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We provide a detailed derivation of both the Euler equation and the Navier-Stokes equation for the case of a three-
dimensional, multi-component, lattice-Boltzmann model, wherein the components may have non-trivial interaction.
The model is derived from the multi-component, lattice-Boltzmann model due to Shan and Doolen (J. Stat. Physics,
81(1/2), 1995, and Phys. Rev. E 54(4), 1996) and Shan’s simulation of Rayleigh-Bénard convection (Phys. Rev. E
55(3), 1997).

1. Definitions.

The key quantity of interest will be the per-componentdirectional density, fσ,i(~r, t), which is the density of component
σ arriving at lattice site~r ∈ <3 at timet in direction~ci. The directions~ci, i = 0,1,...,18, are all the non-corner lattice
points of a cube of unit radius,{−1, 0, 1}3. We take~c0 = (0, 0, 0), and ~c1 - ~c6 to be the axis directions. Note that
these directions are really projections from 4D space of 24 lattice points that are equidistant from the 4D origin,

(±1, 0, 0,±1) (0,±1,±1, 0)
(0,±1, 0,±1) (±1, 0,±1, 0)
(0, 0,±1,±1) (±1,±1, 0, 0)

where the projection is truncation of the fourth component. Thus the flow will be isotropic, but the axial directions
will carry double weight in the discussions below.

Some additional definitions:

• fσ = (fσ,0, fσ,1, ..., fσ,18)

• λ is the lattice spacing

• τ is the time step

• v = λ/τ

• ~vi = v~ci i = 0, 1, ...18

• component density per site isρσ(~r, t) =
∑18

i=0 fσ,i(~r, t)

• total density per site isρ(~r, t) =
∑

σ ρσ(~r, t)

• component velocity per site is~uσ(~r, t) = (
∑18

i=0 fσ,i(~r, t)~vi)/ρσ(~r, t)

The entire lattice Boltzmann computation is then just an iterated, synchronous update of the directional densities
according to:

fσ,i(~r + λ~ci, t + τ)− fσ,i(~r, t) = [Ωσ(fσ)]i (1)
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whereΩσ : <19 → <19 is a collision operator. Many collision operators have been proposed. (See Rasche et
al., Lattice-Boltzmann Lighting, Proc. Eurographics Rendering Symp., 2004, for an operator appropriate for photon
scattering.) Any operator must satisfy two equations:

18∑
i=0

[Ωσ(fσ)]i = 0 conservation of mass (2)

and ∑
σ

18∑
i=0

[Ωσ(fσ)]i ~vi = 0 conservation of total momentum (3)

If external force~Fσ(~r, t) is applied to componentσ, then instead of (3) we must have:

∑
σ

18∑
i=0

[Ωσ(fσ)]i ~vi = τ
∑

σ

~Fσ(~r, t) (4)

Nevertheless, if there is no net momentum flux at the boundaries (e.g. for periodic boundaries), then momentum of
the entire system is still conserved.

Many collision operators satisfy these constraints. When we need little direct control over individual collision events,
a convenient operator is the LBGK operator (Lattice - Bhatnager, Gross, Krook) given by:

[Ωσ(fσ)]i = − 1
ξσ

[
fσ,i(~r, t)− f

(eq)
σ,i (~r, t)

]
(5)

whereξσ is therelaxation timeof theσth component (a parameter), and

f
(eq)
σ,i (~r, t) =


ρσ(d− [ ~uσ

(eq)]2/(2v2)) i = 0

2ρσ

(
1−d
24 + 1

12v2 ~vi · ~uσ
eq + 1

8v4 ~vi~vi : ~uσ
(eq) ~uσ

(eq) − 1
24v2 [ ~uσ

(eq)]2
)

i = 1,...,6

ρσ

(
1−d
24 + 1

12v2 ~vi · ~uσ
eq + 1

8v4 ~vi~vi : ~uσ
(eq) ~uσ

(eq) − 1
24v2 [ ~uσ

(eq)]2
)

i = 7,...,18

(6)

Hered ∈ [0, 1] is a parameter (fraction of density with zero speed at equilibrium) and~uσ
(eq) is defined so that (3) or

(4) holds. Specifically, if we use these identities:

