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Abstract

Achieving blue noise point set distributions has been a common goal of two largely separate research communities:

computer graphics and digital halftoning. Computer graphics research has focused largely on geometric solutions

in continuous spaces. Digital halftoning research has focused on signal processing solutions in discrete image-

based space. Usage of Poisson Disk point sets in computer graphics has grown beyond sampling, including object

distribution and texturing, among others. The image-based field of digital halftoning can provide additional tools

for graphics researchers and practitioners. It is of interest to explore the suitability of digital halftoning technology

to two classic problems in computer graphics: (1) approximating Poisson Disk point distributions of constant

density and (2) importance sampling of an underlying importance function. Exemplary methods from each field are

implemented and, by applying well-established measures of the radially averaged power spectrum and anisotropy

plots, are shown to be quite similar, although the approaches are mathematically not equivalent. Additionally, we

compare the relative radius of the point sets. Further, the ability of dither array construction techniques to shape

spectral characteristics of dot patterns is shown with several variations of design parameters.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-
tionBitmap and framebuffer operations ; I.4.1 [Computer Graphics]: Image Processing and Computer VisionDig-
itization and Image CaptureSampling;

1. Introduction

Stochastic sampling has been of significant interest in com-
puter graphics for over two decades. A large body of work
has established that, based on characteristics of the human
visual system, sample distributions with spectral character-
istics that can be described and measured as “blue noise”
are most desirable. The Poisson Disk distribution exhibits
the desired spectral characteristics and efficient algorithms
to generate such point sets have been the focus of much
study. The field of digital halftoning has faced essentially the
same problem. The tools that have been used to assess the
quality of Poisson Disk distributions, the radially averaged
power spectrum and anisotropy plots, originated in the study
of digital halftone techniques [Uli87]. In digital halftoning,
as in computer graphics, efficient techniques that can pro-
duce distributions of points with blue noise characteristics
are desirable.

Most of the prior work in producing and analyzing Pois-

son Disk point sets applies to distributions of constant den-
sity. However, the related problem of adaptive sampling is
of significant interest. A stochastic dither array approxi-
mates solutions to both in a very straightforward manner.
This paper lays out the common interests of two separate re-
search communities pursuing similar goals for similar rea-
sons: achieving visual effects. Examples are included to
show how a single stochastic dither array can be used to
address the two problems simultaneously: 1) approximating
Poisson Disk distributions, and 2) importance sampling

The computational efficiencies involved in using dither
arrays warrant consideration from the graphics community.
One compact, tilable array provides the means to produce
a set of Poisson Disk-like points of arbitrary density and a
means to implement importance sampling using only point-
wise threshold operations. Further, dither array construction
techniques provide an ability to shape spectral characteris-
tics.
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Prior work in both computer graphics and in digital
halftoning is explored. The similarities and differences of
the two fields are examined by implementing exemplary
techniques from each field: a Void and Cluster technique
from digital halftoning and the Best Candidate dart throw-
ing technique from computer graphics. Established analysis
techniques are employed to highlight the similarity of spec-
tral results. Results are also presented to show the flexibility
of the Void and Cluster technique to shape spectral proper-
ties by filter variation, creating point distributions that are
no longer "blue." The potential of using halftoning technol-
ogy in computer graphics is shown by including examples
of importance sampling using a stochastic dither array with
pointwise thresholding.

2. Prior Work

Poisson Disk sample distributions have been of significant
interest in computer graphics since Dippe and Wold [DW85]
introduced their use in antialiasing. Noting the computa-
tional demands of computing a Poisson Disk distribution,
Cook [Coo86] implemented jittering as an efficient approx-
imation for use in a variety of distributed ray-tracing light-
ing effects. Poisson Disk distributions are useful for a grow-
ing number of problems, such as object placement, texture
generation and non-photorealistic rendering. A recent com-
parative survey established and applied a standard frame-
work of analysis for point sets of constant density and dis-
cusses tradeoffs among approaches for different application
needs [LD08].

Early successful techniques based on applying constraints
to randomly generated points [MF92, Mit91] have been im-
proved with a variety of computational techniques [Jon06,
Wei08,DH06,GM09]. Work based on polyominoes [Ost07]
lends itself easily to the related problem of adaptive sam-
pling, at the expense of slightly more visible structure. Much
efficiency is gained with the use of precomputed data sets ap-
plied in conjunction with tiling schemes [CSHD03,HDK01,
LD06], but tiling can introduce structured artifacts on large
point sets.

