EG UK Theory and Practice of Computer Graphics (2010)
John Collomosse, Ian Grimstead (Editors)

Implicit surface reconstruction and feature detection with a
learning algorithm

D. Kaye and I. Ivrissimtzis

School of Engineering and Computing Sciences, Durham University, UK

Abstract

We propose a new algorithm for implicit surface reconstruction and feature detection. The algorithm is based on
a self organising map with the connectivity of a regular 3D grid that can be trained into an implicit representation
of surface data. The implemented self organising map stores not only its current state but also its recent training
history which can be used for feature detection. Preliminary results show that the proposed algorithm gives good
quality reconstructions and can detect various types of feature.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling 1.6.5 [Simulation and modeling]: Model Development

1. Introduction

The goal of surface reconstruction algorithms is the creation
of a surface that models a given set of point data. The in-
put point set is typically acquired through the use of physi-
cal devices, such as optical scanners, and must therefore be
assumed to contain noise. One of the main challenges in sur-
face reconstruction is the detection of surface features, such
as spikes, creases, corners, or separate surface sheets lying
close to each other, in the presence of data noise.

The ill-posed nature of the surface reconstruction and the
feature detection problems means that the use of machine
learning techniques can be advantageous as they can handle
the uncertainty of the data better than their equivalent ge-
ometry based techniques. In particular, different variants of
self-organising maps (SOMs) have been successfully been
used [Yu99, BFO1]. In this paper, we use a 3D SOM with the
connectivity of a regular grid, which is trained to implicitly
represent the reconstructed surface [YILOS].

In [YILO8], and all other previously proposed SOM-based
surface reconstruction algorithms, the SOM learns the shape
of the input data through a training process that alters the val-
ues stored at the SOM’s nodes and, sometimes, its connectiv-
ity. At each training step, only the curent state of the SOM is
to be stored. Of course, as the evolution of the trained SOM
is gradual, the current state does contain information related

(© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/ TPCG/TPCG10/127-130

to previous states, however, in general, the previous states of
the SOM can not be fully retrieved.

In contrast, the SOM based algorithm proposed in this pa-
per explicitly stores information not only on its current state
but on previous states as well. That is, it stores the train-
ing history of the SOM. This training history can be used to
infer surface feature information under the assumption that
the well-defined flat areas of the surface are likely to have a
stable training history. Flat areas are expected to exhibit low
variance of the SOM node value between different states,
whereas the less well-defined feature parts of the surface are
expected to have a more unstable training history, that is a
higher variance of the SOM node value between different
states.

As the implementation stores not only the current state of
the SOM but also some of its training history, memory ef-
ficiency becomes a primary concern. To solve this problem,
the implemented SOM does not have the shape of a full 3D
grid, but considers only nodes that are near the training sam-
ples and thus near to the reconstructed surface. Other differ-
ences between the implemented implicit SOM and the one
proposed in [YILO8] are discussed in Section 3.

Contribution: The two main contributions of the paper can
be summarised as follows. First, we propose the use of
SOMs that store information on their training history and

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/127-130

128 D. Kaye & I. Ivrissimtzis / Implicit reconstruction and feature detection

apply them to the problem of surface reconstruction. Sec-
ond, we implement a memory efficient implicit SOM which
stores its training history and shows that the training history
can be used for feature detection.

2. Related work

Surface reconstruction has a wide range of applications. As a
result, the problem has received a considerable amount of re-
search interest and a multitude of approaches have been pro-
posed. Geometric techniques, such as the Voronoi based al-
gorithms [ABK98,DGO03] and statistical surface fitting tech-
niques such as the MLS based algorithms [Lev98, FCOS05,
LCOLO7] are two of the mainstream approaches taken to the
problem.

A third mainstream approach is implicit surface recon-
struction, where the surface is represented by the zero level
set of a function f : R = R, where f is usually thought of
as an approximation to the signed distance to the surface.
The technique was pioneered in [HDD*92] and has been
proven to be particularly robust in the presence of data noise.
The most well-known examples of the technique, proposed
in [CBC*01, OBA*03], compute the signed distance func-
tion f as a partition of unity, or as a linear combination of
radial basis functions.