•
∑6

i=1 2viα +
∑18

i=7 viα = 0 α ∈ {x, y, z}

•
∑6

i=1 2v2
iα +

∑18
i=7 v2

iα = 12v2 α ∈ {x, y, z}

•
∑6

i=1 2viαviβ +
∑18

i=7 viαviβ = 0 α, β ∈ {x, y, z}, α 6= β

•
∑6

i=1 2v2
iαviβ +

∑18
i=7 v2

iαviβ = 0 α, β ∈ {x, y, z}

•
∑6

i=1 2v2
iαv2

iβ +
∑18

i=7 v2
iαv2

iβ = 4v4 α, β ∈ {x, y, z}, α 6= β

•
∑6

i=1 2v4
iα +

∑18
i=7 v4

iα = 12v4 α ∈ {x, y, z}

then it is easy to verify that ∑
i

f
(eq)
σ,i = ρσ (7)

and ∑
i

~vif
(eq)
σ,i = ρσ ~uσ

(eq) (8)
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regardless of the definition of~uσ
(eq). To enforce constraint (3) we would then need

0 =
∑

σ

∑
i

[Ωσ(fσ)]i ~vi

=
∑

σ

∑
i

− ~vi

ξσ

[
fσ,i − f

(eq)
σ,i

]
= −

∑
σ

ρσ ~uσ

ξσ
+
∑

σ

ρσ ~uσ
(eq)

ξσ

In the absence of external forces, we choose to make all~uσ
(eq)s equal, i.e., independent ofσ. Thus we are led to the

definition:

~uσ
(eq) = ~u(eq) =

(∑
σ

ρσ ~uσ

ξσ

)
/

(∑
σ

ρσ

ξσ

)
(9)

In the presence of (possibly unequal) external forces, we instead define

~uσ
(eq) = ~u(eq) +

ξστ

ρσ

~Fσ (10)

which guarantees that constraint (4) holds.

The principal reasons for the choice (5) are that it is computationally fast, and it will lead to the Navier-Stokes equations
at the macroscopic (ρ, ~u) level.

We have yet to define an overall, component-independent, fluid velocity,~u. This is again a matter of choice (within
reason), since there is no apriori-correct weighting for the components. We observe that total momentum at a site
before a collision is

∑
σ ρσ ~uσ and total momentum after the collision is

∑
σ ρσ ~uσ +τ

∑
σ

~Fσ. If we wantρ~u to match
the cross-collisional average, we must have

~u =

(∑
σ

ρσ ~uσ +
τ

2

∑
σ

~Fσ

)
/ρ (11)

All that remains is to derive the macroscopic behavior.

2. The Continuity Equation.

We will use the so-calledChapman-Enskog expansion, standard in lattice-Boltzmann modeling. (See, e.g., Chopard
and Droz, Cellular Automata Modeling of Physical Systems, Cambridge Univ. Press, 1998.) We assume thatfσ,i can

be written as a small perturbation about some local equilibrium,f
(0)
σ,i :

fσ,i = f
(0)
σ,i + εf

(1)
σ,i (12)

whereε is theKnudsen number, which represents the mean free path between successive collisions.

The choice off (0) is not necessarily unique. The constraints are that it carries the density and the momentum,
specifically: ∑

i

f
(0)
σ,i = ρσ (13)

and ∑
i

~vif
(0)
σ,i = ρσ~u (14)

From (7) and (8), it is easy to find a suitable choice forf
(0)
σ,i : use (6), and replace every instance of~uσ

(eq) with ~u.
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We want to consider system behavior at multiple time scales as both lattice spacing and time step approach 0. We
partition the time scale as

t = K
t0
ε

+ (1−K)
t1
ε2

(15)

wheret0 = o(ε), t1 = o(ε2), andK ∈ [0, 1]. Similarly, we write distance

~r =
~r0

ε
(16)

where ~r0 = o(ε). A variety of different behaviors in the limit (ε → 0) can then be achieved. IfK = 0, we would
obtain the diffusion equation of Rasche et al., but we do not make that assumption here.

