
EG UK Theory and Practice of Computer Graphics (2010)
John Collomosse, Ian Grimstead (Editors)

Surfel Based Geometry Reconstruction

Vedrana Andersen1, Henrik Aanæs1 and Andreas Bærentzen1

1Technical University of Denmark

Abstract
We propose a method for retrieving a piecewise smooth surface from noisy data. In data acquired by a scanning
process sampled points are almost never on the discontinuities making reconstruction of surfaces with sharp
features difficult. Our method is based on a Markov Random Field (MRF) formulation of a surface prior, with
the surface represented as a collection of small planar patches, the surfels, associated with each data point. The
main advantage of using surfels is that we avoid treating data points as vertices. MRF formulation of the surface
prior allows us to separately model the likelihood (related to the mesh formation process) and the local surface
properties. We chose to model the smoothness by considering two terms: the parallelism between neighboring
surfels, and their overlap. We have demonstrated the feasibility of this approach on both synthetical and scanned
data. In both cases sharp features were precisely located and planar regions smoothed.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

In this paper, we propose a novel anisotropic method for
smoothing noisy data. We represent the surface using small
planar patches, the surfels, associated with each data point.
This allows us to easily define a surface prior based on
Markov Random Fields (MRFs).

Markov Random Fields have been used extensively for
solving Image Analysis problems at all levels. While some
examples are mentioned below, MRFs have rarely been used
for mesh processing. The central element of the MRF formu-
lation is that we use Bayes’ rule to express the probability of
a given field (in this case a surface) as the product of a like-
lihood and a prior. Likelihood relates to our knowledge of
the noise (e.g. how much noise a scanner introduces), while
the prior relates to our knowledge of the properties of the
surface (e.g. how smooth a surface should be).

Representing a surface using surfels has some clear ad-
vantages. To begin with, surfel representation corresponds
well to the data creation process, as each sampled point cor-
responds to the scanner detecting the objects surface, and
is rarely, if never, the point on the sharp feature. By using
surfels we also avoid the problems of dealing with some-
times arbitrary triangulation, where the mesh edges corre-
spond poorly with the sharp features on the surface.

2. Related Work

A very important task in geometric processing, and a
main way of generating 3D content, is the estimation
of 3D shape or geometry from observations. In many
of these cases mesh smoothing are needed to reduce
noise in the data, resulting in a variety of proposed al-
gorithms, from the early isotropic [DMSB99, Tau95], over
anisotropic [DMSB00, TWBO02], and efficient feature pre-
serving [DTB06, FDCO03, JDD03] methods.

The most popular approach is curvature minimization
based smoothing. However, this is not suitable in all cases.
An example is man made environments where the geometry
often is piecewise planar. This nature does not correspond
well with curvature minimization, since the curvature is high
(in principle infinite) at the corners. A way of addressing this
problem is to find the most dominant planar directions in the
data and constraining the data to this [FCSS09a, FCSS09b].

To allow for piecewise smooth surfaces using a local ap-
proach, a number of smoothing schemes employ smooth-
ing of the normal and then reconstructing the point loca-
tion [SB04, SRML07]. The main drawback of most of the
proposed methods is that they depend on having samples on
discontinuities, or try to migrate vertices to the sharp fea-
tures.
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Our work solves the issue of expecting vertices to be on
the feature edges by using surfel surface representation. Sur-
fels (surface elements with no connectivity information) has
been introduced in [PZvBG00] as primitives for rendering,
in an extension of point rendering [GD98]. We propose using
surfels for 3D surface estimation using a MRF [Li01] formu-
lation of piecewise planar prior. A similar approach has been
tried [AABN10], but by using surfel surface representation
our work solves the issue of expecting vertices to be on the
feature edges.

Dual mesh approach, which we apply, is used in [OB02]
in the context of optimizing isosurface polygonization,
noticing the advantage of using dual when recovering sharp
features.