Self Organising Maps were introduced in [Koh82] as a
special type of neural network that is trained through a
competitive learning process, adapting itself to the data.
In [HV98, Yu99, BF01, 1JS03], surface reconstruction algo-
rithms based on SOMs, or similar types of neural networks,
are proposed. They all use neural networks with 2D connec-
tivity and the result of the training is an explicit model of the
surface data, such as a triangle mesh or the control grid of a
uniform bivariate spline. Implicit SOM methods for surface
reconstruction were introduced in [YILO8]. The algorithm
proposed in this paper is also an implicit SOM surface recon-
struction, however, in a major difference with [YILO8] and
all the other previously proposed SOM methods, we store
not only the current state of the SOM but also a portion of
its recent training history.

Feature detection is a problem closely related to surface
reconstruction. In many cases, the two problems are solved
concurrently by a feature preserving surface reconstruction
algorithm [FCOSO05]. However, features can also be detected
on the input point set as a pre-processing analysis of the
data [PKGO3], or on the reconstructed surface as a post-
processing analysis of the obtained model [YBSO05].

3. The Main Algorithm

As input, the algorithm takes a set of 3D points with nor-
mals, either from a static file or a stream source. The output
is a triangle mesh with any potential features highlighted.
First we describe the basic step of the algorithm, that is, the

training of the SOM by a single input point. Next we com-
pute the separation of a node, that is, an estimate of its value
based on its training history. Next we describe the smoothing
step, which increases the quality of the reconstruction, and
finally, we describe the extraction of the triangle mesh from
the trained grid.

3.1. Basic step

A training point s is uniformly randomly sampled from the
input point cloud (or obtained from the input stream), s has
a position p and a normal 1. Twelve training points are then
created equidistantly along the line segment [—31, +31i], see
Figure 1 (left). For each training point ¢ we compute is its
position, its signed distance from p (denoted by x) and its
weight;

w(x) =1/(1+x7). 6))

The weighting means that the greater the distance between
a training point and the input point from which it is derived,
the less confidence we have in its reported distance from the
surface. This becomes more relevant near features, where
two areas of the surface lie close to each other, and so the
farther reaches of the training data may interfere.

Figure 1: Left: The construction of the training data. Right:
Training data interference near a feature (corner).

For each training point #, the nearest SOM node (the win-
ner) is found and the weighted distance of ¢ is added to the
node’s list of training data. If this causes the node’s list of
training data to exceed 20 entries, the oldest training data
is discarded. Due to the regular arrangement of the SOM
nodes, finding the winning node is a computationally inex-
pensive process. The algorithm runs for a fixed number of
basic steps.

3.2. Separation Calculation

After every 5% of the total number of steps have been com-
pleted, the SOM nodes have their separations calculated and
smoothed. First, the separation of each node is computed by
calculating the weighted mean of all the distances in its train-
ing history.

sep = (L wid:) /(L wi). @

(© The Eurographics Association 2010.

D. Kaye & I. Ivrissimtzis / Implicit reconstruction and feature detection 129

If the node has had its separation calculated previously, its
separation is updated by

Ou =a60+(1*61)6n 3

Where 6, is the node’s current separation, G, is the newly-
computed separation and G is the node’s updated separa-
tion. If the node has not had its separation computed pre-
viously, then it is just set to the value computed in equa-
tion 2. The speed of learning is controlled by a, the learn-
ing rate parameter (0 < a < 1). A higher value trains the
SOM quickly, but makes it more susceptible to corruption
by noise. A lower value trains the SOM more slowly and
favours slow convergence to a single value.

3.3. Smoothing

The smoothing takes the form of a new distance being ap-
pended to the training history of each node. First, for each
node, the separation 6 of the L radius 1 neighbourhood (di-
rect neighbour nodes) is calculated as the mean of all neigh-
bours that have been trained. If none of its neighbours have
been trained then 6| will not be used for smoothing. Second,
the separation 6 of the Ly radius 2 neighbourhood is calcu-
lated (this includes only those nodes have an L distance of
exactly two), again, as the mean of the separations of all the
trained neighbours. If fewer than three of these nodes have
been trained then 6, will not be used for smoothing. Finally,
the weighted sum

2 1
== ~0>. 4
dn 361+362 4)

is computed, and the new distance is added to the node’s
training history with a weight of 1.