Note that the relationship among the partials is given by:

∂

∂t
= ε

∂

∂t0
+ ε2

∂

∂t1
(17)

∂

∂rα
= ε

∂

∂r0α
for α ∈ {x, y, z}

Now let

∇A = (∂/∂t,∇)
= (ε∂/∂t0 + ε2∂/∂t1, ε∇0)
= (ε∂/∂t0 + ε2∂/∂t1, ε∂/∂r0x, ε∂/∂r0y, ε∂/∂r0z)

and expand the left side of (1) in a Taylor series:

[(τ, λ~ci) · ∇A]fσ,i(~r, t) +
[(τ, λ~ci) · ∇A]2

2!
fσ,i(~r, t) + ... = [Ωσ(fσ(~r, t))]i (18)

If we sum overi, the right side vanishes due to conservation of mass (2). If we then divide byτ , substitute (12) and
(17), and equate coefficients ofε1, we obtain

∑
i

∂f
(0)
σ,i

∂t0
+
∑

i

~vi · ∇0f
(0)
σ,i = 0 (19)

that is
∂ρσ

∂t0
+∇0 · (ρσ~u) = 0 (20)

thecontinuity equationat time scalet0.

3. The Euler Equation.

The continuity equation arises from the conservation of mass (2). Next we want to use the conservation of total
momentum (4), so we will multiply both sides of (18) by~vi, sum overi, sum overσ, divide byτ , and then equate
coefficients ofε1. The external forces lend a bit of a wrinkle here. After multiplying (18) by~vi, summing overi and
σ, and dividing byτ , we obtain an equation whose right-hand side is

∑
σ

~Fσ, and we need to identify the coefficient
of ε1 therein. Fortunately, this is straightforward. From (11) we have:∑

σ

~Fσ = (2/τ)(ρ~u−
∑

σ

ρσ ~uσ)

= (2/τ)(
∑

σ

∑
i

f
(0)
σ,i ~vi −

∑
σ

∑
i

fσ,i~vi)

= (2/τ)(−
∑

σ

∑
i

εf
(1)
σ,i ~vi) (21)
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If we let ~H = (2/τ)(−
∑

σ

∑
i f

(1)
σ,i ~vi) then we haveε ~H =

∑
σ

~Fσ, and our result is:∑
σ

∑
i

~vi∂f
(0)
σ,i /∂t0 +

∑
σ

∑
i

[
~vi · ∇0f

(0)
σ,i

]
~vi = ~H (22)

which can be simplified to:
∂(ρ~u)
∂t0

+
∑

σ

∇0 ·Π(0)
σ = ~H (23)

whereΠ(0)
σ denotes themomentum tensorbased onf (0)

σ , i.e.,

Π(0)
σ =


∑

i f
(0)
σ,i v2

ix

∑
i f

(0)
σ,i vixviy

∑
i f

(0)
σ,i vixviz∑

i f
(0)
σ,i vixviy

∑
i f

(0)
σ,i v2

iy

∑
i f

(0)
σ,i viyviz∑

i f
(0)
σ,i vixviz

∑
i f

(0)
σ,i viyviz

∑
i f

(0)
σ,i v2

iz

 (24)

We can use the identities on thevis to write this as:

Π(0)
σ =

 v2
(

1−d
2

)
ρσ + ρσu2

x ρσuxuy ρσuxuz

ρσuxuy v2
(

1−d
2

)
ρσ + ρσu2

y ρσuyuz

ρσuxuz ρσuyuz v2
(

1−d
2

)
ρσ + ρσu2

z

 (25)

and then substitute into (23) to obtain:

∂(ρ~u)
∂t0

+∇0 ·
[
v2

(
1− d

2

)
ρI + ρ~u~u

]
= ~H (26)

All that remains is to give an appropriate definition ofpressurefor this system. Assume that, for those external forces,
~Fσ, that contribute to pressure (typically, all component interactions but not gravity), we can find apotential, i.e., a
functionV with the property that∇V = −

∑
σ

~Fσ. We then define pressure as

p = v2

(
1− d

2

)
ρ + V (27)

so that

∇p = v2

(
1− d

2

)
∇ρ−

∑
σ

~Fσ (28)

and, in particular,

∇0p = v2

(
1− d

2

)
∇0ρ− ~H (29)

We can then write (26) in the form
∂(ρ~u)
∂t0

+∇0 · [ρ~u~u] = −∇0p (30)

It turns out that we can now factorρ from the left hand side. If we proceed with the differentiation:

∂ρ

∂t0
~u + ρ

∂~u

∂t0
+ (∇0 · ρ~u) ~u + (ρ~u) · ∇0~u = −∇0p (31)

and apply the continuity equation at timescalet0 (20), we see the first and third summands on the left cancel, and we
have:

∂~u

∂t0
+ ~u · ∇0~u = − (1/ρ)∇0p (32)

This is theEuler equation of hydrodynamics(at scalet0), which is just the Navier-Stokes equation without the dissi-
pative effects of viscosity.
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4. Timescalet1.