Adaptive sampling addresses the related problem of gen-
erating points sets with varying density, according to an im-
portance function, but that exhibit blue noise characteristics
locally. McCool and Fiume [MF92] identified this need and
how their points, once computed, lead to a trivial solution.
They note that the ordering of points resulting from incre-
mentally reducing the radius in a dart throwing method pro-
duces a spatially distributed hierarchy of points that can be
thresholded. Several other approaches have been explored,
all relying on an underlying density function to produce
nonuniformly distributed point sets. Those techniques have
included subdividing space with polyominoes [Ost07], ap-
plying recursive Wang tiles to increase the number of points
in a local region proportional to the integral of the density

function in that region [KCODL06], and applying capacity
constraints to weighted Voronoi regions [BSD09].

Digital halftoning seeks to simulate a continuous
grayscale image using patterns of black dots. The visual
quality of the result depends on the spectral characteristics
of the inherent error, and here, as in Poisson Disk distribu-
tions, techniques that achieve blue noise distributions are de-
sirable. Ulichney [Uli87] specified measures of blue noise
in the context of digital halftoning as he compared the
visual quality of several neighborhood error-filtering tech-
niques [FS76, JJN76, SA85] to the computationally advan-
tageous point-process techniques using masks designed with
clustered dots and dispersed dots [Bay73]. Mitsa and Parker
[MP92] first combined the desirable blue noise characteris-
tics with the more computationally efficient mask technique
to produce a blue noise mask. Ulichney presented the com-
putationally elegant Void and Cluster technique to construct
a stochastic dither array by using strictly spatial domain fil-
tering [Uli93]. Much subsequent work has been devoted
to blue noise methods in the application domain of digi-
tal halftoning [Lin94,SMS97,ABS99, JBRL08]. In both the
construction of Poisson Disk distributions and in the quality
assessment of halftone techniques, anisotropy plots and radi-
ally averaged power spectra [Uli87] are used to characterize
spectral properties, but they are only appropriate when ap-
plied to regions of constant density and they require points
be on a grid. Lagae and Dutre [LD05, LD08] added the
concept of a relative radius for Poisson Disk distributions
to quantify the concept of relaxation of an ideal packing of
disks on a plane. Ishizaka [Ish09], summarizing a large body
of digital halftone techniques in terms of the functions that
are optimized, seeks a spatial domain measure for dot pat-
terns. He points out the limitations of traditional geometric
spatial measures for discrete methods.

3. Background

3.1. Halftoning with Masks

Let a single channel of a continuous tone image be repre-
sented by f (i, j) and let b represent the number of bits used
to quantize the tone in that channel. Then let the threshold
array, or halftone mask, m(i, j) contain 2b distinct tone lev-
els. Then construct a halftoned image g(i, j), with each tone
represented by bg bits, by doing a pointwise threshold com-
parison between f and the corresponding point in the m for
all (i, j). It is not necessary for m and f to be the same size
because masks typically are tiled.

g(i, j) =

{

0, f (i, j)< m(i, j)
1 f (i, j)>= m(i, j)

(1)

This defines the most constrained case in which g is a bi-
nary image and bg = 1. This is customary since halftoning
grew out of printing. Similarly, with the proliferation of dig-
ital imaging, it is customary to study the situation in which
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f (i, j) is represented by 256 tones and, thus, b= 8. However,
the results hold generally whenever bg < b, so that halftone
theory is applicable much more broadly, such as for use with
high dynamic range image data and for multilevel output de-
vices.

When f (i, j) = d where d is a constant, then g(i, j) is a
simulation of a constant graytone, represented by a uniform
density of dots, known as a dot profile. Formally, we can
designate gd(i, j) to be the dot profile of density d. Com-
monly in practice d ∈ [0,2b−1]. When working with digital
images, it is often convenient for analysis to speak of the nor-
malized density as a scaled value d ∈ [0,1] and normalized
thresholds. So if d is a constant representing a normalized
graytone level and m′ is a normalized threshold array, a bi-
nary array of a given density is given by

gd(i, j) =

{

0, d < m′(i, j)
1 d >= m′(i, j)

(2)

In halftoning, a mask is designed to accommodate the
number of graytones present in an image and its quality is as-
sessed by its ability to simulate each possible input by means
of a dot distribution. The distribution of these dots is a strong
indicator of visual quality and provides the basis for quanti-
tative quality assessments popularized by Ulichney [Uli87].

