Figure 4: (a) The comparator module. (b) The implementation of each comparison unit.

input reaches one less than the maximum address and the re-
maining 2m−1 address inputs reach the maximum address.
This addressing scheme permits addresses greater than the
maximum address to be accessed (these are illustrated as ‘–’
in Table 1), but these are removed by checking the supplied
AABB index against the maximum address.

On-chip RAM 0 1 2 3

Port A B A B A B A B

Input 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 8 9 10 – – – –
1 2 3 4 5 6 7 8
1 9 10 – – – – –
2 3 4 5 6 7 8 9
2 10 – – – – – –
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 –
5 6 7 8 9 10 – –
6 7 8 9 10 – – –
7 8 9 10 – – – –
8 9 10 – – – – –
9 10 – – – – – –

Table 1: An example of the addresses supplied to the RAMs,
where m = 4 and the maximum address is 10.

The comparison in Algorithm 1 is also implemented us-
ing six floating-point cores with each performing one com-
parison. The result from the six cores is ANDed to deter-
mine whether a collision occurred. If a collision occurred,
the indices of the two colliding AABBs are passed to the
next module, the collision emitter.

It is in the comparison operation that our microarchitec-
ture uses techniques to surpass the performance of CPUs.
Parallelism has been successfully used to accelerate myriad
applications, so we decided to perform all six comparisons
in Algorithm 1 in parallel. Moreover, we perform these six
comparisons for 2m− 1 pairs of AABBs in parallel, facili-
tated by our 2m width RAM.

4.4. Collision emitter

The collision emitter module, illustrated in Figure 5, con-
verts the parallel collision data supplied by the comparator
module into a serial stream suitable for writing to the RAM
used for communication with the CPU. Each collision is
specified by two indices representing two colliding AABBs.
Up to 2m− 1 parallel collisions are written into 4m− 2 FI-
FOs simultaneously, which are then read sequentially using
a round robin scheduling algorithm.

FIFO FIFO

Round Robin Scheduler

FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO…

Figure 5: The microarchitecture of the collision emitter mod-
ule.

This collision data must be serialised, as it would not be
possible to communicate parallel collisions to the CPU. De-
spite the serialisation, this module does not appear to be a
substantial bottleneck as typically less than one collision is
emitted per clock cycle.

c© The Eurographics Association 2007.

Woulfe, Dingliana & Manzke / Hardware Accelerated Broad Phase Collision Detection for Realtime Simulations 83

4.5. CPU–IC communication interface

The CPU–IC communication interface is responsible for
managing the flow of data between the CPU executing the
appropriate software application and the IC implementing
the microarchitecture described. This currently comprises
external RAM hosted on the coprocessor board, which can
be accessed by both the CPU and IC, along with the in-
frastructure required to read and write data to and from this
RAM. A number of equivalent implementations are also pos-
sible and the interface can be easily tuned to the require-
ments of the IC in use.

During the initialisation phase, the CPU writes the origin-
centred AABB minima into the RAM. The IC reads this data
and performs the necessary computation. Subsequently, dur-
ing the updating phase, the CPU writes the new centre po-
sitions of each AABB. The IC reads this data and performs
the required updating and collision detection operations, be-
fore writing the indices of the colliding AABBs into the
RAM, where the CPU accesses them. Externally accessible
registers allow the CPU to inform the IC of the quantity of
AABBs and allow the IC to inform the CPU of how many
collisions occurred.

4.5.1. FPGA

We adapted our microarchitecture for implementation on an
FPGA. The adapted microarchitecture uses six parallel Syn-
chronous Static Random Access Memories (SSRAMs) for
communication between the CPU and the FPGA, allowing
six data to be read or written on each clock cycle. The FPGA
board hosting the SSRAMs is discussed in greater detail in
Section 6.