To make the algorithm more efficient (both in terms of
speed and memory), nodes had their separation checked
prior to being smoothed. If their current estimated distance
from the surface was larger than /3, they were left un-
smoothed. v/3 is the length of the diagonal of the unit cube
of the the SOM grid, therefore if a node is farther than V3
from the surface then it it cannot lie in an intersected cube.
Consequently, there is little value in smoothing it. This gave
a 10% increase in speed, and saved memory by not increas-
ing the size of their training history. The requirement to have
several trained neighbours is also beneficial as it results in
higher-quality meshes and a faster run-time. Nodes are only
smoothed if they are in a sufficiently well-trained neighbour-
hood, and time is not wasted by smoothing nodes that lie far
from the surface.

3.4. Isosurface Extraction

After the training is complete, we cycle through the list of
SOM nodes and examine their training history. The weighted
variance P of the node’s training history is calculated as

B= L)/ (Lw) with yi=widi—s) ()

(© The Eurographics Association 2010.

where w; is the weight of distance d;, and the sums run over
all the weighted distances in the node’s training history.

If the B is above a predefined threshold then the node is
flagged as having a high distance variance and being close
to a suspected surface feature. A high value of B could be
caused by features such as a spike, a crease, a corner, or two
parts of the surface lying sufficiently close so that the train-
ing data for each part interferes with the other, see Figure 1
(right). It could also be caused by inaccurate training data
caused by spatial and normal noise, or by wrongly oriented
normals.

At the final step of the algorithm, the surface is extracted
using a variant of the marching cubes algorithm [LC87], for
which the regular arrangement of the SOM nodes is ideal. If
a vertex is created between two nodes that are both flagged
as having a high distance variance, then it flagged up as a
suspected feature vertex. The requirement that both nodes
have the flag set ensures that fewer areas are falsely marked
as potential features.

4. Results

For a point set containing N points, good results were ob-
tained by processing 10N training samples. The only excep-
tion was the very dense Neptune set, where the processing
of 3N training samples was sufficient. Different values of the
learning rate parameter @ in Eq. 3 were tested and a value of
0.9 was found to give a good combination of adaptivity and
numerical stability.

Figure 2 shows reconstruction of the Cube, Horse, Stan-
ford Bunny and AIM@SHAPE Neptune point sets. The re-
constructions of the Cube and the Horse show the ability of
the algorithm to detect features in an clean point sets. In the
reconstruction of the Bunny, the input data are the original
raw data from the Stanford 3D scanning repository, not the
vertices of an already reconstructed model. We notice that
both features and spots of noise have been correctly iden-
tified. Finally, the reconstruction of the Neptune highlights
the inherent ability of the algorithm to handle very large
point sets, given that the input set is not globally processed
but only randomly sampled. The thresholds for the weighted
variance [were manually chosen at 1, 2, 1 and 0.3, respec-
tively.

Training the SOM with the Horse dataset (100K points,
IM training samples) took 51 seconds, the Stanford Bunny
(360K points, 4M training samples) took 164 seconds,
whilst Neptune (3.2M points, 10M training samples) took
19 minutes. The timings are comparable to those reported
in [YILOS]. In both cases the main bottleneck is the smooth-
ing step. Notice, that in our case the theoretical complexity
of the smoothing step is quadratic rather than cubic, how-
ever, each operation is more expensive as it processes a
larger neighborhood of the smoothed node.

130 D. Kaye & I. Ivrissimtzis / Implicit reconstruction and feature detection

Figure 2: Implicit SOM reconstructions. The detected feature points are drawn in red.