3.2. Dot Profiles and Poisson Disk point sets

The concept of “dot profile” in halftoning is analogous to
a Poisson Disk distribution of constant density. For a given
density level, d, our dot profile is simply gd(i, j) as defined
above. To identify the spatial locations of points in a contin-
uous (x,y) coordinate system, we identify the (i, j) locations
for which gd(i, j) = 1 and scale (i, j) to the appropriate co-
ordinate system. So the set of points from a N ×N binary
array, gd , mapped to a normalized (x,y) space is

P = {(i/N, j/N) : wheregd(i, j) = 1} (3)

The resulting set of normalized points, P, is tilable and
may be conveniently incorporated into existing code that
uses existing, similarly coded Poisson Disk point sets.

A further significant characteristic of halftone masks
is that they exhibit a “stacking” property, so that dots
(points) in one density level form subsets of dots (points)
at higher density levels. Formally stated, if gd(i, j) = 1 then

g
d
′ (i, j) = 1 when d < d

′

and if g
d
′ (i, j) = 0 then gd(i, j) =

0. This is a corollary to the hierarchical property found to be
desirable in Poisson Disk distributions.

Because the dither array is toroidal, a smaller array can be
computed, stored and tiled to extend infinitely. However, it
is well known that tiling introduces periodic artifacts in the

period of the size of the tile, which may or may not be toler-
able, depending on the application. In halftoning, this effect
is studied with respect to its visual impact, converting the pe-
riod to units of cycles per degree of visual angle. Acceptable
quality is determined by perceptual impact, which depends
on resolution of display device, viewing distance and other
application-dependent factors. Here, we will follow the con-
vention of the halftoning literature and assess characteristics
of a single mask without tiling.

3.3. Stochastic Dither Array Construction

Since Mitsa and Parker [MP92] first showed how to con-
struct a blue noise mask that was designed to exhibit blue
noise properties at every dot profile, single mask construc-
tion in digital halftoning has been implemented with a va-
riety of optimization approaches [SMS97, Ish09]. A num-
ber of them would have been a reasonable starting point for
our work. We chose to implement the Void and Cluster al-
gorithm [Uli93] to construct a stochastic array because its
three phase algorithmic structure is simple and powerful, be-
cause it allows dot-by-dot processing, because it implements
a concept of rank that leads directly to a hierarchical point
set and because control over spectral characteristics can be
effected by variations to the Gaussian filter parameters.

The algorithm begins by starting with an initial binary pat-
tern in an M×N array, with a fixed distribution of 1’s and 0’s
at the desired starting normalized density of less than 50%.
The initial binary pattern is repeatedly altered by filtering
to locate the positions of largest open spaces, or “void” lo-
cations and the positions of densest energy, or “clusters” of
1’s. The algorithm then swaps the 1’s and 0’s at those lo-
cations and repeats until convergence. Then, from that seed
pattern, the algorithm first increases the density of 1’s by
using the filter to identify the locations of the largest open
spaces, or “void” locations, then decreases density by re-
moving 1’s by filtering to identify the location of the largest
"clusters." Thus the algorithm proceeds by choosing specific
candidate locations, one by one, that maximize or minimize
the filter, thus eliminating a reliance on random point gener-
ation and questions of convergence.

Note that in the process of adding and removing 1’s, rep-
resenting points, a unique integer is retained, correspond-
ing to the order in which the point was chosen. In this way,
the resulting stochastic dither array represents an ordering of
M×N integers stored in a two dimensional array, m, with the
location of each successive integer in the array correspond-
ing directly to the spatial location.

4. Methods

The Void and Cluster algorithm was implemented using
Matlab 7.90529 on a Dell Precision M2400, with Intel Core
Duo 2.54 GHz Processor and 8GB RAM, running 64-bit
Windows 7. A "distinct" mask is defined by both the size
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Figure 1: Comparison of points generated using a stochastic dither array (columns 1-3) and a Best Candidate dart-throwing

technique (columns 4-6). Each row corresponds to point sets of cardinalities 1K, 4K, 13K, 26K, and 52K, respectively

of the mask and the filter used. Ten instances of each dis-
tinct mask were constructed to provide adequate frequency
domain analysis data, starting with a different initial pattern
each time. In all the experiments, we used N ×N images,
where N = 512. Production of a single stochastic dither ar-
ray required approximately 6 hours.