Now we need to repeat the procedures above for theε2 terms. If we sum both sides of (18) overi, divide byτ , and
equate coefficients ofε2, we get

∂

∂t0

∑
i

f
(1)
σ,i +

∑
i

~vi ·∇0f
(1)
σ,i +

∂

∂t1

∑
i

f
(0)
σ,i +(τ/2)∇0 ·

[
∇0 ·Π(0)

σ

]
+τ

∂

∂t0

∑
i

~vi ·∇0f
(0)
σ,i +(τ/2)

∂2

∂t20

∑
i

f
(0)
σ,i = 0

(33)
Using (13), (14), and the (related) fact that

∑
i f

(1)
σ,i = 0, we can simplify this to

∑
i

~vi · ∇0f
(1)
σ,i +

∂ρσ

∂t1
+ (τ/2)∇0 ·

[
∇0 ·Π(0)

σ

]
+ τ

∂

∂t0
(∇0 · (ρσ~u)) + (τ/2)

∂

∂t0

[
∂ρσ

∂t0

]
= 0 (34)

Now the fourth and fifth terms on the left can be combined by the continuity equation at timescalet0. The result can
then be combined with the third term:∑

i

~vi · ∇0f
(1)
σ,i +

∂ρσ

∂t1
+ (τ/2)∇0 ·

[
∂

∂t0
(ρσ~u) +∇0 ·Π(0)

σ

]
= 0 (35)

The term in square brackets can be rewritten in terms ofρ, ρσ, andp. If we multiply both sides of (32) byρσ and
reverse the steps of (30) - (32) we obtain

∂(ρσ~u)
∂t0

+∇0 · [ρσ~u~u] = −(ρσ/ρ)∇0p (36)

Thus, from (25) we have[
∂

∂t0
(ρσ~u) +∇0 ·Π(0)

σ

]
=

∂(ρσ~u)
∂t0

+∇0 ·
[
v2

(
1− d

2

)
ρσI + ρσ~u~u

]
= −(ρσ/ρ)∇0p + v2

(
1− d

2

)
∇0ρσ (37)

We still need to relate thef (1) term of (35) toρ, ρσ, p, and~u, and this is trickier. We return to (18), multiply by~vi,
divide byτ , and sum overi. This yields

∂

∂t0
(ρσ~u) +∇0 ·Π(0)

σ =
∑

i

~vi

τ
[Ωσ(fσ)]i (38)

If we were also to sum overσ, we would be repeating the derivation of the Euler equation. We cannot use conservation
of momentum here, since that does not apply on a per-component basis, but we can use the explicit form of the collision
operator (5) to obtain ∑

i

~vi

τ
[Ωσ(fσ)]i = −

∑
i

~vi

τξσ

[
fσ,i − f

(eq)
σ,i

]
(39)

Thus from (37), (38), and (39) we have

−(ρσ/ρ)∇0p + v2

(
1− d

2

)
∇0ρσ = −

∑
i

~vi

ετξσ

[
fσ,i − f

(eq)
σ,i

]
= −

∑
i

~vi

ετξσ

[
f

(0)
σ,i + εf

(1)
σ,i − f

(eq)
σ,i

]
= − 1

ετξσ

[
ρσ(~u− ~u(eq)) + ε

∑
i

~vif
(1)
σ,i − ξστ ~Fσ

]

where the last equality uses (8) and (10).
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Now we solve for thef (1) term:∑
i

~vif
(1)
σ,i = −ρσ(~u− ~u(eq))

ε
+

ξστ ~Fσ

ε
− τξσ

[
−(ρσ/ρ)∇0p + v2

(
1− d

2

)
∇0ρσ

]
(40)

