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Abstract
We introduce an approach for the continuous deformation of implicit surfaces which considers properties of all
isosurfaces of a volume data set simultaneously. This is achieved by integrating divergence-free vector fields
which is carried out by an efficient backward Lagrangian integration scheme. Our deformation guarantees volume
preservation inside each isosurface as well as the preservation of continuity and topology of every isosurface. For
visualization and interaction, we offer a real-time mode that allows interactive working on the resolution of the
underlying volumetric grid as well as a grid resolution independent mode offering exact extraction of arbitrary
isosurfaces. We apply the approach to the deformation of measured volume data sets as well as to the design of
complex implicit shapes with a simple pre-defined topology.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Shape deformations are a standard problem in computer
graphics. Shapes are usually given as surfaces, either in an
explicit (e.g., as triangular mesh or as parametric surface) or
an implicit form. Most of the existing approaches consider
deformations of explicit surfaces. However, there are also a
number of approaches for implicit surfaces which mostly fo-
cus on deforming one single isosurface.

Volume data, or more generally scalar fields, contain
much more information than just one isosurface. In fact,
there is a whole family of isosurfaces which may repre-
sent different kinds of information: in CT or MRI data from
medical imaging applications, different isosurfaces describe
transitions between different materials (like bone, tissue, or
air), in other applications different isosurfaces may contain
distance information to a particular isosurface of interest.
Generally, for most volume data sets there is more than a
single isosurface of interest.

If one is interested in the deformation of one particular
isosurface, a generic solution is to extract it, then apply an
explicit deformation, and finally perform an implicitation.
Such an approach does not regard any volumetric informa-
tion except for the location of one isosurface. However, if the
complete volume is of interest, a good deformation should
incorporate the whole field, i.e., it should take care of the

shape of all isosurfaces. This paper presents a new approach
to such deformations. The deformation is defined by a path-
line integration of a constructed divergence-free vector field
and has the following properties: the volume inside each iso-
surface is preserved during the deformation, no isosurface
changes its topology, no new critical points of the volume
data set appear or disappear, and a C1 continuity of the iso-
surfaces is preserved during the deformation. The desired
volume preservation is justified by the fact that many ma-
terials in nature preserve their volume under deformation.
At the same time, topology preservation allows to construct
complicated shapes with a pre-defined simple topology.

The deformation is computed numerically by an efficient
backward Lagrangian integration scheme. For interactive
real-time modeling we visualize isosurfaces on the grid of
the underlying volume data set. In addition, an exact recon-
struction can be used to retrieve an arbitrary isosurface with
exact topology and high accuracy. We apply our technique
to deform volume data sets and to model complex families
of isosurfaces with a pre-defined simple topology.

The main contribution of the paper is the introduction of a
volume deformation approach which preserves the volume,
continuity and topology of every isosurface. To carry out the
deformation, we introduce a backward Lagrangian integra-
tion scheme.
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2. Related work

There are many approaches to shape modeling and deforma-
tion in computer graphics, and consequently there is a huge
body of literature as well as a significant amount of ongo-
ing research activity. In this section we briefly review related
work focussing on volumetric modeling and implicit surface
deformation as well as approaches which guarantee volume
preservation.

The vast majority of deformation methods acts on ex-
plicit surfaces. Here, piecewise representations, especially
triangle meshes (or more generally polygonal surfaces) and
point-based models have emerged as de facto standard for
shape models, and there exist a great variety of deformation
methods. There are two general approaches to deforming
explicit shapes: surface-based deformations and space de-
formations. Surface-based deformations act directly on the
surface model. As we do not address surface-based defor-
mations in this paper, we refer to the recent survey of Botsch
and Sorkine [BS08] and the references therein. In contrast to
surface-based deformations, space deformations pioneered
by Sederberg and Parry [SP86] establish a mapping from
the domain onto a warped space. Thus any shape embedded
in the original domain can be mapped to a deformed ver-
sion. For a detailed overview and further references we refer
to [MJBF02] and the survey [GB08]. Furthermore, there are
various hybrid methods (see, e.g., [Coh09]).

