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Abstract
In contrast to traditional imaging, the higher dimensionality of a light field offers directional information about the
captured intensity. This information can be leveraged to estimate the disparity of 3D points in the captured scene.
A recent approach to estimate disparities analyzes the structure tensor and evaluates the orientation on epipolar
plane images (EPIs). While the resulting disparity maps are generally satisfying, the allowed disparity range is
small and occlusion boundaries can become smeared and noisy. In this paper, we first introduce an approach to
extend the total allowed disparity range. This allows for example the investigation of camera setups with a larger
baseline, like in the Middlebury 3D light fields. Second, we introduce a method to handle the difficulties arising at
boundaries between fore- and background objects to achieve sharper edge transitions.

1. Introduction

Light field imaging takes advantage of the possibility to split
the captured light into single rays. The light field of a static
scene is described by the plenoptic function [AB91], which
assigns an intensity value to rays defined by location and di-
rection. In the case that the scene is contained entirely within
a closed 2D surface, the plenoptic function has redundant in-
formation, because the intensity along rays outside the sur-
face remains constant. Thus, the 4D function is sufficient to
describe the light field outside this surface, which was a cen-
tral idea of the Lumigraph model [LH96, GGSC96].

To capture a lumigraph, several methods have been es-
tablished in the last couple of years. Earlier approaches em-
ployed multi camera arrays [VWJL04], where several inde-
pendent cameras located on a common camera plane, cap-
ture the scene from slightly different positions. A similar
approach and less cost intensive is the acquisition of light
fields with gantries. A single camera, mounted on a gantry,
moves on a 2D plane to different positions to capture light
fields. However, this method is restricted to static scenes. Re-
cently, plenoptic cameras have become commercially avail-
able [PW10, NLB∗05, GL10], which employ multi-lens ar-
rays in front of a single sensor to obtain angular information
about the captured scene.

The transformation of the plenoptic function to a Lumi-
graph allows a wide range of applications. A major line of
research investigates light field rendering [SCK07, MB95,

KAC07], which deals with view interpolation, i.e. the gen-
eration of novel views from perspectives different from the
recorded ones. Other applications are investigated in compu-
tational photography, such as virtual refocusing and recon-
struction of occluded surfaces [VLS∗06, VGT∗05]. These
approaches also allow disparity estimation based on the di-
rectional origin of the light beams by capturing different
parts of the light field with different cameras.

Much research has also been devoted to disparity compu-
tation in the so called epipolar plane images (EPI), which
emphasize a fundamental advantage of the 4D light field
structure. Namely, a single 3D scene point is projected onto
a single line in the EPI, which can be more robustly detected
than a point correspondence [BBM87, CKS∗05].

Our proposed method builds upon the EPI-based ap-
proach of Wanner and Goldluecke [WG12]. Here, the dis-
parity is computed in the EPIs by evaluating the orientation
as seen in Figure 3 using the structure tensor, which is known
to yield robust and accurate results for orientation. However,
due to the local nature of the involved derivative filters, this
method is able to recover disparities only in a total range
of two pixels, which implies small baselines between the
cameras. Thus the depth analysis method severely restricts
the possible camera setup parameters. To estimate dispari-
ties with an arbitrary camera parameter set, the range of two
pixels is in most cases not sufficient, which we alleviate in
this work using a refocusing scheme.
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Figure 1: The above disparity maps correspond to the center
view of the Middlebury Aloe 3D (1x7) dataset. On the left
is, the global disparity map superimposed by refocusing to
several virtual depths. On the right is the result of improved
disparity estimation with applied occlusion handling.

A related approach to solve this problem is proposed
in [ZGFN08, GFM∗07]. They introduce a plane sweeping
method for multi-view stereo algorithms, which generates
depth maps for three surface-aligned sweeping directions.
The resulting depth map is a per-pixel selection of this depth
estimations, solved by a regularization using a global energy.
The proposed approach is similar to the implemented algo-
rithm in this paper, where also several local depths maps are
superimposed using an reliability measure.

Another problem appearing in light field disparity esti-
mation occurs at occlusion boundaries, which severely de-
grade the estimation of disparity values in the vicinity. This
problem increases with larger baselines and smoothing ker-
nels and becomes worse with increasing scene depth. If the
underlying light fields have restricted depth ranges and are
four-dimensional, this problem can be somewhat compen-
sated for by merging the results for horizontal and vertical
EPIs [WG12]. Datasets like the Middlebury stereo bench-
mark [SS02, SP07, SS03, HS07], however, include rendered
light fields which are only 3D, i.e. have one direction of cam-
era movement, with large baselines and a correspondingly
large disparity range. These light fields have much less in-
formation than a densely sampled 4D light field, and thus the
disparity estimation at boundaries is much more difficult.