We still need to eliminate the~u(eq), but here we can just use (21) and sum (40) overσ to obtain

− τ

2ε

∑
σ

~Fσ = −ρ(~u− ~u(eq))
ε

+
τ

ε

∑
σ

ξσ
~Fσ +

τ∇0p

ρ

∑
σ

ξσρσ − v2

(
1− d

2

)
τ
∑

σ

ξσ∇0ρσ (41)

So

ρσ(~u− ~u(eq))
ε

= (ρσ/ρ)

[
τ

2ε

∑
σ

~Fσ +
τ

ε

∑
σ

ξσ
~Fσ +

τ∇0p

ρ

∑
σ

ξσρσ − v2

(
1− d

2

)
τ
∑

σ

ξσ∇0ρσ

]
(42)

and ∑
i

~vif
(1)
σ,i =

ξστ ~Fσ

ε
− τξσ

[
−(ρσ/ρ)∇0p + v2

(
1− d

2

)
∇0ρσ

]

− (ρσ/ρ)

[
τ

2ε

∑
σ

~Fσ +
τ

ε

∑
σ

ξσ
~Fσ +

τ∇0p

ρ

∑
σ

ξσρσ − v2

(
1− d

2

)
τ
∑

σ

ξσ∇0ρσ

]
(43)

If we now return to (35) and substitute expressions obtained in (37) and (43), we get

∂ρσ

∂t1
= −ξστ

ε
∇0 · ~Fσ + (τξσ − τ/2)∇0 ·

[
−(ρσ/ρ)∇0p + v2

(
1− d

2

)
∇0ρσ

]
+ ∇0 ·

ρσ

ρ

[
τ

2ε

∑
σ

~Fσ +
τ

ε

∑
σ

ξσ
~Fσ +

τ∇0p

ρ

∑
σ

ξσρσ − v2

(
1− d

2

)
τ
∑

σ

ξσ∇0ρσ

]
(44)

5. Timescalet. We can now recover behavior at timescalet. Add ε×(20) +ε2×(44). We get

∂ρσ

∂t
+∇ · (ρσ~u) = −ξστ∇ · ~Fσ + (τξσ − τ/2)∇ ·

[
−(ρσ/ρ)∇p + v2

(
1− d

2

)
∇ρσ

]
+ τ∇ · ρσ

ρ

[
1
2

∑
σ

~Fσ +
∑

σ

ξσ
~Fσ +

∇p

ρ

∑
σ

ξσρσ − v2

(
1− d

2

)∑
σ

ξσ∇ρσ

]
(45)

It is worth noting that if we sum (45) overσ, we obtain

∂ρ

∂t
+∇ · (ρ~u) = 0 (46)

the ordinary continuity equation at timescalet. Thus the interesting, per-component behavior is contained in (45).

6. Forces.

We assume the interaction potential,V , is of the form:

V = (1/2)
∑
σ1

∑
σ2

Gσ1,σ2Ψσ1(ρσ1)Ψσ2(ρσ2) (47)

whereGσ1,σ2 = Gσ2,σ1 is a symmetricstrength of interactionandΨσi
is aneffective density. Since

∇V =
∑
σ1

∑
σ2

Gσ1,σ2Ψσ1(ρσ1)Ψ
′
σ2

(ρσ2)∇ρσ2 (48)
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we can take
~Fσ1 = −Ψσ1(ρσ1)

∑
σ2

Gσ1,σ2Ψ
′
σ2

(ρσ2)∇ρσ2 (49)

so that∇V = −
∑

σ
~Fσ, as required.

To include external forces that are not interactions, e.g., gravity and buoyancy, we write instead

~Fσi
= −Ψσi

(ρσi
)
∑
σj

Gσi,σj
Ψ′

σj
(ρσj

)∇ρσj
+ ρσi

~gσi
(50)

where ~gσi
carries the non-interactive external force on componentσi. Now∇V = −

∑
σ

~Fσ +
∑

σ ρσ ~gσ, and so we
need to correct (28) and all subsequent expressions involving∇p, in particular, (32) and (45), by replacing∇p with
∇p−

∑
σ ρσ ~gσ wherever it occurs.