Comprehensive study on the use of MRF theory for solv-
ing image analysis problems can be found in books by [Li01]
and [Win03]. MRF theory is convenient for addressing the
problem of piecewise smooth structures. In [GG84] a foun-
dation for the use of MRF in image analysis problems is pre-
sented in an algorithm for restoration of piecewise smooth
images, where gray-level process and line processes are
used. Some of the other applications of MRFs for problems
involving reconstruction of piecewise smooth structures in-
clude [DT05], where high-resolution range-sensing images
are reconstructed using weights obtained from a regular im-
age. In [HC03] a coupled MRF is used for locating grids
with possible cracks in the structure. In [SSZ03] a stereo
matching problem is addressed by three coupled MRFs mod-
eling piecewise smoothness and occlusion.

There are some previous examples of using MRF theory
to 3D meshes. In [WSC04] MRF are used in the context of
surface sculpting with the deformation of the surface con-
trolled by MRF potentials modelling elasticity and plastic-
ity. MRF was also used for mesh analysis and segmentation
in [LW08], point cloud reconstruction in [JWB∗06], and sur-
face reconstruction [PBL09].

3. Markov Random Fields Theory

MRFs is a powerful framework for expressing statistical
models originating in computational physics, and it has
proven highly successful in image analysis. A MRF is, es-
sentially, a set of sites with associated labels and edges con-
necting every site to its neighbors. The labels are the values
which we wish to assign (e.g. pixel color, vertex position,
surfel parameters), and it is a central idea in MRF theory
that the label at a given site must only depend on the labels
of its neighbors.

Apart from a well developed mathematical framework one
of the main advantages of MRF is that its Markovianity (lo-
cal property) makes it quite clear what the objective function
is and what a MRF based algorithm aims at achieving. Expo-
nential distributions are often used, and the joint probability
distribution function of given configuration f (e.g. combined

vertex location) is given by

P( f )∝ e−∑U( f ) ,

where the U( f ) can be seen as energy terms or potentials
defined on neighborhoods. In order to find the most likely
configuration f , we need to obtain

min
f

∑U( f ) . (1)

In our proposed framework, we wish to smooth a set of
surfels. Some of the U( f ) in (1) are therefore data (like-
lihood) terms penalizing the displacement from the input
mesh. Other terms would be prior terms which express how
likely a surface is a priori.

4. The Method

The input to our method is a triangle mesh. Since we use the
mesh connectivity only to efficiently find neighbors of each
data point, the method can easily be modified to take a point
cloud as input.

Starting from the noisy input mesh, we associate a planar
patch to each vertex. We formulate a surface prior by defin-
ing two terms, the parallelism term and the overlap term. Par-
allelism depends on the orientations of the surfels, while the
overlap depends on the distance between the surfels. Both
terms are weighted to account for sharp edges – the discon-
tinuities between the smooth parts of the surface.

In the iterative scheme we optimize the parallelism and
the overlap between neighboring surfels. The weighting is
gradually increasing, to precisely detect the sharp edges
and impose smoothness. Finally we retrieve the piecewise
smooth surface by robustly estimating the intersections be-
tween neighboring surfels.

4.1. Surfel Representation

Our surfel representation associates each data point with a
small planar patch, a surfel. A surfel (n,a) is a piece of a
plane and is represented by a plane normal n and a distance
a from the origin.

Unlike planes, surfels are localized. A center c of the sur-
fel is the projection of the data point p onto the surfel plane

c = p− (n ·p−a) ·n ,

where ( · ) denotes a scalar product.

In our implementation the input was a noisy triangular
mesh, so we assigned a surfel to each of the mesh vertices v.

4.2. Surfel Initialization

Surfels are initially positioned in the tangential plane of each
data point. When associating a surfel to a mesh vertex v we
have

v 7→ (n,a) = (n,n ·p) ,
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where n is some normal estimate at v, and p is the position
of v.