The contribution of this paper is twofold. First, we lift the
restriction on the disparity range by refocusing the EPIs to
several virtual depth layers. and merging the results from all
independent layers into a global disparity map, see Figure 1.
Second, the proposed refocusing scheme allows to elegantly
exploit the possibility to look slightly behind objects located
in the foreground by shifting the view point. In occlusion
areas, this allows to fill in regions of depth uncertainty from
neighboring views which do not suffer from occlusion, and
thus boundary transitions become sharper, see Figure 1.

2. Local disparity estimation

We describe a light field using the standard two-plane
parametrization, see Figure 2. Rays are defined using two
parallel planes Π and Ω. The first plane Ω denotes image
coordinates (x,y) ∈ Ω. The second plane Π contains the fo-
cal points (s, t)∈Π of all cameras. An entire (gray scale) 4D
light field can thus be described by a function

L : Ω×Π→ R (s, t,x,y) 7→ L(s, t,x,y), (1)

where L(s, t,x,y) defines the intensity of the corresponding
ray defined by the intersection (x,y) with the image plane
and (s, t) with the focal plane, respectively. Disparities are
estimated locally on 2D slices Σt∗,y∗ through the 4D light
field structure, which arise from setting e.g. t to a fixed value
t∗ and y to a fixed value y∗. The restriction of L to such a
slice is called an epipolar plane image

St∗,y∗ : Σt∗,y∗ → R (2)

(x,s) 7→ St∗,y∗(x,s) := L(s, t∗,x,y∗), (3)

see Figure 3. Other slices with different fixed coordinates are
defined analogously.

The local disparity estimation computes the orientation of
lines of constant intensity in the EPI, which (for Lamber-
tian scenes) yields information about the disparity for the
respective scene point. Disparity for the complete light field
can thus be computed by considering a set of EPIs which
covers the complete ray space. However, the result can be
made more robust by using redundant information, like the
set of all horizontal and all vertical EPIs, which covers the
ray space exactly twice [WG12].

In this paper, we focus on 3D light fields, where only one
view point coordinate changes and thus epipolar plane im-
ages exist only for one focal coordinate. The following equa-
tions are specialized to 3D light fields but can be extended to
4D light fields in an obvious manner: Both EPI directions in
a 4D light field can be computed independently and super-
imposed with a coherence merge afterwards.
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Figure 2: Two-plane parametrization of a 4D light field by
coordinates (x,y) in the image plane Ω and coordinates (s, t)
the camera plane Π, which describes the projection of every
3D Point P into every camera.
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Figure 3: The shown EPIs are related to the vertical(red) and horizontal(green) lines in the corresponding images. The right
image, is focused on a virtual depth Z1 and the left image is focused on a virtual depth Z2. Objects placed at the focused
depth have vertical orientations in the horizonal EPI and horizontal orientation vertical EPI. The left image is focused on the
foreground and the right on the background.

3. Global disparity estimation

The local disparity estimation based on a structure tensor de-
livers reliable solutions only within a two pixel range, since
the underlying computation of the derivatives is based on a
Scharr filter. The 3×3 kernel size of the Scharr filter restricts
the range in which the estimation is possible. All lines corre-
sponding to a scene point with an absolute disparity of more
than one pixel cannot be detected properly since consecutive
pixels belonging to the line do not fit in the filter window
anymore. While the estimation of disparities larger than one
pixel is still possible because of the pre-smoothing of the im-
age with a Gaussian kernel, the error increases drastically,
see Figure 4.
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Figure 4: The disparity estimation error of the disparity in-
creases drastically for disparities more than 1 pixel. Plotted
on the abscissa is the ground truth disparity and on the or-
dinate the estimated disparity.

3.1. Refocusing

To solve this problem and get a higher reliability in the es-
timated disparity, we propose to refocus the EPIs, see Fig-
ure 3. The refocusing process references every EPI to a vir-
tual depth layer

Zi ∈ {Z1, ...,ZN |Z1 < ... < ZN}, (4)

which is selected from a set of N predefined depth levels
covering the scene.

To refocus onto the virtual depth Zi, we need to translate
the depth information to a disparity shift in every single EPI.
For this, we select a reference view (sre f , tre f ) ∈ Π, which
is in this paper always assumed to be the center view. Some
EPIs for different refocused depths are shown in Figure 5.