7. Thermal Energy.

In his simulation of Rayleigh-B́enard convection (Physical Review E 55(3), March 1997), Shan argues that when
viscous and compressive heating effects can be neglected, temperature can be modeled as a separate component
whose molecular mass is (relatively) 0. Assume we have only two components where the second is thermal energy.
To simplify notation, assumeξ1 = ξ2 = ξ. Then from (45) and (28) we have

∂ρ2

∂t
+∇ · (ρ2~u) = τ∇ ·

[
(ξ − 1/2)v2

(
1− d

2

)[
ρ1

ρ
∇ρ2 −

ρ2

ρ
∇ρ1

]
+ ξ

[
ρ2

ρ
~F1 −

ρ1

ρ
~F2

]]
(51)

If we now use (49) and assume thatGi,j = 0 for i 6= j, we can collect coefficients of density gradients to obtain

∂ρ2

∂t
+∇·(ρ2~u) = τ∇·

[
ρ1

ρ

(
(ξ − 1/2)v2 1− d

2
+ ξΨ2G22Ψ′

2

)
∇ρ2 −

ρ2

ρ

(
(ξ − 1/2)v2 1− d

2
+ ξΨ1G11Ψ′

1

)
∇ρ1

]
(52)

If the relative densities now approach limits,ρ1/ρ → 1 andρ2/ρ → 0 we get

∂ρ2

∂t
+∇ · (ρ2~u) = τ∇ ·

[(
(ξ − 1/2)v2

(
1− d

2

)
+ ξΨ2G22Ψ′

2

)
∇ρ2

]
(53)

If we also haveG22 = 0, we get
∂ρ2

∂t
+∇ · (ρ2~u) = D∇2ρ2 (54)

whereD = τ(ξ − 1/2)v2
(

1−d
2

)
. Thus thermal energy is advected and diffused.

8. Phase Transition.

Again suppose we have two components where the second is thermal energy. AssumeGσ1,σ2 = 0, except forG11, so
V = G11Ψ2

1(ρ1). From (27) we have

p = v2

(
1− d

2

)
(ρ1 + ρ2) + G11Ψ2

1(ρ1) (55)

If G11 is negative andΨ1 is increasing and bounded, there can be a range (ofρ1) over whichdp/dρ1 is negative, which
signals a phase transition.
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9. The Navier-Stokes Equation.

The remaining step is to derive the Navier-Stokes equation. The procedure here is similar to what we have already
done. In particular, we need to multiply both sides of (18) by~vi, sum overi, sum overσ, divide byτ , and then equate
coefficients ofε2.

We obtain:

∂(ρ~u)
∂t1

+
∑

σ

∇0 ·Π(1)
σ + (τ/2)

∂2(ρ~u)
∂t20

+ τ
∂

∂t0

(∑
σ

∇0 ·Π(0)
σ

)
+ (τ/2)

∑
σ

∇0 ·
(
∇0 · S(0)

σ

)
= 0 (56)

whereΠ(1)
σ is the momentum tensor of (24) withf (0) replaced byf (1), andS

(0)
σ is a third-order tensor:

S(0)
σ (~r, t)αβγ =

∑
i

viαviβviγf
(0)
σ,i (~r, t) whereα, β, γ ∈{x,y,z} (57)

We can combine the third and fourth summands on the left of equation (56) by using the preliminary form of the Euler
equation (23). This gives us:

∂(ρ~u)
∂t1

+
∑

σ

∇0 ·Π(1)
σ + (τ/2)

∂

∂t0

(
~H +

∑
σ

∇0 ·Π(0)
σ

)
+ (τ/2)

∑
σ

∇0 ·
(
∇0 · S(0)

σ

)
= 0 (58)

We now obtain the preliminary form of the Navier-Stokes equation asε×(23) +ε2×(58):

∂(ρ~u)
∂t

+
∑

σ

∇ ·Πσ + (τ/2)

[
ε

∂

∂t0

(∑
σ

~Fσ +
∑

σ

∇ ·Π(0)
σ

)
+
∑

σ

∇ ·
(
∇ · S(0)

σ

)]
=
∑

σ

~Fσ (59)

Reducing this equation to its conventional form will require considerable effort.