Begin with a random, white noise initial binary pattern
with 20% density. That is, we place n = f loor(512 ∗ 512 ∗
0.2) = 52,428 points randomly among the 512 ∗ 512 =
262,144 locations. A radially symmetric Gaussian filter was
defined in the spatial domain as

h(i, j) = e
−r2/2σ

2

where r =

√

(i−
N

2
)2 +( j−

N

2
)2 (4)

The value of σ was varied throughout our experiments.
In this implementation, filtering was performed in the fre-

quency domain by applying the Discrete Fourier Transform
(DFT) to both the filter and the current binary pattern and
taking the product. Ulichney performed filtering by modi-
fied convolution in the spatial domain.

Two sets of experiments were conducted. The first ex-
plored issues of equivalence are between classic dart-
throwing and dot profiles generated from a stochastic dither
array. Per Ulichney, σ was set to 1.5, a value known to pro-
duce good overall results in the Void and Cluster algorithm.
For comparison, the Best Candidate dart throwing algorithm
was used to produce several distinct point sets. Here, a "dis-
tinct" point set is defined by the approximate density of
points. Five distinct sets of points, Pbc, were generated with
cardinalities of approximately 1K, 4K, 13K, 26K, and 52K.
For each distinct set, ten instances were generated to provide
for adequate frequency domain analysis.
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For comparison to a dither array, point sets of the same
cardinality were used. Recall that the sequential output of
the ranks effectively reorders the N×N locations in the array
and the first T reordered locations define a hierarchical point
set. So, it is sufficient to find all (i, j) such that m(i, j)<= T

and then scale (i, j) to a (x,y) location in a given domain.
Several point sets were produced from a single dither array
using a single threshold operation for each set. That is, a
point set, PT , from a dither array, m, is constructed for com-
parison with a Best Candidate point set, Pbc, as follows:

PT = {(i/N, j/N) : where m(i, j)≤ Tand T = |Pbc|} (5)

The second experiment explored the impact of filter de-
sign during mask construction on spectral characteristics.
For this, six distinct masks were constructed by using σ =
0.75,1.5,3.0,6.0,12.0,and 24.0. From each, five point sets,
P(σ,T ), were computed using Eq. 5 with thresholds of 1K,
4K, 13K, 26K, and 52K.

5. Results: Comparing Void and Cluster Dither Arrays

and Best Candidate Dart Throwing

Results from the first experiment appear in Figure 1 arranged
with columns 1-3 showing results for Void and Cluster and
columns 4-6 showing results for Best Candidate. Rows are
arranged to reflect a fixed point set size, with rows 1-6 pro-
viding data for point set sizes 1K, 4K, 13K, 26K, and 52K,
respectively. Presented for each technique, for each point
set size, are a 196× 196 magnified portion of a 512× 512
dot pattern, the radially averaged power spectrum and an
anisotropy plot. Additionally, Table 1 presents the relative
radius, ρ, for each.

Spatial Distribution: Referencing columns 1 and 4 of
Figure 1, each row shows point sets with varying cardinal-
ities: (row 1) 1.035, (row 2) 4,096, (row 3) 13,108, (row
4) 26,215, (row 5) 52,429, or, as a density percentage on
a grid of 512× 512: 0.5%, 2%, 5%, 10%, and 20% respec-
tively. Both techniques produce point distributions that are
quite similar and represent “blue noise” distributions for a
variety of point set sizes. A keen observer may notice more
regularity in the points generated with the Best Candidate
dart throwing technique and note the increased uniformity
of spacing.

Lagae and Dutre [LD08] devised a meaningful dot pat-
tern metric based on the concept of relative radius, denoted
by ρ, and noted that the best patterns are those in which
0.65 ≤ ρ ≤ 0.85. We compute an relative radius for each
dot pattern in each distinct set. The average for each dis-
tinct set is presented in Table 1. Data in rows 1 and 2 show
the relative radius of the two exemplary methods. The Best
Candidate method has a larger relative radius, suggesting it
approaches an ideal packing pattern more closely than points
generated with a dither array. Points generated with Void and

Cluster dither arrays still fall near the range for good dot
patterns as asserted by Lagae and Dutre for lower densities,
then move steadily farther away from an ideal packing as
grid constraints limit point placement.