During the initialisation phase, the CPU writes the x, y

and z of the origin-centred AABB minima to a single address
across three SSRAMs, permitting the FPGA to read the x, y

and z data in parallel. In the updating phase, the CPU writes
the x, y and z of the current centre of the AABBs to a single
address across three SSRAMs. In both cases, the CPU writes
to n addresses for n AABBs, resulting in the transfer of 3n

data. In the updating phase, after performing the collision
detection computations, the FPGA writes the two AABB in-
dices specifying each collision to an SSRAM, writing to n

addresses for n collisions.

Our FPGA implementation is currently limited to a maxi-
mum of 512 AABBs due to the depth of the FPGA’s on-chip
Block RAMs, although the latest FPGAs would extend this
limit to 1024 AABBs. We can surpass this limit with some
minor adjustments to our microarchitecture, since the exter-
nal SSRAMs are substantially larger and could be used to
contain up to 524,288 AABBs. If we deem 524,288 to be
too limiting, we can also exceed this restriction by stream-
ing AABBs between the CPU and FPGA.

5. Test scenario

In addition to constructing the previously described microar-
chitecture, we constructed a sample software application
that can either execute in software or interact with the mi-
croarchitecture to perform a physically based simulation.
This simulation consists of a central program loop execut-
ing broad phase collision detection, narrow phase collision
detection, collision response, physics simulation and graph-
ical display sequentially, as illustrated in Figure 6.

Broad Phase

Collision Detection

Narrow Phase

Collision Detection

Physics

Display

Collision Response

Figure 6: The software application’s central program loop.

Our test scenario simulates a closed box initialised with
a variable number of spheres. The box is of height 400 m
and the width and depth are calculated so that on initialisa-
tion there exists a gap of 10 m between each sphere of radius
25 m. Each sphere is initialised with a unique initial linear
momentum in the range (−40 m/s,−40 m/s,−40 m/s) to
(40 m/s,40 m/s,40 m/s). Almost all of the resultant veloc-
ities stay within the range (−15 m/s,−15 m/s,−15 m/s) to
(15 m/s,15 m/s,15 m/s), so that all objects appear to behave
realistically.

During the course of the simulation, the spheres collide
with each other and the inner walls of the box. By adjusting
the number of spheres and their velocities, the computational
load placed on the host computer can be varied, which can
be used to determine the impact of collision detection on the
overall system. Figure 7 shows a screen capture of the test
scenario simulating 500 spheres. In the future, a multitude
of alternative test scenarios that effectively utilise our mi-
croarchitecture could also be constructed.

c© The Eurographics Association 2007.

Woulfe, Dingliana & Manzke / Hardware Accelerated Broad Phase Collision Detection for Realtime Simulations84

FPGA SOLID Acceleration Communication Collisions

m = 4 m = 8 incl sort excl sort m = 4 m = 4 m = 8 m = 8 m = 4 m = 8
ms ms ms ms incl sort excl sort incl sort excl sort ms % %

50 0.242 0.216 0.043 0.042 0.176 0.175 0.197 0.195 0.178 73.542 82.096 7.47
100 0.289 0.276 0.146 0.139 0.504 0.48 0.528 0.502 0.194 67.304 70.478 12.588
150 0.332 0.289 0.195 0.163 0.588 0.489 0.675 0.562 0.199 59.825 68.701 20.413
200 0.356 0.312 0.318 0.218 0.894 0.612 1.02 0.699 0.208 58.418 66.653 26.703
250 0.419 0.348 0.597 0.353 1.423 0.842 1.713 1.014 0.218 51.958 62.578 35.628
300 0.471 0.368 0.914 0.418 1.943 0.888 2.484 1.135 0.225 47.772 61.064 44.61
350 0.5 0.394 1.431 0.501 2.864 1.002 3.632 1.270 0.235 47.094 59.709 51.416
400 0.569 0.425 2.708 0.575 4.763 1.012 6.377 1.355 0.25 43.935 58.822 60.053
450 0.631 0.464 4.92 0.645 7.802 1.023 10.6 1.39 0.253 40.183 54.594 64.427
500 0.731 0.513 8.325 0.754 11.395 1.032 16.243 1.471 0.27 37.001 52.743 76.079

Table 2: Average execution time of a broad phase collision detection cycle for a variable quantity of AABBs.

