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Abstract

This paper presents a fast simulation method for turbulent flow which uses a particle method and wavelet analysis.

To simulate fluid flow, the method uses smoothed particle hydrodynamics (SPH), which discretizes the fluid into

a collection of particles, and detects regions where turbulent flow will occur by using wavelet analysis without a

spatial grid. By taking the curl of wavelet noise, the turbulent flow is then appended as a divergence-free turbulence

velocity field. Additionally, by using vortex subparticles, which characterize the vortex features of turbulence, a

subparticle-scale representation of turbulent flow is proposed. Implementing almost all processes on a graphics

processing unit (GPU), simulations are performed in near real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

1. Introduction

Fluid simulation is widely being used to model complex
fluid phenomena for computer graphics animation. However,
most previously developed methods have targeted laminar
flow in which the fluid moves in a regular way. Conversely,
turbulent flow is unsteady, irregular, and chaotic, and can be
observed everyday in our surroundings: for example, smoke
from a chimney and water in a river, waterfall, or large ocean
wave. Currently, most simulation methods for turbulent flow
tend to be time consuming, and the chaotic aspect of turbu-
lence makes simulation difficult. Accordingly, we have de-
veloped a fast simulation method for turbulent flow using
smoothed particle hydrodynamics (SPH) and a wavelet anal-
ysis based on particles.

For computer graphics, turbulent flow is important in en-
hancing the visual quality of fluid animation and many re-
searchers have incorporated turbulence into existing simula-
tions. Average flow having low-frequency characteristics is
generated by solving the Navier-Stokes equations at a coarse
resolution, and the smaller details of turbulence are realized
by calculating the energy of each manually added vortex or
by advecting these vortices. This method can generate much

of the fine detail of the flow, even if the size of the detail
is smaller than that of the scale of the computational grid.
Hence, we can get realistic animation of turbulent flow at
low computational cost. However, these simulations still run
on offline.

We propose a fast simulation method for turbulent flow
which uses a particle method and wavelet analysis. The pro-
posed method uses the particles only to calculate the energy
spectrum of the vortices. The turbulent velocity field gen-
erated from the wavelet noise is then appended to the base
flow. We also make use of the graphics hardware to calcu-
late the wavelet analysis and noise. To represent small-scale
vortices, the particles must be small and thus the number of
the particles will increase correspondingly. However, van der
Laan et al. [vdLGS09] proposed that quasi-turbulence can be
added onto a screen space mesh by using a noise function,
and this method can render small-scale turbulence without
increasing the number of the particles. Here, we take a more
physical approach that uses subparticles. The turbulence can
be represented as a collection of vortices with a large range
of frequencies. A particle is divided into subparticles, which
rotate around the original particle to represent a small-scale
vortex. In this manner, we can get more realistic results, ow-
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ing to the technique being able to realize the physical struc-
ture of turbulence.

2. Related Works

By using a semi-Lagrangian advection method, Stam
[Sta99] developed a solver that is widely used for com-
puter animation of fluids. Although that method can com-
pute the behavior of fluid if a large time-step width is used,
the method has a problem with numerical diffusion, which
induces the dissipation of turbulence energy, making it dif-
ficult to detect the turbulence. BFECC [KLLR05], MacCor-
mack [SFK∗08], CIP [KySK08], and adaptive grid [LGF04]
methods have been used to try to suppress this dissipation.
As an alternative, Fedkiw et al. [FSJ01] regenerated vortices
on the grid that were lost in the fluid simulation by using
vorticity confinement. However, the vorticity confinement
method just enhances the vortices, generating unnecessary
turbulence in regions where the fluid is flowing smoothly.