5. Discussion

We proposed a new SOM based algorithm for implicit sur-
face reconstruction and feature detection. Its main novelty is
that instead of only storing the current state of the SOM, the
recent training history is also explicitly stored and used in the
reconstruction and feature detection. One limitation of our
current approach results from the fact that the distance that
the training data extend from the sample point does not de-
crease as the algorithm progresses. Consequently, for a static
point cloud, the changes of the SOM have fixed granularity,
and so, after a certain time further training does not improve
the mesh quality. An overfitting control method is currently
being developed to catch this situation and force the isosur-
face extraction. The algorithm would be simple to modify
to take a live input, and performance could be improved by
taking a multithreaded approach.

In a second direction for the future development of the al-
gorithm, we plan to use a more sophisticated statistical anal-
ysis of the separation of a single node, or the separations of
a neighbourhood nodes, and extract more reliable feature in-
formation. Our ultimate goal is to produce an algorithm able
to classify the features of a surface into few basic categories,
such as spikes, creases, or data noise.

References

[ABK98] AMENTA N., BERN M., KAMVYSSELIS M.: A new
voronoi—based surface reconstruction algorithm. In SIGGRAPH
(1998), pp. 415-422. 2

[BFO1] BARHAK J., FISCHER A.: Adaptive reconstruction of
freeform objects with 3D SOM neural network grids. In Pacific
Graphics (2001), pp. 97-105. 1,2

[CBC*01] CARR J. C., BEATSON R. K., CHERRIE J. B,
MITCHELL T. J., FRIGHT W. R., McCALLUM B. C., EVANS
T. R.: Reconstruction and representation of 3d objects with ra-
dial basis functions. In SSIGGRAPH (2001), pp. 67-76. 2

[DGO3] DEY T. K., GoswAaMI S.: Tight cocone: a water-tight
surface reconstructor. In Symposium on Solid Modeling and Ap-
plications (2003), pp. 127-134. 2

[FCOS05] FLEISHMAN S., COHEN-OR D., SILVA C. T.: Robust
moving least-squares fitting with sharp features. In SIGGRAPH
(2005), pp. 544-552. 2

[HDD*92] HoOPPE H., DEROSE T., DUCHAMP T., MCDONALD
J., STUETZLE W.: Surface reconstruction from unorganized
points. SIGGRAPH (1992), 71-78. 2

[HV98] HOFFMANN M., VARADY L.: Free-form modelling sur-
faces for scattered data by neural networks. Journal for Geometry
and Graphics 1 (1998), 1-6. 2

[1JS03] IVvRISSIMTZIS I., JEONG W.-K., SEIDEL H.-P.: Using
growing cell structures for surface reconstruction. In Shape Mod-
eling International (2003), pp. 78-86. 2

[Koh82] KOHONEN T.: Self-organized formation of topologically
correct feature maps. Biological Cybernetics 43 (1982), 59-69.
2

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high
resolution 3D surface construction algoritm. SIGGRAPH (1987),
163-168. 3

[LCOLO07] LiPMAN Y., COHEN-OR D., LEVIN D.: Data-
dependent mls for faithful surface approximation. In Symposium
on Geometry Processing (2007), pp. 59-67. 2

[Lev98] LEVIN D.: The approximation power of moving least-
squares. Mathematics of Computation 67, 224 (1998), 1517—
1531. 2

[OBA*03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G.,
SEIDEL H.-P.: Multi-level partition of unity implicits. In SIG-
GRAPH (2003), pp. 463-470. 2

[PKGO03] PAULY M., KEISER R., GROSS M.: Estimation of pla-
nar curves. Comp. Graph. Forum 22, 3 (2003), 281-289. 2

[YBS05] YOSHIZAWA S., BELYAEV A., SEIDEL H.-P.: Fast and
robust detection of crest lines on meshes. In Symposium on Solid
and Physical Modeling (2005), ACM Press, pp. 227-232. 2

[YILO8] YOON M., IVRISSIMTZIS I., LEE S.: Self-organising
maps for implicit surface reconstruction. In Theory and Practice
of Computer Graphics (2008), EG Press, pp. 83-90. 1, 2, 3

[Yu99] YU Y.: Surface reconstruction from unorganized points
using self-organizing neural networks. In IEEE Visualization
(1999), pp. 61-64. 1,2

(© The Eurographics Association 2010.