Figure 7: A screen capture of our test scenario simulating
500 spheres.

6. Results

Our test scenario is implemented in C++. It was compiled
using Microsoft Visual Studio 2005 and was tested on an
Intel Pentium 4 1.8 GHz with 2 GB of RAM. The design
was optimised for speed.

Our microarchitecture is implemented in VHDL. For
our analyses, we targeted a Xilinx Virtex-II XC2V6000-
4 FPGA [Xil], hosted on an Alpha Data ADM-XRC-II
board [Alp], which communicates with the CPU via 32 bits
of the PCI bus operating at 66 MHz. The board includes six
independent 512 KB banks of 36-bit wide SSRAM operat-
ing at the FPGA clock speed. The FPGA features 144 18-bit
multipliers, 324 KB of Block RAM and 6 million gate equiv-
alents. Xilinx ISE 9.1.03i was used to synthesise, translate,
map, place and route the VHDL description of our entire
microarchitecture. This enabled our test scenario to perform
all broad phase collision detection on the FPGA. The design
was optimised for speed.

When synthesised with m = 4, the microarchitecture
achieved a target frequency of 108 MHz and consumed 29%

of FPGA slices and 28% of available Block RAM. The
peak memory bandwidth achieved by the comparator mod-
ule’s 8 (2m) width RAM was 3.219 GB/s. When synthesised
with m = 8, the microarchitecture also achieved a target fre-
quency of 108 MHz and consumed 41% of FPGA slices
and 56% of available Block RAM. The peak memory band-
width achieved by the comparator module’s 16 (2m) width
RAM was 6.437 GB/s. In both cases, when the microarchi-
tecture reads the data using the scheme outlined in Table 1,
the quoted peak memory bandwidth is attained.

To analyse the performance of our microarchitecture, we
timed our FPGA implementation against the SOLID 3.5.6
collision detection library. The results of this comparison
are provided in Table 2 and plotted in Figure 8. The execu-
tion times provided are the time consumed by a single col-
lision detection cycle averaged over 10,000 cycles, recorded
using high-resolution hardware performance counters. Only
the time consumed by the broad phase computations, exclud-
ing the narrow phase collision detection, collision response,
physics and graphical display, were recorded. FPGA times
include the time consumed while preparing and transfer-
ring data to and from the CPU using Direct Memory Access
(DMA) transfers. SOLID times both including and exclud-
ing sweep and prune’s lengthy initial sort computation are
presented. Table 2 also quotes the relative performance of
the FPGA and SOLID implementations, the communication
overhead and the average number of collisions per cycle.

These results indicate that our FPGA implementa-
tion decelerates low quantities of AABBs, primarily due
to the communication overhead involved. It accelerates
250 AABBs by a factor of 1.014× and it accelerates
500 AABBs by a factor of 1.471×. It is also apparent that
the increased parallelism of the m = 8 implementation pro-
vides a moderate acceleration, but its performance is damp-
ened by the significant and constant communication over-
head. Although both the computer and the FPGA used to
generate these results are a number of years old, they both
date from the same year, making it valid to compare the re-

c© The Eurographics Association 2007.

Woulfe, Dingliana & Manzke / Hardware Accelerated Broad Phase Collision Detection for Realtime Simulations 85

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 50 100 150 200 250 300 350 400 450 500

E
xe

cu
ti

o
n

 T
im

e
 [
m
s
]

AABBs

FPGA m = 4
FPGA m = 8

SOLID incl sort
SOLID excl sort

(a)

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400 450 500

C
o

m
m

u
n

ic
a

ti
o

n
 [
%
]

AABBs

FPGA m = 4
FPGA m = 8

(b)

Figure 8: (a) The average execution time of a broad phase
collision detection cycle for a variable quantity of AABBs.
(b) The communication overhead of the FPGA implementa-
tion.

sults of one against the other. Unfortunately, it was impos-
sible to compare our results against the AGEIA PhysX as
the API provides access to the broad phase collision detec-
tion, narrow phase collision detection, collision response and
physics simulation through a simple high level API, which
does not permit direct access to the broad phase implemen-
tation.