There are numerous tasks in computer graphics and ge-
ometry processing that are performed more easily on im-
plicit surfaces rather than on explicit models: for instance,
changes in surface topology are generally simpler, or self-
intersections are avoided by construction. However, there
is significantly fewer work on deformation of implicit sur-
faces than for the explicit case. Closely related are volume
deformations, which are often modeled by a space defor-
mation. For instance, in medical applications this includes
non-rigid registration of data sets. Often the data describes
certain material properties, like soft-tissue, and manipula-
tions are required to be physically-based. We refer to the
survey [CCI∗07] for a general and broad review of volume
deformations with a discussion on various data representa-
tions and applications.

Several classical approaches to modeling with isosur-
faces are based on level set methods [OF01]. Museth et
al. [MBWB02] define shape editing operations for smooth-
ing, offsetting, and blending. Desbrun and Cani [DCG98]
use a level set approach to define active implicit surfaces
inspired by geometric snakes. Level set methods focused
on explicitly handling topology preservation were presented
in [AS05]. As these approaches act only on a particular iso-
surface, computations can be limited to a narrow band of the
scalar fields. Various other approaches are physically plau-
sible and employ particle systems and a Lagrangian inte-
gration scheme to simulate and animate surface material. In
computer graphics this was pioneered by Desbrun and Cani-

Gascuel [DG95] who minimize local volume variations. An-
other potential goal for such approaches is emulating virtual
clay [MQW01,CA06]. Alternative sculpting methods imple-
ment virtual carving operations [PF01] based on adaptive
distance fields [FPRJ00]. Yet a different approach to volume
deformation consists in simulating networks of geometric
primitives, e.g., using a chain mail analogy [Gib97] (efficient
GPU-based variants are presented in [SBH07, RWE08]). A
crucial aspect of any deformation method is interactivity: the
user requires real-time feedback. The use of modern graph-
ics hardware can speed up computations enormously or is
even mandatory to achieve interactive frame rates on vol-
ume data [RSSG01,WR01,GW06], see also [HKRW06] for
an overview.

Finally, we emphasize deformation methods which are
designed to guarantee volume preservation globally. Con-
trary to our work, all these approaches act on explicit
surfaces. Angelidis et al. [AWC04] define space deforma-
tions by sweeps of shapes which serve as tools. While
the focus here lies on avoiding fold-overs, the same au-
thors develop a variant based on volume preserving swirls
[ACWK04], which also preserves global volume. Von Funck
et al. [vFTS06, vFTS07] apply divergence-free vector fields
which define the trajectories of vertices deforming an ex-
plicit surface. This approach is volume preserving by con-
struction.

3. Approach

Given an initial 3D scalar field s0(x) over a spatial domain D,
we consider a continuous deformation over time as finding a
time-dependent scalar field s(x, t) with s(x, t0) = s0(x). We
define the deformation by a 3D time-dependent vector field
v(x, t) describing the transport of the isosurfaces over time.
We use the concept of a flow map φ of v which is the map
from the point where a massless particle is seeded at time
t to the point where it is located at time τ under a pathline
integration of v:

φ
τ
t (x) = x+

∫ τ

t
v(x,u) du.

Given s0 and v, finding the deformation s means to solve the
PDE

∂s
∂t

=− (∇s)T v , s(x, t0) = s0(x) (1)

where ∇ describes the (spatial) gradient. Equation (1) is
known as the fundamental level set equation [OF01], the so-
lution is an initial value problem.

There are a variety of approaches to solve (1) which are
based on a discretization of s and v in both, space and time
[OF02]. Eulerian integration schemes compute s at a time
step ti from s and v at the time ti−1 regarding only specific
locations, e.g., grid points. Lagrangian schemes follow the
trajectories of particles forward over all time steps, while
Semi-Lagrangian integration techniques evaluate s at time

c© The Eurographics Association 2010.