By seeding the vortex particles in regions where turbu-
lent flow will occur, we can append the turbulence to exist-
ing fluid simulations. Selle et al. [SRF05] proposed a vortex
particle method, where the vortex particle moves in accor-
dance with the vorticity form of the Navier-Stokes equations
and transports turbulent energy that is resolved depending on
the scale of grid. Pfaff et al. [PTSG09] determined the seed
area for the vortex particles from wall-induced turbulence
and precomputed boundary layer vorticity around solid ob-
jects, sampling the vortex particles in these regions.

A procedural approach that generates small-scale vortices
beyond the grid resolution is often used for turbulent flow.
Stam [SF93] introduced Kolmogorov theory and developed
a procedural turbulence synthesis method to generate the tur-
bulent flow. A divergence-free velocity field, made by taking
the curl of a scalar noise field, is used to create a quasi-
turbulent flow with a base flow [BHN07]. The technique
used by Bridson et al. [BHN07] required specification of the
spatial modulation of the turbulence. Pfaff et al. [PTC∗10]
used energy transport models to determine the distribution
of turbulent energy. Zhao et al. [ZYC10] used random forc-
ing to integrate a statistical turbulence field into the simula-
tion. Chang et al. [CKB∗10] proposed combining a coarse
grid and high-resolution grid for turbulent flow, and Zhu et
al. [ZSTB10] used weakly compressible SPH [BT07] and
a grid structure to represent turbulent flow induced in solid
boundary layers.

Finally, by using wavelet analysis, Kim et al. [KTJG08]
determined the region in which the turbulence should be
added to the original flow field. They simulated the velocity
field for a fluid by using a low resolution grid, based on the
Navier-Stokes equations, and synthesized the high resolu-
tion turbulence field by using wavelet noise and Kolmogorov
theory. The method described here uses similar theory as
Kim et al., but we extend their method to particle simula-
tion to achieve fast and accurate computation.

3. Simulation method

The procedure of our method is as follows:

1. Simulate the velocity field from the Navier-Stokes equa-
tions using SPH.

2. Calculate the distribution of the turbulence energy via
wavelet analysis.

3. Add the divergence-free turbulence field emanating from
the wavelet noise.

4. Update the position and velocity of the particles.
5. Update the position and velocity of the vortex subparti-

cles.
6. Extract the mesh of the liquid surface on the basis of the

turbulence energy.

This method is easily extendable to other particle meth-
ods, for example, the moving particle semi-impact method,
because we simply add the turbulence field as an external
force.

3.1. Fluid Simulation

We adopt the SPH method to simulate the flow. The Navier-
Stokes equations for an incompressible viscous fluid are
given by

∇·u = 0, (1)

∂u

∂t
+(u ·∇)u = ν∇2

u− 1

ρ
∇p+ f , (2)

where u, ρ, and p are the velocity, density, and pressure of
the fluid, respectively, ν is the kinematic viscosity, and f is
the resultant force due to gravity and external forces. The
particle method, in which a liquid is represented by particles,
is used to discretize the governing equations. SPH is then
used to solve the equations. As the number of particles is
constant and each particle has constant mass, the total mass
of fluid is conserved and we can omit the equation for the
conservation of mass (Eq. (1)).

The scalar quantity φ is calculated from a weighted sum
of neighboring particles:

φ(x) = ∑
j∈N

m j

φ j

ρ j
W (x j − x,h), (3)

where N is the number of neighboring particles, m j and ρ

are the mass and density of particle j, respectively, and the
function W is a smoothing kernel with effective radius h. The
derivatives of the quantity ∇φ are simply evaluated from the
derivatives of the kernel function. After the momentum con-
servation equation (Eq. (2)) is solved via the SPH method,
the position and velocity of the particles are updated by us-
ing a leapfrog scheme.

3.2. Particle Wavelet Analysis

We generate a turbulent velocity field that consists of a col-
lection of small-scale vortices resulting from Kolmogorov’s
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law, and small vortices are lost due to numerical diffusion
or the Nyquist limit. To generate the small-scale vortices,
forward scattering must be reproduced, such that each large
vortex is split into two small vortices according to the en-
ergy distribution of Kolmogorov’s 5/3 spectrum. The vortex
energy ê is evaluated from the spectral component of veloc-
ity field û in spectral band k:

ê(k) =
1

2
|û(k)|2. (4)

To detect the location at which turbulent flow will occur, we
need to consider both the spatial and frequency distribution
of the energy (i.e., ê(k,x)).