For more than 500 AABBs, we predict a larger accelera-
tion factor, which we deduced from the pattern of acceler-
ation values in Table 2. Further, placing the microarchitec-
ture on a PCI Express FPGA card would significantly lessen
the communication overhead, while an ASIC implementa-
tion would be of added benefit, as it would enable a higher
clock speed coupled with an even greater degree of paral-
lelism.

7. Conclusions and future work

In this paper, we presented a novel microarchitecture for per-
forming broad phase collision detection for interactive simu-
lations. Our FPGA prototype demonstrates that this microar-
chitecture is capable of achieving an acceleration of up to
1.5× over the broad phase component of the SOLID colli-
sion detection library. Moreover, current and future trends
suggest that this performance advantage will improve as
newer and more advanced hardware technologies become
available.

Our implementation and results show that it is possible to
successfully implement a microarchitecture for accelerating
broad phase collision detection. Additionally, it is feasible to
divide a graphical application with realtime constraints be-
tween a CPU and coprocessor, with the effect of the commu-
nication overhead diminished by the acceleration achieved.
An FPGA provides a suitable host for this coprocessor as
our microarchitecture’s parallelism compensates for the rela-
tively low clock speed of the devices. Alternatively, an ASIC
would permit a faster implementation and allow for more
flexibility in terms of computational resources.

In the future, we plan to design and implement solutions
to overcome the current limitations of our microarchitecture.
Our test scenario used spheres that were invariant to rota-
tion, which simplified our application since AABBs did not
need to be recomputed whenever a rotation occurred. Future
work will involve adding support for more general objects
and motions using dynamic AABBs or alternative bounding
volumes. We will also modify our architecture so that sig-
nificantly more than 512 AABBs can be simulated concur-
rently, and we plan to explore more sophisticated algorithms
than brute force to potentially achieve a greater acceleration.

We further intend to adapt our broad phase collision de-
tection microarchitecture to execute on the shared-memory
hybrid graphics cluster for visualisation and video process-
ing [MBO∗06,BMO∗07]. The system consists of a cluster of
custom-built Printed Circuit Boards (PCBs), connected via
Scalable Coherent Interface (SCI), which provides a high
bandwidth, low latency, point-to-point interconnect imple-
menting a Distributed Shared Memory (DSM) architecture.
After porting our microarchitecture, all FPGAs in the cluster
will be able to perform collision detection in parallel, vastly
increasing the parallelism of the system. Furthermore, the
SCI interconnect will alleviate the delay incurred by commu-
nicating over the PCI bus in a commodity PC. The substan-
tial parallelism and low latency interconnect should serve to
considerably increase the performance of our microarchitec-
ture.

Finally, we aim to profile and analyse our hardware accel-
erated test scenario to establish its limiting components. We
will utilise these data to enable us to optimally distribute the
required computations across all available resources, includ-
ing the CPU and hardware coprocessor. By dividing compu-
tations in this manner, we hope to achieve maximum accel-

c© The Eurographics Association 2007.

Woulfe, Dingliana & Manzke / Hardware Accelerated Broad Phase Collision Detection for Realtime Simulations86

eration for realtime simulations by means of our hardware
coprocessor.

Acknowledgements

This research is supported by the Irish Research Council for
Science, Engineering and Technology (IRCSET) funded by
the National Development Plan (NDP).

References

[AB06] ATAY N., BAYAZIT B.: A motion planning pro-
cessor on reconfigurable hardware. In Proceedings of

the 2006 IEEE International Conference on Robotics and

Automation (ICRA 2006) (Piscataway, New Jersey, USA,
May 2006), Papanikolopoulos N., (Ed.), IEEE Press,
pp. 125–132.