220



J. Martinez Esturo, C. Rössl, and H. Theisel / Continuous Deformations of Implicit Surfaces

Figure 1: Semi-Lagrangian (left) versus backward La-
grangian scheme (right). Both schemes update s at
grid points by integrating backward in time. The Semi-
Lagrangian scheme, however, does this for each step. In our
setting we can apply a fully backward Lagrangian scheme,
which requires only a single evaluation (interpolation) of s
at t0. The scheme is simpler, more efficient and more accu-
rate.

ti by a single backward integration step of v. Furthermore,
there are hybrid schemes incorporating particle integrations
to correct errors in the (Eulerian) integration of the PDE (1).

Eulerian schemes often suffer from stability problems
as they are only conditionally stable. A common problem
with fully Lagrangian schemes is a faithful reconstruction
of s since the final particle distribution may be highly non-
uniform. This is why Semi-Lagrangian schemes are often
preferred (e.g., in fluid simulation [Sta99]). They ensure re-
construction by choosing grid points as evaluation points
thus reverting to the spatial grid after each time step.

For our application we can rely on a much simpler in-
tegration scheme: a backward Lagrangian integration. Note
that standard methods to solve (1) coming from level set the-
ory and numerical flow simulation often assume that v and s
are not independent. In fact, usually the definition of v incor-
porates local components of s such as its gradient, Hessian,
or Gaussian and mean curvature of its isosurfaces, leading
to the fact that v at a time ti is not known until s has been
computed in ti. This is not the case for our approach: we de-
fine v independently of s. This allows for using a backward
Lagrangian scheme to solve (1): the scalar value at a time t
is obtained by a complete pathline integration back until t0:

s(x, t) = s0(φ
t0
t (x)). (2)

This is illustrated in Figure 1. Note that for computing s(x, t),
it is not necessary to compute s at any intermediate time
steps between t0 and t. There are two main benefits of the
backward Lagrangian scheme: firstly, improved accuracy as
we do not suffer from interpolation artifacts that occur for
a Semi-Lagrangian scheme – the scalar field s is evaluated
only once at t0. Secondly, integration involves fewer data and
fewer operations and can be implemented more efficiently.

3.1. Properties of the deformation

Let v be a C1 continuous vector field over D with the follow-
ing properties:

• local support: v is non-zero only in some inner region of
D (it is constantly zero at the boundary of D);

• boundedness: ‖v‖ and ‖∇v‖ do not diverge to infinity at
any location in D;

• v is divergence-free.

Then the deformation s defined by (2) has the following
properties:

(a) s is volume preserving: the volume inside every isosur-
face remains constant under the deformation;

(b) s is continuity preserving: if s0 is C1 continuous then s
is C1 as well.

(c) s is topology preserving: no isosurface changes its topol-
ogy during the deformation.

Property (a) follows directly from the definition of diver-
gence of vector fields [Dav67]. Property (b) has been proven
in [vFTS06] for explicit surfaces, the same proof holds for
implicit surfaces as well.

Regarding property (c), we realize that a topology change
requires a critical point of s, i.e., we can rephrase this prop-
erty as follows: no critical points can appear or disappear
during the deformation. All critical points of s are obtained
by integrating the critical points of s0. We note that a point
is a critical point iff∇s is vanishing. In order to prove prop-
erty (c) we observe how∇s is changing under integration of
v over time:

∂(∇s)
∂τ

= lim
τ→t

∇s(φτ
t (x),τ)−∇s(x, t)

τ− t
=

∂(∇s)
∂t

+H(s) v ,

(3)
where H(s) denotes the Hessian of s. We rewrite the PDE
(1) in matrix notation as(

(∇s)T ∂s
∂t

)( v
1

)
= 0 . (4)

Then computing the gradient of (4) by applying the product
rule gives(

H(s) ∂(∇s)
∂t

)( v
1

)
+
(
∇(vT ) 0

)( ∇s
∂s
∂t

)
= 0

where ∇(vT ) is the transposed Jacobian matrix of v. Evalu-
ation of the terms and comparison with (3) yields

∂(∇s)
∂τ

=−∇(vT ) ·∇s. (5)

Equation (5) states that if we are at a critical point of s (i.e.,
∇s = 0), it remains a critical point under the integration
of v (i.e., ∂(∇s)

∂τ
= 0). Conversely, for a non-critical point,

∇s cannot vanish during the integration of v as otherwise a
backward integration starting from the critical point would
violate the previous statement.