For the sake of simplicity, we also assume a symmet-
ric setup in the sense that every camera has the same focal
length f and the same baseline ∆s with respect to the neigh-
bouring views. The resulting disparity shift ∆x(s) related to
the virtual depth Zi is defined as

∆x(s) := (sre f − s)
∆s
Zi

f . (5)

We now define the shifted EPI Ŝi
t∗,y∗ transformed with

respect to the virtual depth Zi as

Ŝi
t∗,y∗ : Σt∗,y∗ → R (6)

(x,s) 7→ Ŝi
t∗,y∗(x,s) := L(s, t∗,x+∆x(s),y∗) (7)

The refocusing on a different virtual depth Zi influences
the orientation of the structures in the EPI, see Figure 3. As
one can see, some regions which had disparities outside of
the two pixel range are now in vertical orientation, i.e. in fo-
cus. In contrast, previously vertically oriented regions now
have orientations out of the two pixel range. The orientation
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Figure 5: Above is shown the refocusing process to three different virtual depths Z1,Z2,Z3 with Z1 < Z2 < Z3. The top image,
focused on Z1 has only orientations towards the left, no object is in focus. The middle image, focused on Z2, has vertical lines for
objects located at the selected depth. The bottom image is focused on Z3. Object which where focused on Z2 are now oriented
towards the right and the background object, located at Z3, is now in focus.

of the new in focus regions can now be estimated more re-
liably than in not focused cases. It remains to be shown is
how to superimpose the several orientation estimates from
different focus planes using a reliability measure for every
refocused EPI.

3.2. Superimposing to a global disparity map

Disparities are computed by analyzing the structure ten-
sor JŜi

of a refocused EPI Ŝi
t∗,y∗ . It is defined as

Ji = τ∗


(

∂Ŝi
∂x

)2
∂Ŝi
∂x ·

∂Ŝi
∂s

∂Ŝi
∂s ·

∂Ŝi
∂x

(
∂Ŝi
∂s

)2

=:
(

Jxx Jxs
Jxs Jss

)
(8)

with the abbreviation

Ŝi := σ∗ Ŝi
t∗,y∗ . (9)

Above, σ is a Gaussian smoothing kernel called the inner
kernel, which is applied to the EPI, while τ is another Gaus-
sian smoothing kernel caller the outer kernel, which is ap-
plied component-wise to the derivative tensor.

The reconstructed local disparity map Di can be com-
puted from the structure tensors Ji using the formulas given
in [WG13],

Di = tan
(

1
2

arctan
(

Jxx− Jss

2Jxs

))
. (10)

As a reliability measure to assess the quality of the estimated
disparities, we use the coherence of the structure tensor Ji as
described in [BG87]

ri :=

√
(Jxx− Jss)2 +4(Jxs)2

(Jxx + Jss)2 . (11)

This reliability measure defines how distinct the underlying
structure is, and is a good estimate for the accuracy of the
resulting disparity value.

The disparity map Di constructed for this fixed EPI at co-
ordinates t∗,y∗ contributes a single line to the global dispar-
ity maps for each view s, t∗. A sensible way to construct the

global disparity maps Ds,t∗ is to superimpose all local dis-
parity maps Di based on the corresponding coherence maps,
and select the estimate with highest reliability. In formulas,

Ds,t∗(x,y
∗) = DI(x,s)(x,s) (12)

rs,t∗(x,y
∗) = rI(x,s)(x,s), (13)

where the index I(x,s) of highest reliability at each EPI co-
ordinate is given by

I(x,s) = argmax
i
{ri(x,s)}. (14)

An example for a resulting global coherence map rs∗,t∗ for
the center view can be observed in Figure 7. The resulting
global disparity map Ds∗,t∗ corresponding to the center view

Figure 7: The disparity estimation to the middle image
seen in figure 6 reveals that at boundaries the estimation
looks smoothed and noisy. This effects can also be seen in
the corresponding coherence map. Estimations in noisy re-
gions especially around boundaries have low coherence val-
ues shown as black spots.
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Figure 6: Results for the Aloe Vera plant of the Middlebury dataset. This 3D light field contains seven images. Shown are from
the left to the right the disparity maps of the second,fourth and sixth image. All disparity maps are equally aligned, but differs
in the behavior at boundaries.

is depicted in the center image of Figure 6. The results reveal
an occlusion problem which mostly appears in images with
a large baseline where objects are located close to the cam-
era. These setups mostly result in disparities larger than 2
pixels. Transitions between foreground and background then
appear smeared and noisy around the boundaries of objects
in a range of the underlying object disparity between two
neighboring views.

4. Boundary behavior in global disparity estimation

A larger disparity range in the EPI has negative impact on
the accuracy of the boundaries because occlusion effects be-
come stronger. Furthermore, larger smoothing kernels result-
ing in more robust reconstructions, but decrease the sharp-
ness of the boundary transitions in the same time, see the
center image of Figure 6. Here, the boundary between the
object and background is not very clearly defined. However,
the inaccuracy of the transitions can also be observed in the
coherence map of the related view, see Figure 7. This cor-
relation between the disparity estimation and the coherence
map can be leveraged to handle the occlusion problem.