A short-time Fourier transform (STFT) is one solution to
obtain information about both the spatial and frequency do-
mains. To do this the Fourier Transform is applied to a signal
that is changed over time or space within a moving window.
STFT however suffers from a trade-off between the spatial
and frequency resolutions, which are dependent on the size
of the window. Kim et al. [KTJG08] solved this problem by
using a wavelet transform and then calculating the energy of
each grid cell. Our approach is to apply this wavelet trans-
form to the particle method. In the particle method, a grid
does not exist that can explicitly define the neighborhood
value. Instead, the wavelet transform can be calculated by
defining background grid cells that have a projected particle
velocity field. However, to use the another grid with almost
the same resolution as the particle density would increase
the memory usage and computational time and also would
cause numerical diffusion when the velocity of the particle
is projected onto the grid cell. Therefore, as an alternative,
we directly determine the wavelet transform of the velocity
field, û = (û, v̂, ŵ), and the energy spectrum, ê(1/s,x), at a
scale s by taking a weighted sum of neighboring particles
and using the SPH method.

The continuous wavelet transform of the velocity, u, along
the x-axis is

û(s,a,b,c) =
1√
s

∫ ∫ ∫
∞

−∞

u(x)ψ

(

x−a

s
,

y−b

s
,

z− c

s

)

dxdydz

(5)
where s is the wavelet scale, a, b, and c are translational val-
ues along each axis, and ψ is the mother wavelet. To deter-
mine the neighborhood, a discrete wavelet transform gener-
ally assumes that the field is defined at each pixel or upon
the grid.

In contrast, the particle method uses a point that is able to
move freely along the velocity field. Therefore, we directly
calculate the wavelet transform from the particles by using a
weighted sum of neighboring particles. The discrete wavelet
transform of the velocity, ui, for particle i is

ûi =
1√

sψsum
∑

j

u jψ

(

xi − x j

s
,

yi − y j

s
,

zi − z j

s

)

, (6)

where ψsum = ∑ j ψ. If a grid is used, the number of parti-

cles around an individual cell is constant. Conversely, when
the particle method is used, the number of neighboring par-
ticles will vary according to the cell’s position and time, so
that the absolute value of wavelet transform tends to be large
near the surface of a liquid. This is because there is only a
small number of particles at the liquid ’s surface and the
influence of a particle will therefore be strong. To prevent
this, we introduce ψsum to normalize the value. The energy
of vortex ei(k) can be calculated by substituting û into Eq.
(4).

Figure 1 shows the energy spectrum calculated from Eq.
(5) by using a background grid and by using our method
described above. It can be seen in Fig. 1 that the spectrum
resulting from our method is almost the same as that gen-
erated by projecting the velocity of particles onto a back-
ground grid.

Figure 1: Energy spectrum calculated using a grid (top) and

particles (bottom). High and low energies are shown in red

and blue, respectively.

3.3. Wavelet Turbulence Synthesis

tjTo simulate the forward scattering of the vortices, Kol-
mogorov’s theory is used. The energy spectrum of turbu-
lence in frequency domain is

ê(k) = αε
2
3 k

−
5
3 , (7)

where α is the Kolmogorov constant and ε is the mean en-
ergy dissipation rate per unit mass. As indicated by Kim et
al. [KTJG08], Eq. (7) can be rewritten and the wavelet tur-
bulence function is

y(x) =
imax

∑
i=imin

w(2i
x)2−

5
6 (i−imin), (8)

where [imin, imax] is the bandwidth of the spectrum and
w(x) is the divergence-free velocity field [BHN07] gener-
ated from the wavelet noise [CD05]. We want to generate
the particle-scale turbulence and, to this end, imax can be the
resolution such that the width of a cell is the same as the par-
ticle diameter. imin is determined based on the wavelet scale,
s.