[AGE] AGEIA PhysX. http://www.ageia.com/physx/
(Retrieved 25 September 2007).

[ALB05] ATAY N., LOCKWOOD J. W., BAYAZIT B.: A
collision detection chip on reconfigurable hardware. In
Proceedings of the Thirteenth Pacific Conference on Com-

puter Graphics and Applications (Pacific Graphics 2005)

(Oct. 2005), Gotsman C., Manocha D., Wu E., (Eds.).

[Alp] Alpha Data. http://www.alpha-data.com/ (Re-
trieved 25 September 2007).

[Bar92] BARAFF D.: Dynamic Simulation of Non-

Penetrating Rigid Bodies. PhD thesis, Cornell University,
Ithaca, New York, USA, May 1992.

[BDH06] BORDES J. P., DAVIS C., HEDGE M.: System
with PPU/GPU architecture, May 2006. (International ap-
plication number: PCT/US2005/040007).

[Ben75] BENTLEY J. L.: Multidimensional binary search
trees used for associative searching. Communications of

the ACM 18, 9 (Sept. 1975), 509–517.

[BMO∗07] BRENNAN R., MANZKE M., O’CONOR K.,
DINGLIANA J., O’SULLIVAN C.: A scalable and recon-
figurable shared-memory graphics cluster architecture. In
Proceedings of the 2007 International Conference on En-

gineering of Reconfigurable Systems & Algorithms (ESRA

2007) (Long Island City, New York, USA, June 2007),
Plaks T. P., (Ed.), CSREA.

[Bor07] BORDES J. P.: System and method pro-
viding variable complexity in a physics simula-
tion, Mar. 2007. (International application number:
PCT/US2006/028164).

[BS06] BORDES J. P., SEQUEIRA D.: Asynchronous
and parallel execution by physics processing unit,
May 2006. (International application number:
PCT/US2005/040006).

[BWS98] BACIU G., WONG W. S.-K., SUN H.: RE-
CODE: An image-based collision detection algorithm. In

Proceedings of the Sixth Pacific Conference on Computer

Graphics and Applications (Pacific Graphics ’98) (Los
Alamitos, California, USA, Oct. 1998), Teh H. C., Shina-
gawa Y., Patrikalakis N. M., (Eds.), IEEE Computer Soci-
ety, pp. 125–133.

[CHH02] CARR N. A., HALL J. D., HART J. C.: The
ray engine. In Proceedings of the 2002 ACM SIG-

GRAPH/Eurographics Conference on Graphics Hard-

ware (Aire-la-Ville, Switzerland, Sept. 2002), Ertl T., Hei-
drich W., Doggett M., (Eds.), Eurographics Association,
pp. 37–46.

[CLMP95] COHEN J. D., LIN M. C., MANOCHA D.,
PONAMGI M. K.: I-COLLIDE: An interactive and exact
collision detection system for large-scale environments.
In Proceedings of the 1995 Symposium on Interactive 3D

Graphics (SI3D ’95) (New York, USA, Apr. 1995), ACM
Press, pp. 189–196.

[DHS∗05a] DAVIS C., HEDGE M., SCHMID O. A., MA-
HER M., BORDES J. P.: Method for providing physics
simulation data, Apr. 2005. (International application
number: PCT/US2004/030687).

[DHS∗05b] DAVIS C., HEDGE M., SCHMID O. A.,
MAHER M., BORDES J. P.: Physics processing
unit, Apr. 2005. (International application number:
PCT/US2004/030686).

[DHS∗05c] DAVIS C., HEDGE M., SCHMID O. A., MA-
HER M., BORDES J. P.: System incorporating physics
processing unit, Apr. 2005. (International application
number: PCT/US2004/030689).