3.2. Defining the vector field v

The divergence-free vector field v steers the deformation. Its
definition is not a contribution of this paper, since we use

c© The Eurographics Association 2010.

221



J. Martinez Esturo, C. Rössl, and H. Theisel / Continuous Deformations of Implicit Surfaces

the method presented in [vFTS06] which defines deforma-
tions of explicit shapes (represented as triangular meshes)
by vector field integration. For the sake of completeness we
provide a brief review: essentially, the definition of v is an
interactive process, where v is defined by three scalar fields
e(x, t), f (x, t), r(x, t) and two thresholds ri, ro. The region
field r and thresholds ri and ro define an inner region of full
deformation, a blended intermediate region, and a region of
zero deformation. The full deformation is defined by scalar
fields p and q as

v =∇p×∇q

with

p(x) =


e(x) if r(x)≤ ri

(1−b)e(x) if ri < r(x)≤ ro

0 if ro < r(x)
,

q(x) =


f (x) if r(x)≤ ri

(1−b) f (x) if ri < r(x)≤ ro

0 if ro < r(x)
,

and b = b(r(x)) is a polynomial blending function with
b(ri) = 0, b(ro) = 1 and db

dr (ri) =
db
dr (ro) =

d2b
dr2 (ri) = 0

represented in Bernstein-Bézier form. Vector fields v con-
structed this way are guaranteed to be divergence-free.

3.3. Deformation types

With the choice of the scalar fields e, f , and r we can de-
fine different types of deformations. Since our approach does
not focus on a particular isosurface, e, f ,r should be cho-
sen to act on a family of isosurfaces simultaneously. For
this purpose we adapt the approach presented in [vFTS07],
which uses a spatial curve that guides the deformation, to our
setting of deforming a family of implicit surfaces: the user
specifies r(x, t0),ri,ro and a curve p(t) with r(p(t0), t0)≤ ri
interactively. The region field r and threshold ri,ro define
the regions of full deformations, and p describes the path of
the inner region over time. This can be imagined as sweep-
ing a deformation tool with local support along p. Defining
N(t) = (t(t), n(t), b(t)) as the moving normalized Frenet
frame of p, we get

r(x, t) = r( p(t0)+N(t0) N(t)T (x−p(t)) , t0) ,

and e, f describe a translation in the direction ṗ:

e = nT (x−p) and f = ||ṗ|| bT (x−p).

Optionally, we allow a rotation around an axis given by a
center c and a direction d:

e = dT (x− c) and f = ||d× (x− c)||2 .

Figure 2 illustrates two examples: a translation in the inner
region following a curve p (left), and a subsequent rotation
around an axis through the red center (right).

Figure 2: Simple deformations. Example for translation
along a curve (left) followed by multiple rotations (right).
Inner region and intermediate region are colored red and
green, respectively. For each case two deformed isosurfaces
are shown.

4. Implementation

In this Section we describe the implementation of our ap-
proach. Generally, we discretize scalar fields on uniform
grids, and we use a tricubic C1 interpolation for evaluation
of function values and gradients. For pathline integration we
apply a fourth order Runge-Kutta scheme with adaptive step
size control (see, e.g., [PTVF07]).