Refocusing on different virtual depth levels has the prop-
erty that except for the reference view, the direct correspon-
dence between cameras and disparity maps is lost. This ef-
fect occurs because objects close to the camera reach at first
disparity estimations with high coherence values. With an re-
striction of the maximal allowed angle to less than 45 degree
this values mostly belong to orientations close to zero. Thus,
once the disparity values reaches a high coherence value it
stays for the remaining global disparity estimation.
This effect is demonstrated in Figure 8, where two EPIs
focused on different virtual depth are superimposed into a
global EPI structure. The resulting global disparity maps for

each view in a 3D light field show the same disparity maps
just with different boundary behaviors.

In a 4D light field, this also happens with respect to
the reference view, which usually is the center view of the
4D light field. From every view position around the refer-
ence view, we can see slightly behind objects located in the
foreground. This makes it feasible to locate disparity transi-
tions exactly on the correct object boundaries, as described
in the following.

4.1. Occlusion handling by superimposing global
disparity maps

The global disparity maps Ds,t shown in Figure 6 depict the
center view and two neighbor views. The location of the ob-
ject in the disparity maps remains always the same as in the
center view, however, the inaccuracies at the boundary tran-
sition differ substantially. The right image has sharp transi-
tions on the left side of the boundary, while the image on the
left has sharp transitions on the right side of the boundary.

The corresponding coherence maps fortunately again al-
low to distinguish good from bad disparity estimates, as co-
herence values are high exactly for those views where there
is a sharp transition.

We therefore describe the final superposition D(x,y) of
the different global disparity maps as

D(x,y) = Dsopt ,t∗(x,y) (15)

with Ds,t∗ and rs,t∗ defined in equation (12), and

sopt = argmax
s
{rsopt ,t∗(x,y)}, (16)

which again selects the estimate with the highest coherence
from all candidate estimates.
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focused foreground focused background

superimposed EPIV

V

Figure 8: Shown are two EPIs focused on different depth level. The right EPI shows structures focused on an object in the
background. The left EPI shows structures focused on an object in the foreground. The superimposed EPI constructed by a a
coherence based merge of both views, reveals for views beside the center view sharp boundary transition at respectively one
side.

For the sake of simplicity of equations, the superposition
is only shown for 3D light fields. For 4D light fields, the
computation can be adapted in a straight-forward manner
by computing both EPI directions independently and then
choosing the estimate with optimum coherence from both
results.

5. Results

The proposed algorithm is tested on several different 3D
Middlebury datasets, each containing seven images captured
in a row with constant baseline. The Middlebury dataset also
provides one 4D light field called "Tsukuba". We also eval-
uate our algorithm to this dataset to be able to compare the
result with the provided ground truth data for the center view.
The computed results to the 3D light fields of the Middlebury
database can be seen in Figure 10. The image row on the left
side show the center view images of the datasets we want to
evaluate. All the shown results are obtained by refocusing to
several virtual depths.

The occlusion problem is visible in the center column.
Boundaries appear smeared and noisy.
In contrast, the right column shows the result we obtain with
occlusion handling. The boundaries between fore- and back-
ground are sharper, less noisy and a reduction of the noise
ratio is also visible. The light field evaluation shows similar
results but has its general advantages in 4D light fields. The
evaluation to the Tsukuba dataset is seen in Figure 9. The
computed mean square error compared to the ground truth
data is 2.45 pixel.
The solution of the middlebury dataset "Tsukuba" is been
compared to the solution of a multi-view stereo algorithm.
The used algorithm is a straight-forward stereo algorithm
described in [WG13], where a local stereo matching cost
function is computed for the single views. The cost func-
tion can then be used, integrated into a global energy func-
tional, which is solved to global optimality using the method
in [PCBC10].

6. Conclusion

We proposed a method to extend the feasible disparity range
of an EPI-based disparity reconstruction method [WG12] by
refocusing the light field to several different depth levels. In
contrast to the previous approach, this makes it possible to
evaluate light field setups with large baselines and objects
placed closely in front of the camera. Another advantage we
gain by refocusing is the possibility of handling occlusions
by superimposing several views. Merging the neighboring
views at occluded regions into the center view visibly sharp-
ens the edge transitions and reduces the noise in the whole
image. The results for 3D light fields show that disparity esti-
mation works well even for only one dimensional view point
changes and for large baselines.
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Figure 10: Results for the Middlebury 3D light field datasets. The first column shows the original center view of the light field.
The second column shows the global disparity maps computed by refocusing to several virtual depth layers. In the third column,
we see the global disparity maps with occlusion handling.
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