The turbulent force from the energy êi(k) and wavelet
function is
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f
turb
i = A

ρi

∆t
êi(k)y(xi), (9)

where A is a user-controlled parameter that changes the scale
of the turbulence. The turbulent force is added as the external
force term in equation (2).

3.4. Sub-Particle-Scale Turbulence

Turbulent flow can be captured as a collection of vortices
with a large range of frequencies. To completely represent
the flow, we must handle the full range of vortices. Unfor-
tunately, the scale of vortices that can be represented within
the simulation depends on the scale of the particles. To sim-
ulate small-scale vortices, it is necessary to use smaller par-
ticles; this in turn increases the number of particles and the
computational time. We use a small particle, named a vortex
subparticle to represent sub-particle-scale turbulence. This is
similar to the vortex particle method [SRF05], but here the
sub-particles only rotate around the particles used in SPH
and depend on the turbulence energy. As a result, the sub-
particles hardly influence the computation time because they
do not use the neighboring particles. Figure 2 illustrates the
concept of vortex sub-particles. The SPH particles, p0

i , can

be divided into pairs of vortex sub-particles, p
1, j
i j = 0,1

and the sub-particles can also be divided recursively. The
superscript indicates the level of the subparticle (i.e., Level
0 represents the SPH particles).

Figure 2: Small-scale vortex sub-particles.

Figure 3 shows the relationship between particles pL and

pL+1. V c
L, j
i is a unit vector from p

L, j
i to p

L+1,2 j
i , where j =

0,1, ...,2L − 1. The radius of p
L+1, j
i is rL = 2−L/3r0, where

r0 is the radius of SPH particle p0. The total volume of two
sub-particles must be equal to that of the SPH particle.

The sub-particles are advected in the same manner as their
parent particle and are rotated by the energy of the turbulent
flow. The energy of each particle, p0, as calculated from Eq.
(7), is cascaded down to its sub-particles according to Kol-
mogorov’s theory, and represents the forward scattering of

the vortices. Each subparticle has rotation axis, a
L, j
i (⊥ c

L, j
i ),

and the angular velocity, ω, is calculated from

|û( 1

2rL+1
,xi)| =

√

2ê(
1

2rL+1
,xi)

=

√

2ê(
1

2r0
,xi)(2

−
5
9 )Li , (10)

ω
L, j
i =

|û( 1
2rL+1

,xi)|∆t

rL+1
. (11)

To reconstruct the features of the turbulence, the axis a
L, j
i

must be randomly rotated.

sub-particle 

sub-particle sub-particle 

Figure 3: Relationship between particle pL and pL+1

3.5. Surface Extraction

The surface of the liquid is defined as the zero level set of
the following function:

φ(x) =
N

∑
i

Wsub(xi,Li), (12)

where Wsub is a kernel function from which the level of sub-
particle used in the calculations is chosen, depending on the
energy spectrum. We define a criterion for the energy value,
ecri, and the level, Li, of the subparticle for the kernel must
satisfy

ecri = ê(
1

2rL
,x)(2−

5
9 )Li , (13)

where ê(s,x) is the energy spectrum at x with scale s. The
number of levels of division for a particle with high energy
will be greater than that for a particle with low energy, so
that small vortices appear in only regions where the energy
of the turbulence is large. Wsub is defined by the level, Li,
and a user defined maximum, Lmax:

Wsub(xi,Li) =































W (xi,r0) Li ≤ 0,

∑
2Lmax

j=0 W (x
Lmax, j
i ,rLmax

) Li ≥ Lmax,

(L
up
i −Li)∑

2Ldown
i

j=0 W (x
Ldown

i , j
i ,rLdown

i
)