4.1. User interface and real-time visualization

The user first loads an initial scalar field which is uploaded
to the GPU. Then she can set parameters of the tool inter-
actively, e.g., type of deformation, region fields, etc., and
perform sweeps in real-time. A particular isosurface is dis-
played for interactive modeling, the isovalue can be varied
freely. In our experiments this choice has shown to be more
intuitive than a more general real-time volume rendering ap-
proach (see, e.g., [HKRW06] for an overview). The visual-
ization uses a real-time GPU version of the marching cubes
algorithm based on histogram pyramids [DZTS08], which
does not show any significant impact on run time of the main
algorithm in all our experiments. Marching cubes is per-
formed only if either the scalar field or the isovalue changes,
and the result is saved into a vertex buffer.

4.2. Interactive scalar field manipulation

In all our examples we use a grid resolution of 2563. The
maximum resolution is mainly limited by available mem-
ory as the whole field is required to persist in GPU memory
for visualization. We remark that an out-of-core implemen-
tation of our general approach is straightforward, currently
it is the marching cubes visualization which requires that all
data persists on the GPU. For the deformation approach it-
self we use s and a temporary buffer with size of the region
of interest on the GPU. Both, pathline integration and scalar
field interpolation are performed by the GPU.

Deformations are specified as control points of the sweep
curve p together with additional properties such as region
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fields. Deformations can be extended by editing the current
curves and adding new ones interactively, restriction pro-
vides an undo functionality. The associated parameter sets
are sent to the GPU, their memory footprint is not signifi-
cant. When evaluating v, we exploit the fact that the indi-
vidual operations have local support, i.e., v is non-zero only
within a region of interest and can therefore be evaluated on
a smaller grid.

For practical real-time editing we relax the integration
scheme slightly using intermediate results: we partition a
sweep along the guiding curve p (see Section 3.3) into time
intervals, each of which describes a partial modification.
From the arising series of modified scalar fields only the
most recent scalar field is stored in a GPU buffer of con-
stant size. This means that we do not integrate all way back
to t0 but only to the last interval bound. However, each
edit still comprises a significant time interval and potentially
many integration steps – we are not switching to a Semi-
Lagrangian scheme. We use this compromise of buffering
intermediate edits to balance accuracy and efficiency. This
way we save on the integration process with shorter time in-
tervals that only reach back to the previous partial edit, and
we can guarantee real-time response. The price is a slight
loss of accuracy due to interpolation of intermediate data.
Of course we can control granularity of time intervals, and
we can even invest some extra time and do a full pathline
back integration to t0 at any time to visualize a better ap-
proximation.

4.3. Offline high-quality isosurface extraction

The quality of the rendered isosurfaces depends on the grid
resolution for the marching cubes algorithm. We use the
same resolution as for computation of s(t) and are generally
limited by GPU memory. While this is acceptable for real-
time visualization, it is evident that artifacts show up when-
ever the sampling rate becomes too low depending on the
particular isovalue (see Figure 5 (a)). This is not a failure of
our method but a failure of reconstruction. To show this we
extract high-quality isosurfaces using the surface meshing
routines provided by the CGAL library [CGA09]. We chose
this library because the underlying adaptive meshing algo-
rithm [BO05] is extremely robust and produces highly accu-
rate triangulations of the isosurface. Even extreme examples
with near overlapping surface parts are reconstructed faith-
fully, see Figure 5 (b-d). The high-quality isosurfaces are
extracted at the cost of using a sequential CPU implementa-
tion that takes the recorded parameter sets as input and inte-
grates the pathlines. We note that this is inherently a sequen-
tial process: the meshing algorithm does not have enough
information of the surface and treats evaluation as a black-
box component, the so called oracle. We do not have any
influence on location and order of evaluation points, which
seem highly non-uniform. As a consequence this is clearly
an off-line process. We observed that sampling s(t) on a uni-

Figure 3: Volume preservation for a randomly deformed
sphere. The top figure shows the evaluation of the volume Vt
of the deformed sphere and the original sphere (V0 = 4πk3)
plotted over varying isovalues r (radii). The curves are
nearly identical. The bottom figure shows the relative dif-
ference. Two particular isosurfaces of the deformed sphere
are shown on the right for isovalues r0 and r1.

form grid and using the CGAL surface mesher on this as
input provides a significantly more efficient and fairly accu-
rate reconstruction. However, this compromise is less exact
and depends on the sampling rate.