[FBF77] FRIEDMAN J. H., BENTLEY J. L., FINKEL

R. A.: An algorithm for finding best matches in logarith-
mic expected time. ACM Transactions on Mathematical

Software 3, 3 (Sept. 1977), 209–226.

[FKN80] FUCHS H., KEDEM Z. M., NAYLOR B. F.: On
visible surface generation by a priori tree structures. In
Proceedings of the 7th International Conference on Com-

puter Graphics and Interactive Techniques (SIGGRAPH

’80) (New York, USA, July 1980), Thomas J. J., (Ed.),
ACM Press, pp. 124–133.

[GLM04] GOVINDARAJU N. K., LIN M. C., MANOCHA

D.: Fast and reliable collision culling using graphics hard-
ware. In Proceedings of the ACM Symposium on Vir-

tual Reality Software and Technology (VRST 2004) (New
York, USA, Nov. 2004), Lau R. W. H., Baciu G., (Eds.),
ACM Press, pp. 2–9.

[GRLM03] GOVINDARAJU N. K., REDON S., LIN

M. C., MANOCHA D.: CULLIDE: Interactive col-
lision detection between complex models in large en-
vironments using graphics hardware. In Proceedings

of the 2003 ACM SIGGRAPH/Eurographics Conference

on Graphics Hardware (Aire-la-Ville, Switzerland, July
2003), Doggett M., Heidrich W., Mark W., Schilling A.,
(Eds.), Eurographics Association, pp. 25–32.

c© The Eurographics Association 2007.

Woulfe, Dingliana & Manzke / Hardware Accelerated Broad Phase Collision Detection for Realtime Simulations 87

http://www.ageia.com/physx/
http://www.alpha-data.com/

[GZCP04] GOVINDU G., ZHAO L., CHOI S., PRASANNA

V.: Analysis of high-performance floating-point arith-
metic on FPGAs. In Proceedings of the 18th International

Parallel and Distributed Processing Symposium (IPDPS

2004) (Los Alamitos, California, USA, Apr. 2004), Ver-
nalde S., (Ed.), IEEE Computer Society, pp. 149–156.

[Hav] Havok FX. http://www.havok.com/content/

view/72/57/ (Retrieved 25 September 2007).

[IEE85] IEEE std 754-1985: IEEE standard for binary
floating-point arithmetic, Mar. 1985.

[KP03] KNOTT D., PAI D. K.: CInDeR: Collision and
Interference Detection in Real-time using graphics hard-
ware. In Proceedings of Graphics Interface 2003 (Natick,
Massachusetts, Canada, June 2003), Möller T., Ware C.,
(Eds.), A K Peters, pp. 73–80.

[MBO∗06] MANZKE M., BRENNAN R., O’CONOR K.,
DINGLIANA J., O’SULLIVAN C.: A scalable and recon-
figurable shared-memory graphics architecture. In The

33th International Conference and Exhibition on Com-

puter Graphics and Interactive Techniques (SIGGRAPH

2006) (New York, USA, July–Aug. 2006), Pfister H.,
(Ed.), ACM Press.

[MBST05] MAHER M., BORDES J. P., SEQUEIRA D.,
TONGE R.: Physics processing unit instruction set ar-
chitecture, Nov. 2005. (International application number:
PCT/US2004/030690).

[MFSD07] MÜLLER-FISCHER M. H., SCHIRM S. D.,
DUTHALER S. F.: Method of generating sur-
face defined by boundary of three-dimensional point
cloud, Feb. 2007. (International application number:
PCT/US2006/028161).

[MOK95] MYSZKOWSKI K., OKUNEV O. G., KUNII

T. L.: Fast collision detection between complex solids us-
ing rasterizing graphics hardware. The Visual Computer

11, 9 (Nov. 1995), 497–511.

[Möl97] MÖLLER T.: A fast triangle-triangle intersection
test. Journal of Graphics Tools (JGT) 2, 2 (1997), 25–30.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R.,
HANRAHAN P.: Ray tracing on programmable graphics
hardware. ACM Transactions on Graphics (Proceedings

of ACM SIGGRAPH 2002) 21, 3 (July 2002), 703–712.