We utilized the mesh connectivity and used area-weighted
normal as the estimation of the surface normal, but any other
normal estimation would perform just as well. The final op-
timization result proved rather robust to initialization when
we experimented with adding a small amount of noise to the
initial normal estimate.

4.3. Surfel Optimization

Smoothing of the surfels is done by minimizing the objective
function consisting of three parts: likelihood, parallelism and
overlap. Each part can be formulated as the energy contribu-
tion of each surfel, or as a joint energy for the whole mesh,
which is simply a sum of the individual contributions. For
simplicity, and because it corresponds well to our optimiza-
tion scheme, we formulate the objective function of a single
surfel.

In our optimization, we visit every surfel and locally ad-
just its parameters according to the objective function. We
repeat until the energy converges, which generally happens
after only a few iterations.

Likelihood. It is possible to utilize the knowledge about the
data acquisition process (e.g. scanner accuracy and geome-
try) by formulating a suitable likelihood energy. Likelihood
expresses the probability that a given surface is a corrupted
version of some other surface.

Since the likelihood was not the object of our experi-
ments, we assumed the isotropic Gaussian noise. The con-
tribution of the single surfel to the likelihood is a squared
distance between the surfel (n,a) and the data point p

(n ·p−a)2 .

The other two contributions to the objective function, the
parallelism and the overlap, form a smoothness prior, which
expresses how probable (a priori) a given surface is. The
prior encodes the belief that a smooth surface is more prob-
able than a noisy surface, and in MRF framework prior is
defined locally by penalizing the undesired behavior of the
surface. In the case of our smoothness prior, both the paral-
lelism and the overlap are formulated for the pairs of neigh-
boring surfels.

In our implementation we have used the mesh connec-
tivity to determine the set of neighboring vertices. This can
however easily be replaced by the neighboring relation de-
fined via spatial proximity, meaning that the basic algorithm
can be adopted to take a point cloud as input.

Parallelism. Difference in the orientation of two neighbor-
ing surfels is penalized by the parallelism term. For every

pair of neighboring surfels (ni,ai) and (n j,a j) the contribu-
tion to the parallelism term is the squared distance between
the normals

‖ni−n j‖2 .

The parallelism energy corresponding to a each surfel is
therefore

∑
j∈N(v)

‖n−n j‖2 ,

where N(v) denotes indices of the vertices neighboring to v.

Overlap. Parallelism term will ensure the smoothness of the
normal field but we also want to adjust the drift of each surfel
in the normal direction so that the resulting surface is contin-
ues. To assure an appropriate overlap between the neighbor-
ing surfels we penalize the local distance between surfels.

For two sufels (ni,ai) and (n j,a j) we consider the length
of the projection of surfel center c j to a plane of the surfel
(ni,ai)

(ni · c j−ai)

and vice versa. The sum of the squared distances is the term
we want to minimize to obtain the local overlap between the
surfels.

As a result, each surfel contributes with the overlap energy

∑
j∈N(v)

((n · c j−a)2 +(n j · c−a j)
2) .

Weights. Minimizing the prior term as defined above will
smooth the surfels. However, we are interested in retriev-
ing a piecewise smooth surface, so we do not want to pe-
nalize all sharp edges and corners. To allow for the surface
to break across sharp ridges we are using adaptive threshold-
ing weights. When considering the optimal function for each
surfel we start by looking at the parallelism energy for all of
the neighbors.

We want to smooth the normals of the surfels, but not
if the angle between the normals is larger than the certain
threshold. Therefore we obtain weights from the parallelism
energy using a thresholding function

f (x) =
1

1+( x
t )

2 ,

where t is a threshold parameter. The behavior of the func-
tion is illustrated in Fig. 1, left. Those weights are then ap-
plied both to parallelism term and the overlap term. The
effect of thresholding the parallelism term is illustrated in
Fig. 1, right.