Table 1: Relative Radius Comparison

Method 1K 4K 13K 26K 52K
BC 0.72 0.73 0.74 0.74 075
VC 0.64 0.65 0.58 0.42 0.42

binned BC 0.68 0.63 0.58 0.41 0.41

An obvious limitation of using image based methods is
the binning error introduced when restricting points to a grid.
To gain a feel for the impact of the loss of precision from
binning errors, the Best Candidate point sets were mapped
to a 512×512 grid, followed by computation of the relative
radius on the resulting degraded point set. The values are
shown in the row 3 of Table 1.

The impact of the binning error must be considered within
the context of the particular application. At some density
level, points will begin to exhibit structural artifacts as points
necessarily begin to be placed in adjacent locations, with a
minimum distance of 1/N. Note that when normalized den-
sity d > 0.5, the relationship between the 1’s and 0’s mirror
each other in terms of density and frequency content. In the
context of halftoning, dot profiles for which d > 0.5 corre-
spond to reproducing darker tones. In the context of generat-
ing point sets, choosing all N×N points is most likely inap-
propriate. However, the full set of N ×N numbers, arranged
in the mask, is necessary for implementing importance sam-
pling.

Frequency domain analysis:Frequency domain analysis
helps to quantify the visual characteristics and provide in-
sight into subtle differences. The widely used metrics of the
radially averaged power spectrum and anisotropy plots de-
fined by Ulichney in the context of digital halftoning are also
used in computer graphics [Uli87]. The results of comput-
ing the metrics on each of the sets are shown in Figures 1
columns 2-3, for the Void and Cluster technique, and 5-6,
for the Best Candidate technique.

The graphs of frequency content exhibit many similari-
ties, as do the dot profiles themselves; but an interesting
difference is seen in the amplitude of the RAPS plots. For
both the 4K points and 1K point sets, shown in rows 1 and
2 of Figure 1, the oscillating effect of the peaks at and be-
yond the transition region is more exaggerated. This recalls
the sinc(x) = sin(πx)/πx function, which corresponds to an
ideal low pass filter in the spatial domain. We believe that
this effect is achieved by the strict radial distance constraint
used in Poisson Disk generation techniques.

The radially averaged power spectrum is shown for each
of the dot profiles in Figure 1, which are each produced by
thresholding the same stochastic dither array. For example,
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Figure 2: Results from varying sigma uniformly in a radially symmetric Gaussian filter. Shown for each σ are a spatial domain

representation of the filter, a dot pattern of 4096 points, magnified to 196×196 and the corresponding RAPS.

structures that are apparent in the dot profiles for Figures
1 in rows 5-6, column 1 might be objectionable for some
applications, but the frequency characteristics for these pat-
terns are still blue noise. Although the RAPS characteris-
tics of rows 5-6, column 4, are similar here, it is important
to understand that the frequency domain measures of Best
Candidate points require binning before computation. Con-
clusions drawn about the spectral characteristics of binned
Best Candidate points are limited by the binning resolution.
Evaluation of Best Candidate points in the frequency domain
depend on resolution of grid used in the metric. It would be
inappropriate to conclude from these graphs that the Best
Candidate characteristics vary with density in the same way
that the Void and Cluster patterns do. This graph suggests
that, within inherent constraints present in a discrete system,
the Void and Cluster technique is comparable enough to ex-
isting Poisson Disk algorithms to merit consideration.

5.1. Results: Varying Spectral Shape with Filter

Parameters

Results of the second experiment appear in Figure 2. For
each distinct mask created with a variation in filter pa-
rameter, we show a radial cross section of each filter in
the spatial domain, a 196× 196 magnified dot pattern for
produced using a thresholded of T = 4096, and the radi-
ally averaged power spectrum. These items are shown in
columns 1-3 for σ = 0.75,1.5,and 3.0, in rows 1-3, respec-
tively. Similarly, these items are shown in columns 4-6 for
σ = 6.0,12.0,and 24.0.

Reading down columns 1 and 4, note that the filter is
a low-pass filter and that, as σ increases, the filter widens
in the spatial domain. By properties of the Fourier trans-
form, a decrease of filter width in the spatial domain re-
sults in an increase of filter with in the frequency domain.
Columns 2 and 5 show the resulting patterns in which dots
begin to cluster near one another. Columns 4 and 6 show in-
teresting trends regarding the RAPS. The oscillating char-
acteristics of the high frequency region is first dampened
for σ = 0.75,1.5,3.0,6.0; but energy remains uniformly dis-
tributed throughout the high frequency region. However,
when σ = 12.0,and 24.0., the high frequency is greatly di-
minished, which combined with the increased peak at lower
frequencies, recalls a bandpass filter effect. The clumps in
the dot patterns are very noticeable when σ = 12.0,and 24.0
(column 2, rows 2 and 3) and create interesting patterns. This
clustering behavior may be of use in some applications, e.g.
in object location or biological system simulation.