5. Analysis

In this Section we analyze properties of our approach and its
implementation in practice.

Volume Preservation. We compare the volume of de-
formed isosurfaces to ground truth. Even though the vol-
umes are computed from meshes output by marching cubes
our experiments confirm volume preservation. Figure 3 plots
volume over isovalues for an initial sphere and a randomly
deformed version (see isosurfaces corresponding to r0, r1).
The relative error is low even though reconstruction artifacts
come into play for smaller isovalues. Figure 4 shows a sim-
ilar experiment for few isovalues and again surface triangu-
lations from marching cubes for t0 and two particular time
steps. Again errors are not significant.

Accuracy of reconstruction. The static grid of the GPU
implementation may lead to undersampling artifacts. For all
our experiments, we could extract high-quality surfaces with
correct topology and without any self-intersections. Figure 5
compares marching cubes to reconstruction with [BO05] and
shows extreme configurations with regions of the isosur-
faces getting very close to each other. The volume variation
of all shown high-quality reconstructions was always below
0.01%.

Topology preservation. Figure 6 shows two isosurfaces for
an extreme deformation of a double torus. The isosurfaces
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Figure 4: Volume preservation. Three isosurfaces for isoval-
ues k are shown at time t0, t1, t2 of an interactive modeling
session and marching cubes reconstruction. The variation of
their volume V is low even for extreme deformations.

Figure 5: Comparison of different isosurface reconstruc-
tions. (a) An extreme deformation leads to artifacts for
marching cubes reconstructions during interactive model-
ing. (b) The same surface reconstructed exactly. Two (d)
and three (c) interfaces getting close to each other are re-
constructed correctly.

have different topology – a single genus-2 surface and two
disconnected genus-0 surfaces – at t0, and their topology
is preserved over the whole deformation. In fact, topology
preservation proved in Section 3.1 was confirmed by all our
experiments (disregarding artifacts from marching cubes).

Performance. We implemented our approach using
NVIDIA’s CUDA interface. All timings are measured for a
NVIDIA GTX280 GPU with 1GB memory and an AMD
Opteron processor at 2.6GHz. Figure 7 summarizes integra-
tion and interpolation timings. The processing time of cubic
interpolation is negligible. Numerical pathline integration
is the most time consuming part of our algorithm. The
average number of adaptive integration steps is 64 in all our
examples. Typically we observe numbers of seven (Figure 5

Figure 6: Topology preservation. A double torus (transpar-
ent blue) was deformed from its right to its left handle. The
deformation preserves its genus-2 topology. At the same time
the topology of an inscribed unconnected isosurfaces with
lower isovalues (solid red) remains unchanged. (Figure 5 (c)
shows a comparable closeup of the blue isosurface using ex-
act reconstruction.)

0.010.01

0.020.01

0.050.04

0.040.03

0.96 1.36 2.16 0.87 1.21 1.81

1.55 1.872.41 2.15 3.654.62

7.42 13.74 26.41 6.12 11.16 21.42

48.55 92.63 180.9764.65 125.28 247.71

Figure 7: Timings (in ms) for N GPU pathline integrations
with h average integration steps each (left) and N scalar field
interpolations (right).

(a)) up to 250 (Figure 8 (right)) time steps when using
intermediate scalar fields. This confirms that even numbers
of 106 pathlines can be handled efficiently. The main reason
is that no time consuming vector field lookup into texture
space is required as our vector fields are parameterized and
evaluated in closed form. Finally, we remark that a full
backward integration is more expensive and corresponds
to a sum over all time steps back to t0, for most of our
examples this is in the order of 1000 steps in total. A
single marching cubes surface reconstruction took 14ms on
average depending on the number of occupied voxels.