Iterations. Our optimization scheme is iterative. In each it-
eration we visit all the surfels and adjust its parameters to
minimize the objective function. In our experience, the con-
vergence is achieved after only a few iterations. In order
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Figure 1: Thresholding function used to achieve feature pre-
serving behavior of the smoothness prior. Left: Thresholding
function for the different threshold values, blue corresponds
to 125 degrees angle, while the red corresponds to an angle
of 5 degrees. Right: The effect of the weighting parallelism
energy with the thresholding function for the same thresh-
old values. The black line shows parallelism energy without
weighting

to efficiently smooth the planar parts of the mesh, and still
preserve the sharp features, we are moving the threshold of
the weighting function with each iteration. As a result two
neighboring surfels are either almost parallel, or at an angle,
which is so sharp that the thresholding function effectively
breaks all smoothing.

Our current implementation is based on the Matlab’s nu-
merical optimization, which allowed us to experiment with
a number of different priors without adjusting the optimiza-
tion scheme.

4.4. Surface Retrieval

The result of the surfel optimization is a collection of small
surface patches. Finding a suitable and robust method for
final retrieval of the surface is still a part of our ongoing
work. To visualize and verify the results we have utilized the
initial mesh connectivity.

As we want the final result to reflect the fact that we as-
sociate the surface patch to a data point, directly returning
to initial mesh connectivity would be inappropriate. Instead,
we have calculated a dual mesh, associating the dual face
with each vertex of initial mesh, and a dual vertex to each
face of initial mesh. The key element of our approach is cal-
culating the positions of dual vertices.

Each of the dual vertices, corresponding to the face of the
initial mesh, has three neighboring faces and the associated
surfels. The position of the dual vertex was calculated as a
robust intersections of the three neighboring surfel planes.
We used use quadric error metrics [GH97,GH98] to find the
plane intersection. Error quadrics can be used to minimizes
the squared distance of the point to the set of planes, keeping
track whether a single plane is counted multiple times.

Figure 2: The reconstruction of the synthetic cube cor-
rupted by Gaussian noise. Left: Two renderings of the input
mesh and the initial surfel configuration. Right: Correspond-
ing renderings of the reconstructed surface and optimized
surfel configuration

5. Results

Our method can retrieve piecewise smooth surfaces from
rather noisy data. It is also evident that the sharp features
are recovered with great accuracy.

In Fig 2 we show the result of our initial experiments,
where we smooth the synthetic cube corrupted with a Gaus-
sian noise. We have also tested our method on a broadly used
fandisk object, see Fig 3.

The main application of our method is to reconstruct the
piecewise smooth surface from the noisy scans. To perform
test on a real life example, we scanned a squared block in a
structured light scanner. The results are shown in Fig 4 (note
that the ragged ends are the boundaries of the scan).

6. Conclusion

We have developed a method for reconstructing piecewise
smooth surfaces from scanned data. Our method uses a sur-
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Figure 3: The reconstruction of the fandisk model corrupted
by the Gaussian noise. Left: Input mesh and the initial surfel
configuration. On the bottom a close up of the sharp detail.
Right: The corresponding views on the reconstructed surface
and the optimized surfel configuration

Figure 4: A structured light scan of a cubical model and its
reconstruction. Left: Two renderings of the input mesh (dis-
playing both the irregularly sampled points, scanning noise
and the triangulation artifacts) and the initial surfel config-
uration. Right: The corresponding renderings of the recon-
structed surface and the optimized surfel configuration. Note
that the ragged edges scan boundaries.

fel representation of surfaces. We assign plane parameters
to each of the scanned points, and adjust those parameters
according to the smoothness prior. The main contribution of
our method is that we show the advantage of not assuming
samples on discontinuities. Instead we are optimizing pieces
of smooth surfaces resulting in well reconstructed piecewise
smooth geometry. Using a dual mesh while reconstructing
the surface we again avoid the issue of missing sample points
on sharp features. Our experiments demonstrate the capabil-
ity of our method.
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