6. Adaptive Sampling with a Stochastic Dither Array

As hierarchical set of Poisson Disk-distributed points can be
used to adaptively sample a space with a known probability
density function [MF92]. We define an importance image as
discrete samples of a two-dimensional density function. In
Figure 3 (top) the importance function is defined as a gray
ramp image, with white representing the maximum value.
Below that are shown three corresponding sets of sample
points of varying density. Sample locations are represented
as black dots. In each case, the sample points were achieved
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Figure 3: Grayscale ramp as importance image (top) and

three sample point sets generated by thresholding a stochas-

tic data array. Reductions of sampling density by 99% and

90% achieved by applying a constant scaling factor.

with a pointwise threshold operation. Variation of density
was achieved by a constant operation at each point. The first
set shows the sample points generated by thresholding with
the full dynamic range of the stochastic array. As the impor-
tance image approaches full value, shown on the right as the
white region, the number of sample points approaches full
saturation, so that every point is selected to be sampled and
the right region appears solid black. Because choosing ev-
ery sample point may be impractical in computer graphics
application, the number of sample points can be easily con-
trolled by the importance image. The bottom two pictures
of Figures 3 show how a hierarchical reduction in sampling
density can be achieved by applying the dither array. These
were produced by scaling each point of the input image by
dividing by 32 and 64, respectively.

Without loss of generality, we start with the same two-
dimensional density function used by Balzer [BSD09] de-

fined as ρ = e−20x2
−20y2

+ 0.2sin2(πx)sin2(πy) over the
range [-1,1]. We use this to define discrete values over a
512× 512 array, f , which we show as an intensity image in
Figure 4(left). This image is thresholded with a normalized
stochastic array, m′, defining a sample point set P in (x,y)
space as

P = {(x,y) : where x = (i−256)/512,
y = ( j−256)/512 and f (i, j)> m′(i, j)}

(6)

The sample points that result are shown in Figure 4(right).
Figure 5(top) shows a portion of a magnified cross section
of the continuous density function along a diagonal passing
through the center. Figure 5(bottom) show the points along
the corresponding magnified portion of the axis which repre-
sent sample locations. The density of sample points adapts to
the amplitude of the density function as seen in the closely
spaced points along the left correspond to the high curve,
and the sparsely spaced points in the middle correspond to

the dip in the curve. More sample points are selected at the
(x,y) locations that correspond to areas of greater intensity.
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Figure 4: (left) 2D density function ρ = e−20x2
−20y2

+
0.2sin2(πx)sin2(πy) as a 512× 512 importance image and

(right) the sampled image after thresholding with a stochas-

tic data array. White regions in (left) represent maximum im-

portance. Black dots represent sample points in (right).
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Figure 5: (top) Diagonal cross section of 2D density func-

tion ρ = e−20x2
−20y2

+ 0.2sin2(πx)sin2(πy) and (bottom)

corresponding samples selected after thresholding.

7. Summary

We have explored an image-based approach to the classical
computer graphics problem of generating Poisson Disk sam-
ple point distributions. Generation of the stochastic dither
array is computationally intensive but, once computed, al-
lows for uniform and adaptive sampling in a straightforward
and very efficient manner. Comparisons between exemplary
techniques in each field show quantitatively and qualitatively
similar results. However, the image-based approach of digi-
tal halftoning techniques imposes restrictions on point place-
ment that are not present in continuous space techniques for
computing Poisson Disk point sets.

Dither arrays are precomputed data sets and, thus, signifi-
cantly faster to implement than “on the fly” techniques. They
are inherently parallelizable, scalable, and their toroidal na-
ture makes them well suited for adapting to a variety of
architectures, including embedded systems and other con-
strained platforms. The construction of the data set is driven
by intentional filter design. This allows for control of spec-
tral characteristics. Lastly, the precomputed data set is hi-
erarchical and allows for adaptive sampling of importance
images and density functions in a very direct manner.
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