First, we can use (28) to replace the right side, and we can use the identities on thevis to reduce the third-order tensor,∑
σ

∇ ·
(
∇ · S(0)

σ

)
= (2/3)v2

[
∇ (∇ · (ρ~u)) + (1/2)∇2(ρ~u)

]
(60)

Making these substitutions, we have

∂(ρ~u)
∂t

+
∑

σ

∇ ·Πσ +
τ

2

[
ε∂

∂t0

(∑
σ

~Fσ +
∑

σ

∇ ·Π(0)
σ

)
+

2
3
v2

[
∇ (∇ · (ρ~u)) +

1
2
∇2(ρ~u)

]]

= v2 1− d

2
∇ρ−∇p +

∑
σ

ρσ~gσ (61)

The term
∑

σ ∇ · Πσ on the left-hand side of (61) contains
∑

σ ∇ · Π(0)
σ as a summand. We have already seen (25)

that we can write this summand as∑
σ

∇ ·Π(0)
σ = v2 1− d

2
∇ρ +∇ · (ρ~u~u) (62)

The first term of (62) will cancel the corresponding term on the right-hand side of (61). The second term of (62) can
be combined with the first term on the left-hand side of (61), using the argument of (31), to factorρ. We are left with

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
+ ε

∑
σ

∇ ·Π(1)
σ +

τε

2
∂

∂t0

(∑
σ

~Fσ +
∑

σ

∇ ·Π(0)
σ

)
+

τv2

3

[
∇ (∇ · (ρ~u)) +

1
2
∇2(ρ~u)

]
= −∇p +

∑
σ

ρσ~gσ (63)
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For differentiation with respect tot0, we will use an order 1 approximation inρ and~u. Thus

τε

2
∂

∂t0

(∑
σ

∇ ·Π(0)
σ

)
=

τε

2
∇ ·

(
∂

∂t0

∑
σ

Π(0)
σ

)

=
τε

2
∇ ·
(

∂

∂t0
v2 1− d

2
ρI

)
(order 1)

= −τv2(1− d)
4

∇ · (∇ · (ρ~u)I) (continuity equation)

= −τv2(1− d)
4

∇ (∇ · (ρ~u)) (64)

Making this substitution into (63), we have

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
+ε
∑

σ

∇·Π(1)
σ +

τε

2
∂

∂t0

∑
σ

~Fσ +τv2(
1
3
− 1− d

4
)∇ (∇ · (ρ~u)) = −∇p+

∑
σ

ρσ~gσ−
τv2

6
∇2(ρ~u)

(65)

All that remains is to reduce the second and third terms on the left-hand side of (65). For the second term, observe that(
εΠ(1)

σ

)
αβ

=
∑

i

εf
(1)
σ,i viαviβ for α, β ∈{x,y,z} (66)

and so we need an expression forεf
(1)
σ,i in terms ofρ and~u. If we insert the definition ofΩσ (5) into the Taylor

expansion (18) and simply equate coefficients ofε1, we obtain

∂

∂t0
f

(0)
σ,i + ~vi · ∇0f

(0)
σ,i = − 1

ξστε

(
f

(0)
σ,i + εf

(1)
σ,i − f

(eq)
σ,i

)
(67)

and so

εf
(1)
σ,i = −ετξσ

(
∂

∂t0
f

(0)
σ,i + ~vi · ∇0f

(0)
σ,i

)
−
(
f

(0)
σ,i − f

(eq)
σ,i

)
(68)

and(
εΠ(1)

σ

)
αβ

= −ετξσ

(∑
i

∂

∂t0
f

(0)
σ,i viαviβ

)
− ετξσ

(∑
i

~vi · ∇0f
(0)
σ,i viαviβ

)
−
∑

i

(
f

(0)
σ,i − f

(eq)
σ,i

)
viαviβ (69)

We will now reduce each of the three principal summands on the right-hand side of (69). We again resort to an order
1 approximation, i.e.,

f
(0)
σ,i (~r, t) =


ρσd i = 0
2ρσ

(
1−d
24 + 1

12v2 ~vi · ~u
)

i = 1,...,6
ρσ

(
1−d
24 + 1

12v2 ~vi · ~u
)

i = 7,...,18
(70)

with a like expression forf (eq)
σ,i , obtained by replacing~u with ~u(eq).

The rightmost term of (69) vanishes. The difference has~vi as a factor, and it is easy to verify that
∑

i viαviβviγ = 0
for anyα, β, γ.