High quality reconstruction is an off-line process. Recon-
struction time for the double torus and torus models in Fig-
ure 8 was 656 seconds and 843 seconds, respectively. Re-
construction of the Medusa head required 24 minutes.

6. Applications

Designing smooth surfaces from scratch. Our approach
can be used for general modeling of smooth isosurfaces
starting from a smooth field, e.g., representing a fam-
ily of spheres. The volume preservation property mimics
Plasticine-like materials plausibly and hence leads to a natu-
ral object behavior and intuitive editing. In addition, constant
topology is guaranteed for correct results. As a remarkable
feature these two properties are satisfied not only for a single
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Figure 8: Faces of different topology. Isosurfaces of three modified scalar fields. The left and center pairs of images show two
isosurfaces of the same scalar field: all isosurfaces are deformed simultaneously while their volume and topology are preserved.

Figure 9: Volume rendering of original (left) and deformed
(right) bonsai data set.

isosurface of interest but for all isosurfaces, i.e., the deforma-
tion acts on a family of surfaces. Figure 8 shows examples
that were modeled in 3− 20 minutes by an inexperienced
user.

Interactive deformation of volume data. Volume preserv-
ing deformations of a single isosurface result in modifica-
tions of all isosurfaces within the inner and blended region
fields. Figure 9 shows a deformation of the bonsai data set,
where the tool was swept near the trunk.

7. Discussion

In this Section we give a comparison of our approach to ex-
isting ones.

There are a number of approaches for deforming implicit
surfaces, among them some aiming at the preservation of
the volume inside a particular isosurface [CA06]. However,
to the best of our knowledge, our approach is the first one
which preserves the volume of all of isosurfaces. Also, topol-
ogy preservation of all isosurfaces is not addressed so far.

In comparison to other real-time volume deformation
techniques [RSSG01, WR01, SBH07] our approach allows
for stronger and more localized deformations, also volume
and topology preservation is not addressed there.

The approaches closest to us are [vFTS06,vFTS07] which
define deformations by vector field integration as well. Con-
trary to us, they work only on one explicit surface, and they
apply a forward integration of mesh vertices.

In volume modeling, a popular classification of ap-

proaches distinguishes physically based and non-physically
based. Our approach lies between these classes: although it
is not explicitly physically based, volume preservation is a
physically justified property for many materials.

In comparison to well-established integration techniques
for level sets, our approach applies a backward Lagrangian
integration scheme which cannot be applied to general level
sets due to the dependencies of the level sets and the steering
field.

Our approach has the following limitations:

Although the volume preservation appears to be natural
condition for plausible deformations, there are applications
where volume preservation does not hold. For example, the
growing of a tumor in a medical volume data set cannot be
addressed by our approach.

Since we consider the whole volume, well-established de-
formation tools which focus on a particular surface do not fit
into our approach. This includes sculpting techniques like
cutting or carving [PF01] as well as volumetric copy and
paste techniques [MBWB02].

Since our technique only incorporates the volume of the
isosurfaces, metric distortion of an isosurface is not ad-
dressed. Moreover, analytically represented implicit surfaces
can not be deformed exactly by the integration scheme with-
out discretizing the defining function.

The limitations mentioned above are inherent to our ap-
proach. In addition, there are algorithmic limitations which
can be addressed in future research: the fixed grid resolu-
tion of the volume data is a compromise between interactive
performance and accuracy and is limited by GPU memory.
This also naturally limits the spacial extents of the domain,
and artifacts may appear for isosurfaces near grid boundaries
unless special care is taken. Additionally due to reconstruc-
tion artifacts topology preservation may appear corrupted
for real-time visualization. Hardware accelerated adaptive
grids are a candidate for improvement here. Finally, more
advanced deformation tools can be developed. In principle,
different choices of the fields e, f ,r which stay independent
of the underlying scalar field allow for customized tools, but
this depends on and has to be set for different application
scenarios.
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