+(Li −Ldown
i )∑

2L
up
i

j=0 W (x
L

up
i , j

i ,rL
up
i
) otherwise,

(14)
where Ldown

i = ⌊Li⌋ and L
up
i = ⌊Li⌋+ 1. We then extract a

triangle mesh, corresponding to the liquid surface, using the
marching cubes algorithm [LC87].
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4. Results

This section describes the results of applying the proposed
method to several test cases. All results were generated on a
computer equipped with a 2.93 GHz Intel Core i7 Duo CPU
and an NVIDIA GeForce GTX580 GPU. The algorithm was
predominantly implemented on a GPU by using the NVIDIA
CUDA architecture, and a Mexican hat wavelet was used as
the mother wavelet.

Figure 5 shows flooding in a valley. Since our method can
simulate turbulence, it can be seen that the flow is disturbed.
The maximum number of fluid particles in the scene was
40,000, and the computation time for the simulation was ap-
proximately 15 ms per step. The calculation of the energy
spectrum and wavelet turbulence required about 70% of the
simulation time. We used a marching cubes method to con-
struct the liquid surface mesh. Mesh construction required
only about 15 ms with, at most, 80,000 triangles to generate
(a) and (b). We also implemented the marching cubes algo-
rithm in parallel on the GPU. Figure 5(c) shows the output
with subparticle-scale turbulence included; the total compu-
tational time was about 120 ms per step. The computation
time for the simulation was almost the same as for (b), but
the calculation of Eq. (12) took a greater amount of time
because the particles for meshing include the vortex sub-
particles.

Finally, we verified the effect of the vortex sub-particles.
Figure 4 shows the trailing vortex left by a moving ball. The
number of particles is approximately 23,000 for Fig. 4(a),
(b), and (c), and 184,000 for (d). For comparison, we ran the
simulation with a large number of particles. The maximum
level of sub-particle division was 3, such that the resolution
of particles for rendering in Fig. 4 (c) was same as that in (d).
It is seen that our method can generate very small turbulent
flows, despite the number of particle being relatively small.
However, an artifact of our method is that the sub-particle-
scale vortices remained longer than those for (d), resulting in
an unnatural animation. Hence, it is concluded that, to gen-
erate a more realistic turbulent flow, the vortex sub-particles
should simulate not only the forward scattering of vortices,
but also the backward scattering or dissipation due to the
viscosity of the fluid.

5. Conclusions

We have presented a method to simulate turbulent flow us-
ing an SPH method and wavelet analysis. Our method di-
rectly calculates the turbulence energy by taking a weighted
sum of neighboring particles and adds the turbulence field
as a external force. This enables fast simulations that in-
clude various turbulent flows. In addition, we synthesized
particle-scale vortices—which are dissipated by numerical
diffusion— from the energy spectrum by using a wavelet tur-
bulent noise based on Kolmogorov’s theory and sub-particle-
scale vortices created from sub-particle splitting. Moreover,

we performed the simulations in near real time by using a
GPU in parallel.

(a) Result without turbulence.

(b) Result with particle-scale turbulence.

(c) Result with use of vortex sub-particles.

(d) Result with particle-scale turbulence and 184,000 particles.

Figure 4: Comparison using vortex sub-particles.

Although our method could successfully realize small
vortices by simulating the forward scattering via particle
splitting, the lack of backward scattering gave rise to some
lingering visual artifacts due to the residual energy. For re-
alistic rendering, bubbles, foam, and splashes are also vital,
and we will be able to generate these effects based on the
turbulence energy. In addition, to speed up the calculations
further, we can use a more efficient algorithm for the surface
extraction, such as a screen space mesh [MSD07], and uti-
lize the positional relationship between the sub-particles to
accelerate the calculation of Eq. (12). For a liquid simula-
tion, the sub-particle near the surface only affects the final
rendering. It might save a lot of computation if we eliminate
the sub-particles that are not near the surface.
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