To the leftmost term on the right-hand side of (69) we apply the chain rule:

∂f
(0)
σ,i

∂t0
=

∂f
(0)
σ,i

∂ρσ

∂ρσ

∂t0
+

∑
γ∈{x,y,z}

∂f
(0)
σ,i

∂(ρσ~u)γ

∂(ρσ~u)γ

∂t0
(71)

The first term on the right-hand side of (71) is now easily reduced. From the order 1 approximation we have:

∂f
(0)
σ,i

∂ρσ
=


d i = 0
1−d
12 i = 1,...,6

1−d
24 i = 7,...,18

(72)
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and by the continuity equation
∂ρσ

∂t0
= −∇0 · (ρσ~u) (73)

The remaining terms on the right-hand side of (71) contribute nothing. To see this, observe that

∂f
(0)
σ,i

∂(ρσ~u)γ
=

 0 i = 0
viγ

6v2 i = 1,...,6
viγ

12v2 i = 7,...,18
(74)

and by (36)
∂(ρσ~u)

∂t0
= −∇0 · [ρσ~u~u]− (ρσ/ρ)∇0p (75)

and so each summand will have a singleviγ as a factor. Again we rely on the identity,
∑

i viαviβviγ = 0. Thus the
total contribution to (69) is

−ετξσ

(∑
i

∂

∂t0
f

(0)
σ,i viαviβ

)
= τξσ [∇ · (ρσ~u)]

(
1− d

2

)
v2δαβ (76)

whereδαβ denotes Kronecker delta.

Finally, the middle term on the right-hand side of (69) can be handled similarly. We observe that, to order 1,

~vi · ∇0f
(0)
σ,i =


d~vi · ∇0ρσ i = 0
2
(

1−d
24 ~vi · ∇0ρσ + 1

12v2~vi · ∇0(ρσ~vi · ~u)
)

i = 1,...,6(
1−d
24 ~vi · ∇0ρσ + 1

12v2~vi · ∇0(ρσ~vi · ~u)
)

i = 7,...,18
(77)

Then again we can use the identity,
∑

i viαviβviγ = 0, to obtain

−ετξσ

(∑
i

~vi · ∇0f
(0)
σ,i viαviβ

)
= − τξσ

12v2

∑
γ,δ∈{x,y,z}

∑
i

viαviβviγviδ
∂(ρσuγ)

∂δ

= −τξσ
v2

3

[(
∂(ρσuα)

∂β
+

∂(ρσuβ)
∂α

)
+ δαβ∇ · (ρσ~u)

]
(78)

Collecting (76) and (78), we have reduced the second term of (65):

ε
∑

σ

∇ ·Π(1)
σ = −τv2

∑
σ

ξσ

[(
2
3
− 1− d

2

)
∇ [∇ · (ρσ~u)] +

1
3
∇2(ρσ~u)

]
(79)

Thus (65) can be written

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
+

τε

2
∂

∂t0

∑
σ

~Fσ = −τv2(
1
3
− 1− d

4
)
∑

σ

(1− 2ξσ)∇ (∇ · (ρσ~u))

− ∇p +
∑

σ

ρσ~gσ −
τv2

6

∑
σ

(1− 2ξσ)∇2(ρσ~u) (80)

The final term,τε
2

∂
∂t0

∑
σ

~Fσ, would be troublesome in the general case, but here we can take advantage of its explicit
form. In particular, ifΨσi(ρσi) is the effective density, then to order 1 we can assume it is the identity function. Thus
we have

ε
∂

∂t0

∑
σ

~Fσ =
∑

σ

[
ρσ

(∑
σ′

Gσσ′∇ [∇ · (ρσ′~u)]

)
−∇ · (ρσ~u)

(
~gσ −

∑
σ′

Gσσ′∇ρσ′

)]
(81)

If we insert (81) into (80) and move to the incompressible limit,∇ · (ρσ~u) → 0, we recover the conventional Navier-
Stokes equation:

∂~u

∂t
+ ~u · ∇~u = −(1/ρ)∇p +

∑
σ

(ρσ/ρ)~gσ −
τv2

6ρ

∑
σ

(1− 2ξσ)∇2(ρσ~u) (82)
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