[RHAZ06] RAABE A., HOCHGÜRTEL S., ANLAUF J.,
ZACHMANN G.: Space-efficient FPGA-accelerated col-
lision detection for virtual prototyping. In Proceedings

of the 2006 Design, Automation and Test in Europe Con-

ference and Exhibition (DATE 2006) (Leuven, Belgium,
Mar. 2006), European Design and Automation Associa-
tion, pp. 206–211.

[RLMK05] REDON S., LIN M. C., MANOCHA D., KIM

Y. J.: Fast continuous collision detection for articulated
models. Journal of Computing and Information Science

in Engineering 5, 2 (June 2005), 126–137.

[SWW∗04] SCHMITTLER J., WOOP S., WAGNER D.,
PAUL W. J., SLUSALLEK P.: Realtime ray tracing
of dynamic scenes on an FPGA chip. In Proceed-

ings of the 2004 ACM SIGGRAPH/Eurographics Confer-

ence on Graphics Hardware (Aire-la-Ville, Switzerland,
Aug. 2004), Akenine-Möller T., McCool M., (Eds.), Eu-
rographics Association, pp. 95–106.

[TZS05] TONGE R., ZHANG L., SEQUEIRA D.: Method
and program solving LCPs for rigid body dynam-
ics, Aug. 2005. (International application number:
PCT/US2004/030691).

[Und04] UNDERWOOD K.: FPGAs vs. CPUs: Trends in
peak floating-point performance. In Proceedings of the

12th ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays (FPGA 2004) (New York, USA,
Feb. 2004), Schmit H., (Ed.), ACM Press, pp. 171–180.

[van01] VAN DEN BERGEN G.: Proximity queries and
penetration depth computation on 3D game objects. In
Game Developers Conference 2001 Proceedings (GDC

2001) (Manhasset, New York, USA, Apr. 2001), CMP
Media.

[WCF∗98] WEI B., CLARK D. W., FELTEN E. W., LI

K., STOLLL G.: Performance issues of a distributed
frame buffer on a multicomputer. In Proceedings of

the 1998 ACM SIGGRAPH/Eurographics Conference on

Graphics Hardware (New York, USA, Aug.–Sept. 1998),
Spencer S. N., (Ed.), ACM Press, pp. 87–96.

[WDM07] WOULFE M., DINGLIANA J., MANZKE M.:
Hardware accelerated broad phase collision detection.
In The 34th International Conference and Exhibition on

Computer Graphics and Interactive Techniques (SIG-

GRAPH 2007) (New York, USA, Aug. 2007), Alexa M.,
Finkelstein A., (Eds.), ACM SIGGRAPH.

[WSKW05] WETEKAM G., STANEKER D., KANUS U.,
WAND M.: A hardware architecture for multi-resolution
volume rendering. In Proceedings of the 2005 ACM SIG-

GRAPH/Eurographics Conference on Graphics Hard-

ware (New York, USA, July 2005), Meißner M., Schnei-
der B.-O., (Eds.), ACM Press, pp. 45–51.

[Xil] Xilinx. http://www.xilinx.com/ (Retrieved 25
September 2007).

[ZTSM05a] ZHANG L., TONGE R., SEQUEIRA D., MA-
HER M.: Method of operation for parallel LCP
solver, Aug. 2005. (International application number:
PCT/US2004/030688).

[ZTSM05b] ZHANG L., TONGE R., SEQUEIRA D., MA-
HER M.: Parallel LCP solver and system incorporat-
ing same, Aug. 2005. (International application number:
PCT/US2004/030692).

c© The Eurographics Association 2007.

Woulfe, Dingliana & Manzke / Hardware Accelerated Broad Phase Collision Detection for Realtime Simulations88

http://www.havok.com/content/view/72/57/
http://www.xilinx.com/

